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　柳沼のモットー	 １	

「実装なきものは無力」	  
	



　1.	  行動モデルと計算（経路選択を例に） 	 2	

Prato(2009)による体系的なレビュー 
 

Garlo	  Giacomo	  Prato:	  Route	  choice	  modeling;	  past,	  present	  and	  future	  research	  
direc@ons,	  Journal	  of	  Choice	  Modelling,	  Vol.2(1),	  pp.65-‐100,	  2009.	    

v モデリング（相関構造） 
 

•  ロジット型：ロジットモデルをベースに経路の相関構造を変数で表現	
　⇒C-‐Logit、Path	  Size	  Logit、Path	  Size	  Correc@on	  Loigt	  
	
•  GEV型：誤差項に一般化極地分布を適用して経路の相関構造を表現	
　⇒Paired	  Combinatorial	  Logit、Cross	  Nestd	  Logit、Generalized	  Nested	  Logit	  
	
•  非GEV型：GEVモデル体系とは異なるアプローチ	
　⇒Probit	  model、Mixed	  Logit	  
	  	  	  	  	  	  	  (Random	  CoefficientsおよびFactor	  Analy@c	  Approach)	

Closed-formモデルの推定であってもサンプリング系の研究が進展して
おり計算量は増大．Open-formでは高速化が必須 
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v 選択肢集合 
•  確定的最短経路に基づく手法：最短経路に基づいて選択集合を生成	
     ⇒K番目経路探索、Labeling法、 Link	  elimina@on法、	  Link	  penalty法	  

	  （SPサーチの高速化：データ構造，アルゴリズム，エリア分割）	
•  確率的最短経路探索に基づく手法：確率を加味したヒューリスティク	
     ⇒モンテカルロ・シミュレーション法、確率的生成関数を利用した方法	  
　　（高次元乱数の高速生成：GPGPUによる高密度コアでの並列）	
•  制約条件つき列挙法：選択規範や最適化手法に基づいて列挙	
      ⇒branch	  and	  bound、Path-‐based	  algorithms	  

	  （組合せ爆発：データ構造	  ex:	  ZDD，大規模並列）	
•  確率的手法：確率論に基づいて選択肢集合を生成する手法	
      ⇒Manskiの2段階選択モデル、Random	  walkに基づくサンプリング	

ü  GPS観測データを用いて経路を確率的に生成する手法（network-
free、DDR、sub-network等）がより一層重要 

v  経路選択肢集合が課題となっており，データに基づく確率的手法を中
心に研究が進められている 

⇒手法の高度化，対象の大規模化にはアルゴリズムと並列計算の両面
から攻める 
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Ø 経路選択と計算 
•  誤差：構造化プロビットモデル（屋井，岩倉，森地	  1997）	  
•  選択肢：Sub-‐Network（Frejinger	  and	  Bierlaire	  2007）	  
•  選択肢：Hyperpath（Spiess	  and	  Florian	  1989）	

 

•  MACML推定法（Bhat	  2011）	  
•  MCMCアプローチ（Flö^eröd	  and	  Bierlaire	  2013）	  
 
Ø 並列計算超入門 

•  並列計算概要	  
•  実装における話	  
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多項ロジットモデル(MNL) 
 
 
 
 
• Luce(1959), McFadden(1974) 
• Closed-form 
• 選択肢間の相関を無視(IIA) 2008/9/20 第7回 行動モデル 夏の学校 18

多項ロジット（MNL）モデル（2）

ε～IIDガンベル分布
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 シェア型モデルであるため直感的にわかりやすい
 closed-formのため計算コストが安い
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 多項プロビットモデル(MNP) 
 
 
 
 
• Thurstone(1927) 
• Open-form 
• 選択肢間の相関を表現 2008/9/20 第7回 行動モデル 夏の学校 16

多項プロビット（MNP）モデル（3）
 
 
  busrail

busbus

carcar

XrailU
XbusU
XcarU









ε～多変量正規分布

 Open-formのため計算コストが高い
 Identificationの問題から推定可能なパラメータは限
られており解釈が困難
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通常の最適化アルゴリズムで
パラメータ推定が可能であり、
ソースコードの開発が容易 

