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はじめに

3

• 行動は選択の帰結，行動のモデル化≒選択のモデル化

• 選択の種類

• 連続量の選択 例）ある場所での滞在時間

• 離散量の選択 例）交通手段，目的地，経路

• 離散量の選択を表すモデルとして，ランダム効用最大化に基づく非集計離
散選択モデル

提供：倉内先生



合理的選択と効用最大化

4

例）｛A,B,C,D,E｝
 (A>B), (B>C), (C>D), (D<E), (C>E)

↓

       (A>B>C>E>D)

効用最大化：「人は最大の効用を与える選択肢を選ぶ」
   Aさん：車を選択⇔U（車）＞U（バス），U（鉄道）

提供：倉内先生



ランダム効用（1）
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分析者にとって意思決定者がもつ真の効用は不明
→ランダム（誤差）項を用いて効用を確率的に表す

＋εcar
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確定項（V） 誤差項

提供：倉内先生



ランダム効用（2）

誤差項に含まれるもの

⚫非観測属性：快適性，移動の自由度etc.

⚫測定誤差：駅までのアクセス時間etc.

⚫情報の不完全性：認知所要時間と実際の所要時間のずれetc.

⚫Instrumental (proxy) variables:

提供：倉内先生



誤差項の分布とモデル
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ε～IIDガンベル分布 → 多項ロジットモデル
ε～一般化極値（GEV）分布 → GEVモデル
                                                   (NL,PCL,CNL,GNL等)
ε～多変量正規分布 → 多項プロビットモデル
ε～ GEVと正規分布などの合成分布 → ミックストロジットモデル

提供：倉内先生



離散選択モデル MNL

𝑈 𝑐𝑎𝑟 = 𝛽𝑋𝑐𝑎𝑟 + 𝜀𝑐𝑎𝑟
𝑈 𝑏𝑢𝑠 = 𝛽𝑋𝑏𝑢𝑠 + 𝜀𝑏𝑢𝑠
𝑈 𝑟𝑎𝑖𝑙 = 𝛽𝑋𝑟𝑎𝑖𝑙 + 𝜀𝑏𝑢𝑠

𝑃 𝑐𝑎𝑟

=
exp 𝜇𝑉 𝑐𝑎𝑟

exp 𝜇𝑉 𝑐𝑎𝑟 + exp 𝜇𝑉 𝑏𝑢𝑠 + exp 𝜇𝑉 𝑟𝑎𝑖𝑙

𝑃 𝑖 =
exp 𝜇𝑉𝑖

σ𝑗∈𝐶 exp 𝜇𝑉𝑗

ε～IIDガンベル分布

Cov(U)
𝜎2 0 0
0 𝜎2 0
0 0 𝜎2

𝜎2 =
𝜋2

6𝜇2

提供：倉内先生



ネスティッドロジットモデル

NLモデルの誤差構造

公共交通 自動車

鉄道 バス

Cov(U)
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提供：倉内先生



ミックストロジット（MXL）モデル

𝐿 𝑐𝑎𝑟ȁ𝜂

=
𝑒𝛽𝑋𝑐𝑎𝑟+𝜂𝑐𝑎𝑟

𝑒𝛽𝑋𝑐𝑎𝑟+𝜂𝑐𝑎𝑟 + 𝑒𝛽𝑋𝑏𝑢𝑠+𝜂𝑏𝑢𝑠 + 𝑒𝛽𝑋𝑟𝑎𝑖𝑙+𝜂𝑟𝑎𝑖𝑙

𝑃 𝑐𝑎𝑟 = ම

𝜂

Λ 𝑐𝑎𝑟ȁ𝜂 𝑓 𝜂 𝑑𝜂

ＩＩＤガンベル分布

ロジットモ
デルの操
作性

𝑈𝑐𝑎𝑟 = 𝛽𝑋𝑐𝑎𝑟 + 𝜂𝑐𝑎𝑟 + 𝜈𝑐𝑎𝑟
𝑈𝑏𝑢𝑠 = 𝛽𝑋𝑏𝑢𝑠 + 𝜂𝑏𝑢𝑠 + 𝜈𝑏𝑢𝑠
𝑈𝑟𝑎𝑖𝑙 = 𝛽𝑋𝑟𝑎𝑖𝑙 + 𝜂𝑟𝑎𝑖𝑙 + 𝜈𝑟𝑎𝑖𝑙

提供：倉内先生



離散連続モデル

離散系の選択と連続系の量

• 自動車の車種選択と高速走行距離

• 活動選択と活動時間

• 効用関数によって，離散選択と連続選択が
同時に決まる

モデルの体系（福田・力石2013）

誘導型

• 連続量の分析に条件を付けて離散選択を内
包（Tobitモデル等）

構造型

• 資源制約下の効用最大化からの導出

• キューンタッカー条件

• ロワの恒等式(間接効用関数から需要関数)



