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Black-box simulation 3

O White-box simulation
 Modeling the system and traveler behaviors through explicitly defined equations

* You can “see inside” the assumptions and mathematics

O Black-box simulation
* You can see only inputs and outputs of the simulation (mathematics partly accessible)

« capturing complex and realistic traffic, incorporating many factors, and flexibly handles diverse

scenarios
white box simulation
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Shift from aggregate quantities to individual behaviors

O The 6th Tokyo Metropolitan Area Person Trip Survey revealed a turning point
* Despite continued population growth, the total number of trips decreased for the first ime

« Travel behavior varies significantly across personal attributes (e.g., age, gender, employment
status, household composition)

 Understanding and incorporating detailed individual characteristics into policymaking is
important

« Black-box simulators are capable of integrating such detailed factors
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Data sources

Person trip survey
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High-fidelity simulation (black-box simulation)

O Some examples of high-fidelity simulators in transportation
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A simple example: the impact of ramp metering control

O Scenario: Lane closure due to an accident
* Implement ramp metering control to prevent flow breakdown on the mainline
 Apply an ALINEA-type control scheme (Papageorgiou et al., 1991)
- r(t+1) = min{0,7(t) — Kr(ktarger — k(t))}
r(t): red phese duration of signal at time t, K,-: a constant regulator parameter,

k(t): downstream density measurement at ime t, kgt desired downsream density
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A simple example: the impact of ramp metering control
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Do not trust a single-run result

O Stochasticity and random seeds

 Many high-fidelity transportation and traffic simulations include random processes: vehicle
departures, route choices, driving behavior, efc.

* Asingle run with one random seed may give a result that is lucky or unlucky

Distribution of Average Travel Time over 100 runs

Black-box simulation (e.g., SUMO)
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How many replications are enough? 10

O The sample mean from k replications is an approximator of the mean of the random variable if k
is sufficiently large

k
1
E[Z] ~ EZ 7;
=1

Z is the performance measure, Z; is the performance measure from ith replication, k is the
sample size

O Whento stop generating new data (Section 8.1 in Ross, 2013)
 Set a threshold d for the standard deviation of the estimator

» Run at least 100 replications

« Stop generating new data if \/% < d where s is the sampled standard deviation based on k

replications, otherwise continue to run simulations

k
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- The estimate of the performance (e.g., averag travel time) is given by Z = ”



Simulation-based optimization

11

OO0 Beyond pre-determined scenarios
 \We can now evaluate the impacts of given policy measures

 The next question is: what is the optimal policy measure?

O Ageneral simulation-based optimization problem
min E.[f(x, €)]
u

S.t.
Ee[g(x,€)] <0
h(x) <0
U S U< Uy

x: inputs, u: decision variables &: random variables, u;, u,,: lower and upper bound of the dicision variables, h(x): other contraints
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Challenges of simulation-based optimization 12

O Analytically intractable
« True objective function is not explicitly available

* The objective function cannot be evaluated exactly due to stochastic noise

O High computational cost

« Ideally, simulating all possible parameter combinations would yields the best solution

* However, the simulation itself is computationally expensive

_il'[:l:.l ..-._. a




Optimum 13

O Local and global optima
 Local optimum: a point at which no nearby improvement can be found
 Global optimum: the true minimum (or maximum) over the entire parameter space

« Simulation-based optimization algorithms can generally guarantee only convergence to a local
optimum
— A common strategy is to try different initial points to increase the chance of finding the

global optimum.
flx)




Simulation-based optimization algorithms

14

O general-purpose simulation-based optimization algorithms
« Algorithms that do not rely on problem specific structures and can be applied across a wide
range of problems as long as the objective function can be evaluated through simulation
O Some examples (more comprehensive review see e.g., Gosavi 2015; Amaran et al., 2016;)
 Response surface methodology
* Gradient-based method (e.g., Simultaneous Perturbation Stochastic Approximation, SPSA )

« Random search method (e.g., Genetic algorithm, GA)

Response surface methodology SPSA
(e.g., polynomial function)
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s the computational efficiency sufficient?

15

O

Optimizing transit priory using a Genetic Algorithm (Mesbah et al., 2011, IEEE on ITS)

the network size: 120 links

“..., the objective functions did not improve after 800 generations”

”.., a population size of 30-40 chromosomes is recommended for this network”
24,000 - 32,000 simulations in total,

if each simulation requires 1 hour, it takes 2.7 — 3.7 years!
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High computational efficient simulation-based optimization

16

Grey-box simulation

Parallel computing (Mesbah et al., 2011, IEEE on ITS)

* Problem-specific metamodeling (Osorio and Bierlaire, 2013; Dantsuji et al., 2022)

« Black-box or white-box simulation with machine learning (Kim et al., 2024)

Smart-box simulation

* Grey-box simulation with machine learning (Dantsuiji et al., 2024, arXiv)

Grey-box simulation
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Want to learn more? 17

O Session: Innovations in travel and traffic simulation
« The IP Autumn conference (L AREFTEZFFNKR=) at Fukui University of Technology
 The English session is on November 24 from 13:15 to 16:30
* Prof. Hai Vu at Monash University will be joining us!

Machine learning Physics-informed deep learning model

Generalized bathtub model

Transformer
ViT Recursive logit model
Trajectory prediction

Multifidelity simulation-based optimization

Network scheduling Day-to-day traffic assignment

Data assimilation
Population mapping

Graph neural network Simulation-based inference
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