

Changes in Eating Out Behavior During the COVID-19 Pandemic and Their Modeling

Tsukuba-L 2025/09/24

Nakazawa, Nakayama, Demoto, Shibata, Kamiyama, Yang

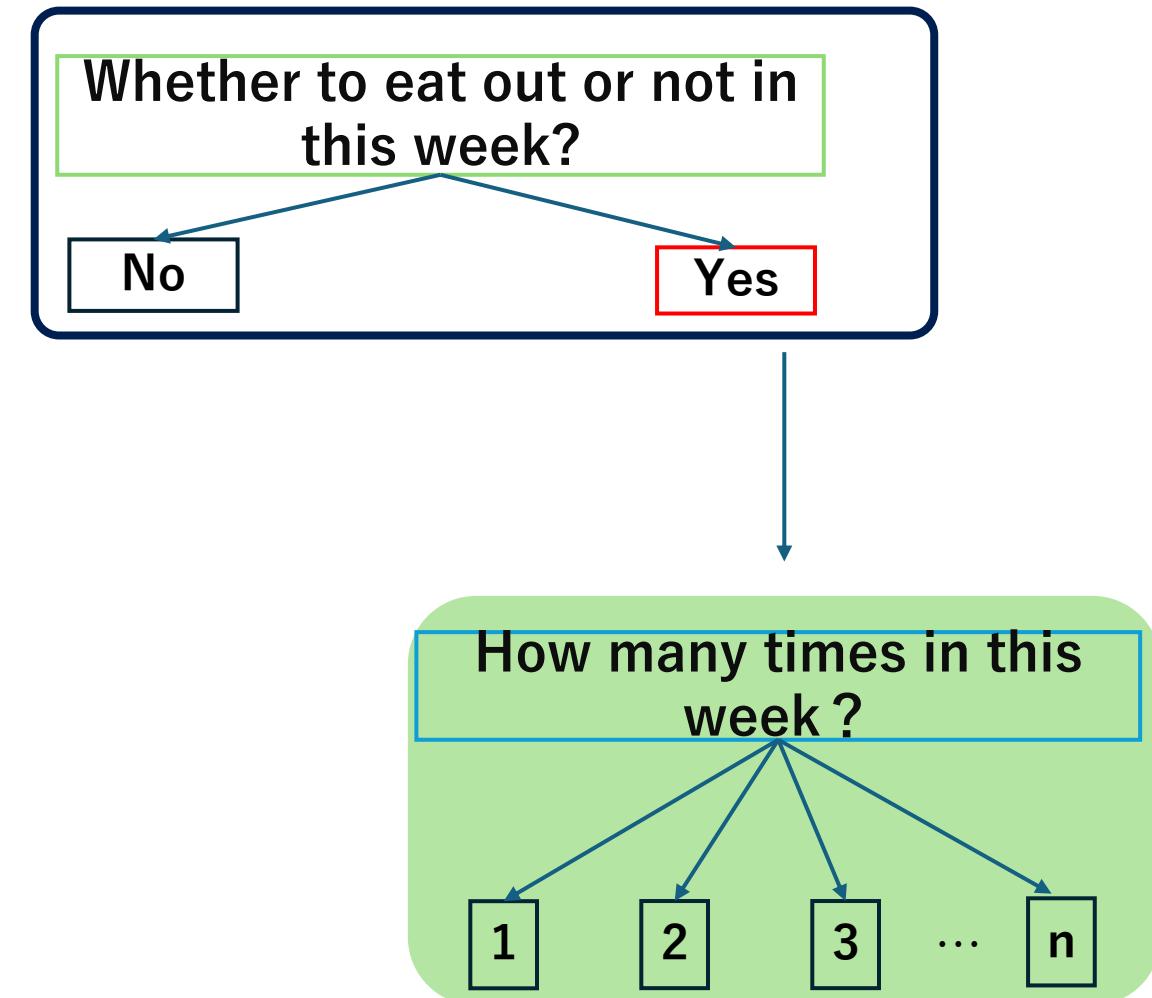
Background & Purpose

- **Background**
 - Behavioral changes due to the COVID-19 pandemic vary depending on individual attributes and habits (based on basic statistics).
 - In particular, there are significant differences in individual attitudes when it comes to eating out.
- **Purpose**
 - Modeling eating-out behavior and gaining insights into policies that encourage changes in eating-out behavior.