Multiple Discrete-Continuous 

Extreme Value (MDCEV)モデル
非観測要因がガンベル分布に

従うクローズドフォームの尤

度関数を持つ

複数財の選択と量を記述

𝑈 𝒙

= ෍

𝑘

𝛾𝑘
𝛼𝑘

𝑒𝑥𝑝 𝛽′𝑧𝑘 + 𝜀𝑘 ∙
𝑥𝑘
𝛾𝑘

+ 1

𝛼𝑘

− 1



最尤推定
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行動モデルの推定と最尤推定

有限個のパラメータで記述される確率密度関数の推定

パラメータベクトル𝜷，モデル f による標本の生起確

率を尤度とする

• 𝐿 𝜷 = ς𝑖=1
𝑛 𝑓 𝒚𝑖 ȁ𝜷

(対数)尤度関数が最大になる𝜷を最尤推定値とする

• ෡𝜷𝑀𝐿 = argmax
𝜷

log 𝐿 𝜷

14

𝜷෡𝜷𝑀𝐿

=z

 𝐿 𝜷



最尤推定法

点推定量を求める一般的な方法

L 𝜷ȁ𝑥 = ෑ

𝑖=1

𝑛

𝑓 𝑥𝑖 ȁ𝜷

上の式をの関数とみなしたものが

尤度関数

平均値の推定を例にするとデータ(x：3,5,4)が得ら

れたとき，平均をいくつとするのがよいか？

視点を変えてみる

平均がいくつの分布だったらデータ(x：3,5,4)が

もっとも得られやすいか？

視点を変えてみる



ロジットモデルの最尤推定

𝐿 𝜇𝜷 = ෑ

𝑖=1

𝑛

𝑓 𝒚𝑖 ȁ𝜇𝜷

𝑓 𝒚𝑖 ȁ𝜇𝜷 = ෑ

𝑗=1

𝐽
𝑒𝑥𝑝 𝜇𝜷𝒙𝑖𝑗

σ
𝑗=1
𝐽

𝑒𝑥𝑝 𝜇𝜷𝒙𝑖𝑗

𝑦𝑖𝑗

𝑉𝑖𝑗 = 𝜇𝜷𝒙𝑖𝑗

= 𝜇𝛽1 + 𝜇𝛽1𝑥1𝑖 + 𝜇𝛽2𝑥2𝑖 ⋯+ 𝜇𝛽𝐾𝑥𝐾𝑖

選択結果(𝑦𝑖 ： 𝑦1=車, 𝑦2=車, 𝑦3=鉄道, 𝑦4=

鉄道, 𝑦5=鉄道, 𝑦6=車, ・・)が得られたとき，

𝜇βがいくつだとデータへの適合がよいか？

データ(y)が得られやすいμβは？

一番Lが大きくなるμβを探す

βは未知数
ｘは観測値



最大化アルゴリズムの考え方
周りがあまり見えない中で，近傍の情報から頂点を目指す

対数尤度関数の段階的な最大化

• 初期値を与える

• 初期値周りで勾配(1次微分）等を用いて次

の推定値の方向を決める

• 初期値付近で１次微分，２次微分を用いて

適切に次の点を決めて推定値を得る

• 収束基準(一次微分ベクトル)で判定し，収

束していない場合は，現在の値から次の推

定値に移る

𝛽𝑆𝑇

መ𝛽𝑀𝐿

𝛽1

𝛽2

𝐿𝑛 βȁ𝑥Ln𝑓 𝒚𝑖ȁ𝜇𝜷



代表的な繰り返し計算法
尤度関数を最大化 尤度関数の一階微分＝０を解く

Newton-Raphson法

• テイラー展開の１次近似を利用して進める

準Newton法（BFGS，L-BFGS法）

• ヘッセ行列を，パラメータの差分と一階微

分の差分を用いて逐次近似する．

• L-BFGSはヘッセ行列の更新式を展開して，

初期値と差分の関数和で表す．

𝛽𝑛+1 = 𝛽𝑛 −𝐻−1𝛽n−1
H:尤度関数の二階微分 ヘッセ行列
g: 尤度関数の一階微分

𝛽

g(𝛽)

𝛽𝛽
𝛽



パラメータ推定がうまくいかない

収束するとは𝛽n+1と𝛽nが同じになる

• g’が0になる

収束しない

• 無限に繰り返す

• 𝛽が計算不能

局所最適解

• 見かけ上の最大化

H-1ヘッセ行列の逆行列が早々に死亡

変数が完全相関

変数が効用関数に影響しないモデル

関数の近似状況

初期値の問題

モデルの問題

意思決定者間で異なるが，選択肢間では異ならない変数

選択肢間では異なるが，意思決定者間で異ならない変数



g()









g()