選択肢数-1の多重積分が必
要であり、パラメータ推定は
非常に煩雑 

⇒爆発的に各分野に普及 ⇒計算が困難であるため 
   近年まで伸び悩む… 
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首都圏鉄道では経路重複が存在するため，IIAを仮定したロ
ジットでは便益計測時に誤差が発生 
⇒プロビットが有効 
 
 

 
課題 
 

•  OD毎に経路選択集合が異なるため，共分散が設定できない 
　　⇒経路長に依存する誤差と経路固有の誤差に分解 
 

•  計算コストが非常に高い（選択肢数-1の多重積分） 
　　⇒シミュレーション法(GHK)による高速化 

εi = εi
Length +εi

Route

経路長に依存する誤差 

経路固有の誤差 

Ui =Vi +εi
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Mixed Logit Modelとプロビットモデルの推定特性に関する比較分析* 
-鉄道経路選択モデルを例に- 

 
A Comparative Study on the Estimation Characteristics of Mixed Logit Model and Probit Model 

-In the Case of Railway Route Choice Model- 
 

清水 哲夫** 屋井 鉄雄*** 
By Tetsuo SHIMIZU and Tetsuo YAI 

 
１. はじめに 
 
 従来から，IIA特性を持つロジットモデルを改良し，選
択肢間の相関を表現する試みは数多く行われてきた．こ
の流れの中で，筆者らはプロビットモデルの誤差項を構
造化し（以下では構造化プロビットモデルと呼ぶ），分散
共分散行列内の推定パラメータ数を減らすことにより，
主に鉄道経路選択に対するプロビットモデルの適用可能
性を拡大してきた 1),2),3)． 
 一方海外では，ロジットモデルをベースとし，選択肢
間の相関を表現するMixed Logit Modelが交通計画分野に
適用されつつある．このモデルでは，効用関数の誤差項
を選択肢間の相関関係によって記述する項と選択肢固有
の項に分割し，サンプルごとの選択肢の類似性を表現す
るものである．例えば，Brownstone et al (1997)4)は省エネ
カー購入の選好モデルに，Bhat (1998)5)は都市間交通を対
象とした出発時刻と交通機関の同時選択モデルへ Mixed 
Logit Modelを適用し，共に SPデータを用いて推定を試
みている．ただし，これらの分析対象は選択肢間の相関
が大きくないと考えられ，選択肢間の相関が大きいケー
スを対象とした推定特性については引き続き検討する必
要がある． 
 これらモデルの巧拙については，現在様々な議論が展
開されているが，筆者らは以下の 2 点に関して構造化プ
ロビットの方が優れていると考える．第一に，誤差項を
完全に正規分布に仮定している構造化プロビットモデル
の方が誤差項の展開に関しては一般性が高いことである．
第二に，筆者らは鉄道経路選択モデルへ Mixed Logit 
Modelを適用した研究 6)は既に行っているが，誤差の分散
共分散の定式化がまだ不十分であり，予測の際に新しい
選択肢を考慮できないモデルとなっていた．即ち，Mixed 
Logit Modelにおいても構造化プロビットモデルと同様の
分散共分散の定義が可能であれば，新たな選択肢への対
応も可能となる． 
 以上の論点を受けて，本研究では比較的選択肢間の相

関が大きい東京圏の鉄道経路選択モデルを対象として，
Mixed Logit Modelの新たな定式化を試み，その推定特性
を構造化プロビットモデルのそれと比較した． 
 
２. Mixed Logit Modelの概要 
 
 始めにMixed Logit Modelの定式化を簡単に説明してお
く．モデルの効用関数は以下の形で表す． 

[ ]inininin VU εη ++=  (1) 

ここで， inV はサンプル n，選択肢 iの効用関数の確定項，
inη は平均 0 の確率分布に従う誤差， inε はガンベル分布
に従う誤差（通常のロジットモデルの誤差項）である． inη
に何らか値を与えれば，選択肢 iの選択確率は以下のよう
になる． 

