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はじめに



ベイズが難しいいくつかの理由

◼問題1: 「ベイズ」が多義的

• 人や文脈によって何を指しているのかが異なる

◼問題2: 講義できちんと扱えない

• 全体像を教える時間がない

◼問題3: 「頻度主義」「ベイズ主義」という空論

• 50年前に終わったはずの議論がいまだに行われる

◼問題4: 理論がいまだに日進月歩

• わかっていないことがたくさんある
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いろいろなベイズ

◼歴史上の人物: Bayes, Thomas (1701?-1761)イギリスの牧師

◼ベイズの定理 by Bayes:

• 内容は単なる式変形

◼ベイズ推定 by Laplace:

• ベイズの定理を用いた確率的推測[推定・学習]の方法

◼ベイズ統計学: より一般の枠組みを指すことば(?)

• 具体的なものには

• ベイジアンフィルタ

• ベイジアンネットワーク

• 状態空間，隠れマルコフ

• …
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改めて，ベイズの定理

◼P(X), P(Y)≠0のときXとYの同時確率P(X,Y)を考えると，

◼これが数百年にわたる(不毛な)議論を巻き起こした理由

• 確率とは何か?という哲学(式の意味解釈)における対立

• 物事がX→Yの順に物事が起きるとして，

• 伝統的哲学“確率は無限回試行したときの比率”に反する

• 「データの情報を取り込む」などと表現される
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𝑃(𝑌|𝑋) =
𝑃(𝑋|𝑌)𝑃(𝑌)

𝑃(𝑋)
 

これらはOK これは何?? Yが起きたときに
Xが起きる確率??

→因果の逆転を認めることになる



ベイズの定理からベイズ推定へ

ベイズの定理を用いると

統計モデルの推定(モデル特定やパラメータ推定)が行える

使われてきたいくつかの理由:

1. 歴史的な理由

• 最尤法の正当性提示(Fisher, 1912-)以前の有力選択肢

• 哲学的対立による主義主張

2. 実務の理由

• 尤度関数の最大化が困難でも利用可能 [アルゴリズム]

• 事前分布に分析者の知識を反映可能 [異質性表現]

3. 数理科学の理由

• 最尤法より優れるケースがある(Watanabe, 2009-)
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ベイズ推定の方法



ベイズ推定(とりあえず)

◼ (何かはさておき)パラメータの事前分布 𝜑(𝜃)

◼ (最尤推定と同じ)尤度関数ς𝑖 𝑝(𝑋𝑖|𝜃)

◼ (掛けて正規化すると)パラメータの事後分布 𝑝 𝜃 𝑋1,…,𝑁

𝑝 𝜃 𝑋1,…,𝑁 =
1

𝑍
ς𝑖 𝑝 𝑋𝑖 𝜃 𝜑 𝜃   𝑃(𝑌|𝑋) =

𝑃(𝑋|𝑌)𝑃(𝑌)

𝑃(𝑋)

◼必要ならパラメータの点推定量も求まる

• 事後確率最大化，事後平均，…

◼当然の疑問 (一旦保留): 

• 事前分布って何??

• 尤度関数使うなら最尤推定でいいのでは??

◼とりあえず“2.実務の理由”に基づいて説明
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事後分布の計算方法

◼どうやったら計算できる??  𝑝 𝜃 𝑋1,…,𝑁 =
1

𝑍
ς𝑖 𝑝 𝑋𝑖 𝜃 𝜑 𝜃

◼解析的に行えるケースは稀(共役事前分布: 事前分布と事後分

布の関数形が同一になる特別な組み合わせ)

◼一般には数値的に近似する

◼ Zを求めるのは難しいが，Zがなくても事後分布の形はわかる

◼最大や平均もわかる
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1: 事前分布に従って
     𝜃をひとつ選ぶ

2. その𝜃で尤度を
     計算する

3. 計算結果を
たくさん作る

𝜃 x 𝜃

prior 𝜑(𝜃) 𝑝(𝑋│𝜃k)

𝜃=𝜃kが発生する確率(密度) 𝜃=𝜃kのときの𝑋1,…,𝑁の尤度
事後確率
∝尤度×事前確率

平均തθ 最大θ∗

x1xi xN

𝑝(𝜃│𝑋1,…,𝑁)