シミュレーションによる推定



シミュレーションによる尤度計算

手順

• 誤差項の密度関数から選択肢の数の次元の(準)乱数を発生させる

• この乱数を誤差の値として，各代替案の効用値を計算（積分）する

• 代替案iの効用値とその他の代替案の効用との値を比較し，それらの

大小関係を1-0の変数Gで記述する．

• 1～3のステップを繰り返す．その反復回数をRとする．

• シミュレーションされた確率は となり，この値は不偏

推定量である．

確定的に選択を決定

比率を確率に置き換える

効用を確定値にする


=

=
R

r

r

i G
R

P
1

1



シミュレーションベースの
パラメータ推定法

シミュレーション尤度最大化（MSL）
• シミュレーションによって計算された確率を尤度として，最大化を行う．

特性
• サンプル数と乱数発生回数に依存する．
• 乱数発生回数が十分大きいと一致性や漸近的有効性を持ち解析積分と一
緒の特性を持つ．

• 乱数発生回数がサンプル数に対して小さく固定されると一致性もない．



非効率な乱数



非効率な乱数



乱数の効率化

確率密度が高いところ付近を重点的

にサンプリングする

そもそも確率密度がどこにあるのか

わかっていない問題



モデル選択
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最尤推定法におけるモデル選択

真の確率密度関数を近似するものが含まれる必要がある

⇒フレキシブルなモデルを選ぶ

最尤推定は自由度の高さ前提

⇒自由度が低すぎるモデルは不適切（過適合）

平均対数尤度の比較（KL情報量）

• 例：共分散行列を考える

(非)制約モデル（A対称行列，B対角行列，C対角行列
で分散同一）を考えるとCはBに含まれ，BはAに含ま
れるので，平均対数尤度L*は必ず

L*(A)≧L*(B)≧L*(C)になる．

27

𝜎11 ⋯ 𝜎1𝑛
⋮ ⋱ ⋮
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AIC = −෍
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log 𝑓 𝑥𝑖 , መ𝜃𝑀𝐿 + 𝑡



パラメータ推定と過学習

機械学習における学習

• 判断の根拠となるための統計的なモデ

ルを作る過程

機械学習の主な目的は「予測」

• ある移動手段がどの程度選ばれそうか

• ある個人が車を購入しそうか

仮説に基づく制約をモデルとして導入

せず，予測精度が上がるようにモデル

を自由に作る

スパース推定・モデリング

28



政策分析の方法
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行動モデルを用いた政策分析

行動モデルを推定し，そのパラメー

タを用いて，変数の変化による選択

の変化を見る．

政策：変数の変化

• 例えば：所要時間を短縮，駐車場の

料金を割り引く等，政策に対応した

変数が必要

政策評価

• 数え上げ法：個人の選択確率を予測

して，積み上げる 𝑆 𝑗 =
1

𝑁
σ𝑖=1
𝑁 𝑃𝑖 𝑗

最大効用の選択肢をカウント

確率の平均値を求める

30



シミュレーションによる政策分析

行動モデルを推定し，そのパラメータを用いて，変数の
変化による選択の変化を見る．

回遊行動の分析

• マイクロシミュレーションを用いることで，複雑なモデ
ルの組み合わせを政策評価可能

• シミュレーションなので，複数回実施して平均的な評価
を行う

Step 1

サンプルのデータ，個人属性や発ゾーン，LOSデータな
どを各段階のモデルに個人𝑛の個人属性やLOS，各種ダ
ミー等といった説明変数データを代入し，全ての選択肢
ごとの選択確率𝑃𝑖𝑛を求める．求めた選択確率から確率分
布𝐹𝑖𝑛を作成する．

Step 2

0,1 の一様乱数𝛾𝑛を発生させ，𝛾𝑛の値が，𝐹(𝑖−1)𝑛 ≤ 𝛾𝑛 <
𝐹𝑖𝑛を満たす選択肢𝑖を選択するものとする．

31


	スライド 1: 行動モデルの基礎 推定の方法
	スライド 2: モデルと推定 など
	スライド 3: はじめに
	スライド 4: 合理的選択と効用最大化
	スライド 5: ランダム効用（1）
	スライド 6: ランダム効用（2）
	スライド 7: 誤差項の分布とモデル
	スライド 8: 離散選択モデル　MNL
	スライド 9: ネスティッドロジットモデル
	スライド 10: ミックストロジット（MXL）モデル
	スライド 11: 離散連続モデル
	スライド 12: Multiple Discrete-Continuous Extreme Value (MDCEV)モデル
	スライド 13: 最尤推定
	スライド 14: 行動モデルの推定と最尤推定
	スライド 15: 最尤推定法
	スライド 16: ロジットモデルの最尤推定
	スライド 17: 最大化アルゴリズムの考え方 周りがあまり見えない中で，近傍の情報から頂点を目指す
	スライド 18: 代表的な繰り返し計算法 尤度関数を最大化 尤度関数の一階微分＝０を解く
	スライド 19: パラメータ推定がうまくいかない
	スライド 20: シミュレーションによる推定
	スライド 21: シミュレーションによる尤度計算
	スライド 22: シミュレーションベースの パラメータ推定法
	スライド 23: 非効率な乱数
	スライド 24: 非効率な乱数
	スライド 25: 乱数の効率化
	スライド 26: モデル選択
	スライド 27: 最尤推定法におけるモデル選択
	スライド 28: パラメータ推定と過学習
	スライド 29: 政策分析の方法
	スライド 30: 行動モデルを用いた政策分析
	スライド 31: シミュレーションによる政策分析