( ) ( )
( )! +

+
=

i inin

inin
in V

V
L

η
η

exp
exp

㱓㱓㱓㱓  (2) 

今，㱓㱓㱓㱓の確率密度分布を ( )㱅㱅㱅㱅㱓㱓㱓㱓|f とすると，選択肢 iの選
択確率は以下の積分の形式で与えられる． 

( ) ( ) 㱓㱓㱓㱓㱅㱅㱅㱅㱓㱓㱓㱓㱓㱓㱓㱓 dfLP inin |!=  (3) 

式(3)では積分を計算できないため，モンテカルロシミュ
レーション法などを利用して近似解を算出することにな
る． 
 なお， inη については相互に独立な誤差項に分解が可能
である．この場合，式(1)を以下の形に書き換える． 

[ ]inininin VU ε++= z'㱘  (4) 

ここで，㱘は平均 0の分布に従う確率変数ベクトル， inz
は選択肢 iに関する特性変数ベクトルである．これらの与
え方を工夫すれば，選択肢間の類似性を任意に表現する
ことができる．選択肢 iと jの共分散は以下のように表せ
る． 

[ ][ ]( ) ( ) jninjnjnininE zWzzz '''' 㱘㱘㱘 =++ εε  (5) 

ここで， ( )'㱘W は㱘の分散を対角要素に持つ行列である．
即ち，特性ベクトルを構成する要因を複数考慮すること
が可能となる． 
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考え方はMXLと同じ！	

重複＝相関	
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経路長に依存する誤差 
・経路長が長いほど効用の分散は大 

経路長に依存する誤差 
経路固有の誤差 

誤差項とその共分散 

・重複区間が長いほど2経路間の共分散は大 
　⇒共分散は重複距離の分散に等しい 

経路固有の誤差 
・経路毎に独立に発生（共分散＝0） 

Lr  :経路rの経路長 
Lrq :経路rとqの重複経路長 
σ2   :単位距離あたりの分散	

分散比で表現	

分散比のみを推定するだけ
で良い！ 



　3-‐1.	  構造化プロビットモデル(4)	  	 8	

運輸政策18号答申に構造化プロビットを導入(岩倉2010) 
 

    
 

: Shonan-Shinjuku line 

: Takasaki line 

: Keihin-Tohoku line 

: Utsunomiya line 

: Yamanote line 

(1) Omiya (2) Akabane (3) Ueno (4) Tokyo 
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Saitama Pref. 

Inner Yamanote line 

(1) 

(2) 
(3) 

(4) 

例：大宮-神田間での再現 

パラメータ推定結果 

現況再現結果 MNL	 MNPSC	  	  	

経路重複の緩和により高い予測精度を実現 
（全駅間断面交通量は実績の±10%） 



•  首都圏の鉄道需要予測では，高い表現力を有する構造
化プロビットが用いられている．また，当該モデルは
目的選択や出発時刻選択にも適用可能． 

•  MXLよりも優れてる？（清水1999） 
⇒計算時間が４倍速く計算時間の変動は1/10かつ推定パラメータ
の変動係数もMXLより小さい 

•  無論，Open-formなので計算コストは高いが，シミュ
レーション法により高速化が可能． 
⇒近年ではGHKやMCMC等のシミュレーションに加えて，
MACML等の解析近似手法もある 

•  構造化による重複は考慮できるが，今後は選択肢集合
（経路集合）の設定方法が課題． 
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開発当初から多重積分の計算がネックとなり、各種の数値
計算アルゴリズムが提案 
 

•  級数近似法	  
•  Clarkの近似法etc…	  
	  
•  シミュレーション法	  
•  ベイズ推定	  

•  MACML	

選択肢数	

3〜4	

3〜10	

10以上	

1970	

1990	

2010	

手法	

解析的近似	

乱数近似	

Bhat,	  C.R.:	  The	  maximum	  approximate	  composite	  marginal	  likelihood	  
(MACML)	  es@ma@on	  of	  mul@nomial	  probit-‐based	  unordered	  response	  choice	  
models,	  TransportaAon	  Research	  Part	  B:	  Methodological,	  Vol.45,	  No.7,	  pp.
923-‐939,	  2011.	  