𝜃k



実務の理由_1: アルゴリズム

◼事後確率を単純に計算するのは難しいが，良い方法がある

𝑝 𝜃 𝑋1,…,𝑁 =
1

𝑍
ς𝑖 𝑝 𝑋𝑖 𝜃 𝜑 𝜃

◼マルコフ連鎖モンテカルロ(MCMC)の応用

• ギブスサンプラー

• メトロポリス・ヘイスティングス

• (ほか，高速な計算方法の開発は最先端の研究課題)

11

Zが不明



実務の理由_1: アルゴリズム 12

yはデータ(前ページまでのX)

ホフ; 入江ら訳: 標準ベイズ統計学

◼メトロポリス・ヘイスティングス



実務の理由_1: アルゴリズム 13

yはデータ(前ページまでのX)

ホフ; 入江ら訳: 標準ベイズ統計学

◼メトロポリス・ヘイスティングス



実務の理由_1: アルゴリズム

◼事後確率と同じ分布形状からの

サンプリングになるような

ルールでθの値を順番につくる

◼とてもたくさん繰り返す

◼すると，事後確率を(≒Zを)

直接計算しなくても，

事後確率を近似できる

◼仮に尤度関数の形が複雑でも，尤度関数を直接最大化しな

くても，Zを求めなくても，たくさん計算すれば関数の形が

だいたい求まる

よく見かけるベイズ推定の顔:

アルゴリズムとしてのベイズ推定
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ホフ; 入江ら訳: 標準ベイズ統計学



実務の理由_2: 異質性表現

◼階層ベイズ あるいは ハイパーパラメータ

◼サッカー選手の(真の)パス成功率を、ある試合で観測したパ

ス本数・パス試行数から推定したい

• その日の好不調や対戦相手に依存する

• フォワードの選手は良い選手でもパス成功率は少ない

◼各選手の真のパス成功率qi，パス試行本数Nのとき，パス成

功本数kとなる確率 NCk{q}k{1-q}N-k 

• q=0.9，N=30のときk=27は24%，k=24は5%

• たとえばk=24ならqの最尤推定量は0.8だが，何人もいた

ら真のqと遠い観測量はたくさん得られるはず
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実務の理由_2: 異質性表現

◼各選手のki/Niだけからqiをもう少しよく推定したい

• 事前分布φ(q): 試合に出てる選手はある程度上手いと思う

ので，たとえばφ(q)~N(0.9,0.01)などとする

• もう少しきちんとqi=ai+bi などを考えることもできる

• aやbが従う分布を考える: たとえば，

• aiは全選手の平均(共通の定数)とする

• biは正規分布N(0,σ2)に従うとする

• σの事前分布を考える

→階層化/ハイパーパラメータと呼ばれるもの

よく見かけるベイズ推定の顔:

異質性の表現としてのベイズ推定
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保留された疑問

◼当然の疑問: 

• 事前分布って何??

• 尤度関数使うなら最尤推定でいいのでは??

◼いろいろな回答方法

1. 歴史的理由(哲学に依拠)

• 現代では無意味．“事前確率なるものが存在する”とい

う主張は単なる数理的な仮定

2. 実務の理由(便利なものは使えば良い)

• 直前で説明したこと．意味はあるが，諸刃の剣

3. 数理科学の理由(ベイズ推定にしか無い良い性質)

• 明確・強力・正当だが，初見では難しい

• 昨年の中西の講義資料参照
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(行動)モデルのベイズ推定



行動モデルにおけるベイズ推定

◼アルゴリズムとしてのベイズ推定が発端

• Probit等のopen formの推定を行う際の手段

= 尤度関数の最大化が難しい場合

◼たとえばTrain本の12章はほとんどこの話
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Train: Discrete Choice Methods with Simulation



行動モデルにおけるベイズ推定

◼アルゴリズムとしてのベイズ推定が発端

• Probit等のopen formの推定を行う際の手段

= 尤度関数の最大化が難しい場合

◼ Train本, 12.1

20

• 尤度の計算には選択確率の計算が
必要だが，open formでは難しい

• ベイズ推定でこれを回避



行動モデルにおけるベイズ推定

◼異質性表現としてのベイズ推定の話もある

◼ Train本, 12.1，つづき
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• 個人レベルのtaste variationの情報
を得ることにも使える



