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Black-box simulation 3
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 White-box simulation

• Modeling the system and traveler behaviors through explicitly defined equations 

• You can “see inside” the assumptions and mathematics

 Black-box simulation  

• You can see only inputs and outputs of the simulation (mathematics partly accessible)

• capturing complex and realistic traffic, incorporating many factors, and flexibly handles diverse 

scenarios 

  



Shift from aggregate quantities to individual behaviors

 The 6th Tokyo Metropolitan Area Person Trip Survey revealed a turning point

• Despite continued population growth, the total number of trips decreased for the first time 

• Travel behavior varies significantly across personal attributes (e.g., age, gender, employment 

status, household composition)

• Understanding and incorporating detailed individual characteristics into policymaking is 

important 

• Black-box simulators are capable of integrating such detailed factors
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Data sources 5

Mobile phone location data

Person trip survey

(source: xroad, MLIT)

Probe data

(source: NTT Docomo)

Camera/radar detection data
(source: Tokyo PT infograph)



 Some examples of high-fidelity simulators in transportation

 These simulators, when properly calibrated, are capable of highly detailed evaluations of policy 

measures

High-fidelity simulation (black-box simulation) 6
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A simple example: the impact of ramp metering control 7

 Scenario: Lane closure due to an accident

• Implement ramp metering control to prevent flow breakdown on the mainline

•  Apply an ALINEA-type control scheme  (Papageorgiou et al., 1991)

– 𝑟 𝑡 + 1 = min{0, 𝑟 𝑡 − 𝐾𝑟(𝑘𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑘(𝑡))}

𝑟 𝑡 : red phese duration of signal at time 𝑡, 𝐾𝑟: a constant regulator parameter, 

𝑘(𝑡): downstream density measurement at time 𝑡, 𝑘𝑡𝑎𝑟𝑔𝑒𝑡: desired downsream density 

Detector

Lane closure



A simple example: the impact of ramp metering control 8

Ave. Travel time.       191.7 sec/veh   →    172.6 sec/veh 



Do not trust a single-run result 9

 Stochasticity and random seeds 

• Many high-fidelity transportation and traffic simulations include random processes: vehicle 

departures, route choices, driving behavior, etc.

• A single run with one random seed may give a result that is lucky or unlucky

Unlucky result!

Black-box simulation (e.g., SUMO)

Demand modeling

Routing modeling

Lane-changing modeling

Traffic signal modelling

・
・
・
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How many replications are enough?  10

 The sample mean from k replications is an approximator of the mean of the random variable if 𝒌  

is sufficiently large 

𝔼[Z] ≈
1

k
෍

𝑖=1

𝑘

Z𝑖

Z is the performance measure, Z𝑖 is the performance measure from 𝑖th replication, 𝑘 is the 

sample size

 When to stop generating new data (Section 8.1 in Ross, 2013)

• Set a threshold 𝑑 for the standard deviation of the estimator 

• Run at least 100 replications 

• Stop generating new data if 
𝑠

𝑘
< 𝑑 where 𝑠 is the sampled standard deviation based on 𝑘 

replications, otherwise continue to run simulations

• The estimate of the performance (e.g., averag travel time) is given by തZ =
σ𝑖=1

𝑘 Z𝑖

𝑘



Simulation-based optimization 11

 Beyond pre-determined scenarios

• We can now evaluate the impacts of given policy measures 

• The next question is: what is the optimal policy measure?  

 A general simulation-based optimization problem

𝑚𝑖𝑛
𝑢

𝔼𝜀[𝑓(𝑥, 𝜀)]

          s.t.

𝔼𝜀[𝑔(𝑥, 𝜀)] ≤ 0

ℎ(𝑥) ≤ 0

𝑢𝑙 ≤ 𝑢 ≤ 𝑢𝑢

 𝑥: inputs, 𝑢: decision variables 𝜀: random variables, 𝑢𝑙 , 𝑢u: lower and upper bound of the dicision variables, ℎ(𝑥): other contraints

1000 1500 2000 2500 Price [JPY]28001700



Challenges of simulation-based optimization 12

 Analytically intractable

• True objective function is not explicitly available

• The objective function cannot be evaluated exactly due to stochastic noise  

 High computational cost

• Ideally, simulating all possible parameter combinations would yields the best solution 

• However, the simulation itself is computationally expensive 



Optimum 13

 Local and global optima

•  Local optimum: a point at which no nearby improvement can be found 

•  Global optimum: the true minimum (or maximum) over the entire parameter space 

•  Simulation-based optimization algorithms can generally guarantee only convergence to a local 

optimum

– A common strategy is to try different initial points to increase the chance of finding the 

global optimum.



Simulation-based optimization algorithms 14

 general-purpose simulation-based optimization algorithms

• Algorithms that do not rely on problem specific structures and can be applied across a wide 

range of problems as long as the objective function can be evaluated through simulation 

 Some examples (more comprehensive review see e.g., Gosavi 2015; Amaran et al., 2016;)

• Response surface methodology

• Gradient-based method (e.g., Simultaneous Perturbation Stochastic Approximation, SPSA )

• Random search method (e.g., Genetic algorithm, GA) 

Response surface methodology 

(e.g., polynomial function)
SPSA GA



Is the computational efficiency sufficient? 15

 Optimizing transit priory using a Genetic Algorithm (Mesbah et al., 2011, IEEE on ITS)

• the network size: 120 links 

• “…, the objective functions did not improve after 800 generations”

• ”.., a population size of 30-40 chromosomes is recommended for this network”

• 24,000 – 32,000 simulations in total, 

• if each simulation requires 1 hour, it takes 2.7 – 3.7 years!

  



High computational efficient simulation-based optimization 16

 Parallel computing (Mesbah et al., 2011, IEEE on ITS)

 Grey-box simulation

• Problem-specific metamodeling (Osorio and Bierlaire, 2013; Dantsuji et al., 2022)

 Smart-box simulation

• Black-box or white-box simulation with machine learning (Kim et al., 2024)

• Grey-box simulation with machine learning (Dantsuji et al., 2024, arXiv)

White-box
simulation

Black-box 
simulation

Grey-box simulation Smart-box simulation



Want to learn more? 17

 Session: Innovations in travel and traffic simulation

• The IP Autumn conference （土木計画学秋大会）at Fukui University of Technology

• The English session is on November  24 from 13:15 to 16:30

• Prof. Hai Vu at Monash University will be joining us! 

Multifidelity simulation-based optimization

Transformer
Recursive logit model

Generalized bathtub model

ViT

Data assimilation

Network scheduling

Population mapping

Machine learning

Day-to-day traffic assignment

Graph neural network

Physics-informed deep learning model

Trajectory prediction

Simulation-based inference
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