(1)	  Maximum	  Approximate	  Composite	  Marginal	  Likelihood	  
(MACML)	  es@ma@onの提案	  
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ü  Open-‐fromな離散選択モデル(c.f.	  MNP,MXL	  )のパラメータを 
簡単かつ高速で推定する手法を構築	  

ü MACML推定は2つのテクニックにより構成	  

①多変量累積標準正規分布（MVNCD※1）の解析的近似手法	  
	  

②合成周辺尤度(CML※2)を用いたパラメータ推定	

※1	  MVNCD:	  Mul@-‐Variate	  standard	  Normal	  Cumula@ve	  Distribu@on	  
※2CML:	  Composite	  Marginal	  Likelihood	  	

(2)	  各種（Mixed）Probitモデルへの適用方法の提示	  

(3)	  数値実験による有効性の確認	  

ü  Cross-‐sec@on,	  Panel,	  Spa@al	  Correla@on	  etc…	  

ü 通常の推定手法(MSL)と比較して，計算時間は約38倍速く
(66.09→1.96)，推定値のバイアスは7.3ポイント低い（9.8%→2.5%）.	  



2.1	  MVNCD（多変量累積標準正規分布）の解析的近似	  
　⇒多変量正規分布を単変量分布の積で近似	  
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coefficients as well as choice occasion-specific normal random coefficients with panel or repeated unordered choice data. In
this case, the result is a double multivariate integral, with the dimensionality of the two multivariate normal integrals being
equal to the number of random coefficients in the individual-specific and occasion-specific cases (see Bhat and Castelar,
2002; Bhat and Sardesai, 2006; Hess and Rose, 2009). The explosion of the dimensionality of integration is rapid, making full
likelihood evaluation using simulation techniques all but impractical. Finally, in the case of global social interactions or spa-
tial interactions that lead to autoregressive error structures or spatial/social lag effects, the full likelihood is infeasible to esti-
mate using simulation methods in any reasonable time because of the extremely high dimensionality involved (the
dimensionality is of the order of the number of decision-makers times the number of alternatives in the multinomial choice
situation minus one; for example, with 2000 decision-makers and four alternatives, the dimensionality of integration is
6000). In all these cases and more, the proposed MACML approach offers a computationally convenient inference approach,
as we indicate in the rest of this paper. As importantly, the MACML inference approach is simple to code and apply using
readily available software for likelihood estimation. It also represents a conceptually and pedagogically simpler procedure
relative to simulation techniques.

The paper is structured as follows. The next section presents the two main and fundamental building blocks of the MAC-
ML approach. Section 3 presents the MACML inference approach for the cross-sectional MNP model, while Section 4 illus-
trates the approach for panel and dynamic MNP model structures. Section 5 presents the extension to accommodate
spatial/social effects. Section 6 discusses model selection issues in the CML estimation approach. Finally, Section 7 summa-
rizes the contributions of the paper.

2. The basics of the MACML approach to estimate unordered-response models

There are two fundamental concepts in the proposed MACML approach to estimate MNP models. The first is an
approximation method to evaluate the multivariate standard normal cumulative distribution (MVNCD) function
(discussed in Section 2.1). The second is the composite marginal likelihood (CML) approach to estimation (discussed
in Section 2.2).

2.1. Multivariate standard normal cumulative distribution (MVNCD) function

In the general case of an MNP model with I alternatives, the probability expression of an individual choosing a particular
alternative involves an (I ! 1) dimensional MVNCD function (more on this in Section 3). The evaluation of such a function
cannot be pursued using quadrature techniques due to the curse of dimensionality when the dimension of integration ex-
ceeds two (see Bhat, 2003). Consequently, the probability expression is approximated using simulation techniques in the
classical maximum simulated likelihood (MSL) inference approach, usually through the use of the Geweke–Hajivassiliou–
Keane (GHK) simulator or the Genz–Bretz (GB) simulator, which are among the most effective simulators for evaluating mul-
tivariate normal probabilities (see Bhat et al. (2010b) for a detailed description of these simulators). Some other recent
sparse grid-based techniques for simulating the multivariate normal probabilities have also been proposed by Heiss and
Winschel (2008), Huguenin et al. (2009), and Heiss (2010). In addition, Bayesian simulation using Markov Chain Monte Carlo
(MCMC) techniques (instead of MSL techniques) have been used in the literature (see Albert and Chib, 1993; McCulloch and
Rossi, 2000; Train, 2009). However, all these MSL and Bayesian techniques require extensive simulation, are time-consum-
ing, are not very straightforward to implement, and create convergence assessment problems as the number of dimensions
of integration increases.