補足: これらは実務の理由なので…

◼数理科学の立場で(=統計的に)きちんと説明するならば，

• “(行動)モデルがBayesか否か”は概念であり，統計的な区

別ではない

• ここでいう“Bayesの方法”はあくまでも尤度関数の何らか

の意味での最大化
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• 「ここでいうBayesとは，行動モ
デルがBayesということではなく，
推定方法がBayesということ」

• 「分析者はあらゆるモデルを
Classicalな方法でもBayesの
方法でも推定できる」



実例



まあでも，役に立つなら使えば良い

◼例: 多項プロビットモデル(MNP)のベイズ推定

• McCulloch, R. and P. E. Rossi (1994). An exact likelihood analysis of the 

multinomial probit model. Journal of Econometrics 64(1-2), 207–240.

• Imai, K. and D. A. van Dyk (2005). A Bayesian analysis of the multinomial 

probit model using marginal data augmentation. Journal of Econometrics 124(2), 311–334.

◼経済系/IIAが明らかに満たされない場合に対する研究が盛ん

◼ベイズ推定はMNPの推定上の課題を回避する方法のひとつ

◼ (選択肢数-1)回の積分必要

• 構造化プロビット等で軽減

◼分散共分散行列の

• 識別性: (1,1)成分を1に，等

• 正定値性: 何かしら工夫
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まあでも，役に立つなら使えば良い

◼ベイズ推定はMNPの推定上の課題を回避する方法のひとつ

◼McCulloch and Rossi (1994)
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事後確率

yは効用(前ページではU)

事前確率 尤度

共役事前分布:
βに正規分布

Σに逆Wishart分布

尤度

⇔ G=Σ-1にWishart分布
事前確率を規定する
ハイパーパラメータ



まあでも，役に立つなら使えば良い

◼ベイズ推定はMNPの推定上の課題を回避する方法のひとつ

◼McCulloch and Rossi (1994)

◼詳細は当該文献等を参照

26

事後分布 事前確率 尤度

共役事前分布:
βに正規分布

Σに逆Wishart分布

尤度

βの事後確率

G=Σ-1の事後確率



計算の様子 (Imai and van Dyk)

◼ Sioux Falls洗剤選択モデル(6肢)

◼効用関数の係数

• 例: 価格の係数

◼分散共分散行列の中身

• 対角項の例

• 非対角項(の変数変換)の例
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補足: 事前分布

◼実務の理由で使っていると，理想的には事前分布は使いた

くないという気持ちがある(?)ので，妥当性が気になる(??)

• そういうヒトは，数理科学の理由に根拠を求めましょう

◼そのうえで冷静に考えると，

• 有意水準1%でも100回に1回くらいは的外れなのだから，

サンプル数>100もあれば，事前確率が的外れになること

を気にしても仕方ない

• サンプル1個の尤度と事前確率が同等の影響力

𝑝 𝜃 𝑋1,…,𝑁 =
1

𝑍
ෑ

𝑖
𝑝 𝑋𝑖 𝜃 𝜑 𝜃

• 次のページで図解します
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補足: 事前分布よりもモデルが主役

◼真の分布 q(x) ~ N(0, 12) : 標準正規分布

◼事前分布 φ(μ) ~ N(a, 12)

◼モデル p(x|μ) ~ N(μ, 12)

◼サンプル数

1, 5, 10, 20のときの

推定された分布と

真の分布の重ね合わせ

◼a=-8まで離れていても

サンプル数20で

ほとんど真の分布
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a = -8 a = -4

a = -2 a = 0



少しだけ，数理科学の理由



モデル推定・評価・選択

◼モデル推定(統計的推測・学習)

• 得られているサンプル(データ)に基づいて，

真の確率分布(モデル)に接近しようとする試み

◼モデル評価

• 推定したモデルの良さを客観的・相対的に比較すること

◼モデル選択

• 考えうるモデル候補から良いモデルを選択すること

• “良い”=真のモデルに近いor未知データの予測精度が高い

推定法: モデル推定を行う具体的な方法

ベイズ推定も最尤推定も，前例踏襲も決めつけも，全部仲間

それぞれの方法に利点や欠点がある
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◼モデルの統計的な側面は，工学ではなく理学の興味の範疇