Basic Analysis

- Average weekly trips remained unchanged during the declaration period, while Eat-out trips decreased compared to before and after the declaration period.

trips	n	mean_diff	sd_diff	t	p_approx
during - before	72	0.58	5.92	0.83	0.41
after - during	60	-0.08	5.29	-0.12	0.91
after - before	78	1.36	5.40	2.23	0.03


eat_out	n	mean_diff	sd_diff	t	p_approx
during - before	72	-0.35	1.06	-2.77	0.01
after - during	60	0.38	1.05	2.80	0.01
after - before	78	0.04	1.01	0.34	0.73

Model Overview and Structure

Model

- Binary Logit model
- Regression model

Model Overview and Structure

- **Binary Logit Model (Eating out or not?)**
 - Utility: $V = \beta_1 x_1 + \beta_2 x_2 + \dots + \varepsilon$
 - Explanatory variables (Constant, Female dummy, Vaccination, State of Emergency, Number of Commuting, Average number of trips, Average trip time, Age 50+)
- **Multiple Regression Model (How many times?)**
 - Formula: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \dots + \beta_n x_n$
 - Explanatory variables (Constant, Vaccination, Family members living together, Car ownership, Motorcycle or bicycle ownership, State of Emergency)

Estimation Results — Binary Logit

	Estimate	t-value		Estimate	t-value
Constant	0.27	2.20**	Number of commuting	-0.12	-4.37***
Female dummy	0.32	2.30**	Average number of trips	0.29	6.51***
Vaccination dummy	-0.43	-3.17***	Average trip time	-0.0001	-4.30***
State of Emergency dummy	-0.38	-1.60	Age 50+ dummy	0.29	2.37**

Significance levels: *** p<0.01, ** p<0.05, * p<0.1

Sample size : 1296

Initial log-likelihood : -898.32

Final log-likelihood : -800.91

Likelihood ratio index : 0.11

Adjusted likelihood ratio index : 0.0995

McFadden's pseudo R² : 0.11

Hit rate : 64.89%

Consideration

- The female dummy, the average number of trips, and being age 50+ have positive coefficients, indicating these factors make dining-out behavior more likely.
- The negative coefficient on the vaccination dummy likely reflects that people with higher infection awareness were less inclined to dine out.
- The 4th State of Emergency shows no statistically significant effect on going out.

Estimation Result - OLS Regression

• Eat-out

	Estimate	t-value
Constant	0.71	4.41***
Vaccination	0.24	5.26***
Family members living together	-1.01	-8.13***
Car	-0.23	-2.30**
Do not own a car,motorcycle or bicycle	1.29	6.23***
Wave 4	-0.18	-1.02

Sample size	1037
Log-likelihood	-2037.2
AIC	4086
BIC	4116
Covariance type	HC1
F-static	18.41
Prob(F-static)	1.54e-17
R-squared	0.119
Adj. R-squared	0.115

Significance levels : *** p<0.01, ** p<0.05, * p<0.1

Consideration

- Declining a state of emergency is not dominant
- Vaccine have become dominant
- Having a family gave an advantage

Summary

- Behavioral changes due to COVID-19 are prominently reflected in dining-out behavior.
- By using a binary logit model and a regression model, dining-out behavior is modeled in terms of whether or not people dine out and how many times they dine out.
- The average number of trips and individual attributes fundamentally influence dining-out behavior.

People who received the vaccine are less likely to engage in dining-out behavior, but when they do dine out, the number of times tends to be higher.