と捉えられることがあるが，むしろ，やっと工学で議論で

きる基盤ができてきた

-1930 1950 1970 1990 2010-

モデル選択の歴史 32

主義によるモデル選択 規準によるモデル選択

AIC (Akaike 1974)

BIC (Schwarz 1978)

WAIC (Watanabe 2009)

WBIC (Watanabe 2013)

最尤法 (Fisher 1912-22)

正則な場合 一般の場合

• 真の分布が未知だから
正確さは永遠にわからない

• 確率とはなにかという決め事
確率についての哲学の違い

• 最尤法は客観的
ベイズ法は主観的

• 主義主張の対立と停滞

• 真の分布が未知でも
正確さを見積もれる

• 統計的モデル推定には無関係
哲学ではなく数理科学の問題

• どちらにせよモデルは主観
ゆえに客観的な評価規準が重要

• パラダイムシフトによる進展

ベイズ法 (もっと昔から)
歴史的な理由



要点 33

最尤推定 ベイズ推定

目的 サンプルXから真の分布qに接近したい

用意するもの サンプルXとモデルp(x|θ) (→尤度関数)

仮定 尤度最大が最良 事前分布φ(θ)の存在

得られる
推定量・分布

最尤推定量෡𝛉
必要なら，分散共分散行列
(=尤度関数の形状)

事後分布p(θ|X)
必要なら，事後確率最大化・
事後平均等の代表値

得られる
モデル

最尤推定量を
モデルに代入したもの

事後分布で
モデルを平均したもの

使えるとき 正則な場合のみ (比較的)一般の場合

計算量 問題の性質が良ければ小 一般に大

モデル比較
多数のモデルp(x|θ)で推定し
て情報量規準を比較

多数のモデルp(x|θ)と事前分
布φ(θ)の組み合わせで推定し
て情報量規準を比較



最尤推定 ベイズ推定

目的 サンプルXから真の分布qに接近したい

用意するもの サンプルXとモデルp(x|θ) (→尤度関数)

仮定 尤度最大が最良 事前分布φ(θ)の存在

得られる
推定量・分布

最尤推定量෡𝛉
必要なら，分散共分散行列
(=尤度関数の形状)

事後分布p(θ|X)
必要なら，事後確率最大化・
事後平均等の代表値

得られる
モデル

最尤推定量を
モデルに代入したもの

事後分布で
モデルを平均したもの

使えるとき 正則な場合のみ (比較的)一般の場合

計算量 問題の性質が良ければ小 一般に大

モデル比較
多数のモデルp(x|θ)で推定し
て情報量規準を比較

多数のモデルp(x|θ)と事前分
布φ(θ)の組み合わせで推定し
て情報量規準を比較

誤解ポイントと正しい説明 34

• 最尤推定も真のモデ
ルに近いモデルを推
定する作業

• 最尤推定量はその過
程で出てくるもの

• 「最尤推定は点推定，
ベイズ推定は区間推定」
→ 誤りではないが，
それはこの部分だけ

• パラメータの事後
分布と最終的に求
まるモデルは別物

• 事前分布の存在を認めるor 

尤度最大が最良と信じる
という選択をしている

• 最尤推定量
の最良性は
正則な場合
のみ成立



別の興味深い例_設定

◼とてもシンプルな2項ロジットリンク選択

• 所要時間パラメータのみ

◼ (θβ)でひとつのパラメータになっている→ θとβが不定 (事実)

• 一般性を失わずθ=1とする (←これはいつでもOK??)

• 理屈上はもちろんOK

◼だが，推定は尤度に基づいて行うし，

その尤度はサンプルデータから計算される

• どんなサンプルデータでも常に成立するか?
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r s

𝑉1 = 𝛽𝑡1

link 1

link 2

𝑉2 = 𝛽𝑡2

𝑈 = 𝑉 + 𝜖
𝜖~iid 𝐺𝑢𝑚𝑏𝑒𝑙 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 0, 𝑠𝑐𝑎𝑙𝑒 = 𝜃

𝑃 1 =
exp 𝜃𝑉1

exp 𝜃𝑉1 + exp 𝜃𝑉2

=
exp 𝜃𝛽𝑡1

exp 𝜃𝛽𝑡1 + exp 𝜃𝛽𝑡2

β

θ



別の興味深い例_実験

◼とてもシンプルな2項ロジットリンク選択

• 所要時間パラメータのみ

◼β=-1, θ=1, t1=10を固定，𝜖~iid 𝐺𝑢𝑚𝑏𝑒𝑙 0, 𝜃 で𝜖を多数発生さ

せ，t2(>t1)の値に応じたU1,U2のサンプルを多数作成

◼そのサンプルを元に

• θ=1を前提にβを推定

• θを固定せずにβとムリヤリ同時推定
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r s

𝑉1 = 𝛽𝑡1

link 1

link 2

𝑉2 = 𝛽𝑡2

𝑈 = 𝑉 + 𝜖
𝜖~iid 𝐺𝑢𝑚𝑏𝑒𝑙 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 0, 𝑠𝑐𝑎𝑙𝑒 = 𝜃

𝑃 1 =
exp 𝜃𝑉1

exp 𝜃𝑉1 + exp 𝜃𝑉2

=
exp 𝜃𝛽𝑡1

exp 𝜃𝛽𝑡1 + exp 𝜃𝛽𝑡2



確定効用の差がみえるとき

◼β=-1, θ=1, t1=10を固定，𝜖~iid 𝐺𝑢𝑚𝑏𝑒𝑙 0, 𝜃 で𝜖を多数発生さ

せ，t2(>t1)の値に応じたU1,U2のサンプルを100個作成

◼ t2=13のとき の例
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U1

U2

U1

U2

最尤推定量: -1.06
ベイズ事後平均: -1.10

最尤推定量: -0.98
ベイズ事後平均: -1.01



確定効用の差がみえるとき

◼β=-1, θ=1, t1=10を固定，𝜖~iid 𝐺𝑢𝑚𝑏𝑒𝑙 0, 𝜃 で𝜖を多数発生さ

せ，t2(>t1)の値に応じたU1,U2のサンプルを100個作成

◼ t2=13のとき のベイズ推定の様子
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繰り返し回数

βの値 βの値

対数事後確率

尤度関数の
ようなもの

事後分布

最尤推定量: -1.06
ベイズ事後平均: -1.10



確定効用の差がみえないとき

◼β=-1, θ=1, t1=10を固定，𝜖~iid 𝐺𝑢𝑚𝑏𝑒𝑙 0, 𝜃 で𝜖を多数発生さ

せ，t2(>t1)の値に応じたU1,U2のサンプルを100個作成

◼ t2=11のとき の例
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U1

U2

U1

U2

最尤推定量: -0.85
ベイズ事後平均: -0.86

最尤推定量: -0.71
ベイズ事後平均: -0.72



確定効用の差がみえないとき

◼β=-1, θ=1, t1=10を固定，𝜖~iid 𝐺𝑢𝑚𝑏𝑒𝑙 0, 𝜃 で𝜖を多数発生さ

せ，t2(>t1)の値に応じたU1,U2のサンプルを100個作成

◼ t2=11のとき のベイズ推定の様子
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繰り返し回数

βの値 βの値

対数事後確率

尤度関数の
ようなもの

事後分布
最尤推定量: -0.85
ベイズ事後平均: -0.86

推定自体は問題なくできている
でも推定値と真値は結構違う



事後分布から考える

◼ t2=11のときの別の例，θ=1で固定すると最尤推定量は-1.39

• θを固定せずにムリヤリ同時推定したときの事後分布

• (注) そもそも推定が収束していない

◼確定効用の差が小さいとそもそも復元は困難

◼復元がどのくらい困難か，同時推定すると見通しが良い
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(補足) 収束していない様子

◼どんな値でも割と良い尤度を示すので，なかなか収束せず，

流浪の旅に出始める
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おわりに

◼必要なときはベイズ推定を使いましょう

• 夏の学校に限らずいつでも中西に連絡ください

• 実務の理由で用いるベイズ推定，大歓迎

• 階層化したい，尤度関数の最大化が難しい，…

• 事前分布批判は気にしない．モデルが支配的に重要．

• 数理科学の理由が頭の片隅にあると，より説得力あり

• モデルが正則でないならば，ベイズ推定が望ましい

• どちらの理由で用いるにせよ，計算量をいかに抑えるか

がポイント．これ自体が最先端の研究課題

◼どんなときモデルが正則でないかは数学の問題，難しい

• 端的にはほとんどの場合だが，工学的にはそれだと困る

• 妥協のしどころはよく分かっていない(分野固有の問題)
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