In this paper, we apply an analytic approximation method to evaluate the MVNCD function that is quite accurate and very
fast even for 20 or more dimensions of integration. Further, unlike Monte Carlo simulation approaches, even two to three
decimal places of accuracy in the analytic approximation is generally adequate to accurately and precisely recover the
parameters and their covariance matrix estimates because of the smooth nature of the first and second derivatives of the
approximated analytic log-likelihood function. While several analytic approximations have been reported in the literature
for MVNCD functions (see, for example, Solow, 1990; Joe, 1995, 2008; Gassmann et al., 2002), the one we use here is based
on decomposition into a product of conditional probabilities. This approximation appears to have been first proposed by So-
low (1990) based on Switzer (1977), and then refined by Joe (1995). However, we are not aware of any earlier research effort
that applies this technique for the estimation of parameters in econometric models (such as discrete choice models) involv-
ing the evaluation of MVNCD functions. The reason we select this approximation approach is that it is fast and lends itself
nicely to combination with the composite marginal likelihood approach of MNP model estimation that we propose in this
paper.

To describe the approximation, let (W1, W2, W3, . . . , WI) be a multivariate normally distributed random vector with
zero means, variances of 1, and a correlation matrix R. Then, interest centers on approximating the following orthant
probability:

PrðW < wÞ ¼ PrðW1 < w1;W2 < w2;W3 < w3; . . . ;WI < wIÞ: ð1Þ

The above joint probability may be written as the product of a bivariate marginal probability and univariate conditional
probabilities as follows (I P 3):
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Iの期待値を単変量累積標準正規分布Φ	  で評価	

PrðW < wÞ ¼ PrðW1 < w1;W2 < w2Þ $
YI

i¼3

PrðWi < wijW1 < w1;W2 < w2;W3 < w3; . . . ;Wi%1 < wi%1Þ: ð2Þ

Next, define the binary indicator ~Ii that takes the value 1 if Wi < wi and zero otherwise. Then Eð~IiÞ ¼ UðwiÞ, where U(.) is the
univariate normal standard cumulative distribution function. Also, we may write the following:

Covð~Ii;~IjÞ ¼ Eð~Ii
~IjÞ % Eð~IiÞEð~IjÞ ¼ U2ðwi;wj;qijÞ %UðwiÞUðwjÞ; i – j

Covð~Ii;~IiÞ ¼ Varð~IiÞ ¼ UðwiÞ %U2ðwiÞ ¼ UðwiÞ½1%UðwiÞ';
ð3Þ

where qij is the ijth element of the correlation matrix R. With the above preliminaries, consider the following conditional
probability:

PrðWi < wijW1 < w1;W2 < w2;W3 < w3; . . . ;Wi%1 < wi%1Þ ¼ Eð~Iij~I1 ¼ 1;~I2 ¼ 1;~I3 ¼ 1; . . . ;~Ii%1 ¼ 1Þ: ð4Þ

The right side of the expression may be approximated by a linear regression model, with ~Ii being the ‘‘dependent’’ random
variable and ~I<i ¼ ð~I1;~I2; . . .~Ii%1Þ being the independent random variable vector.2 In deviation form, the linear regression for
approximating Eq. (4) may be written as:

~Ii % Eð~IiÞ ¼ a0½~I<i % Eð~I<iÞ' þ ~g; ð5Þ

where a is the least squares coefficient vector and ~g is a mean zero random term. In this form, the usual least squares esti-
mate of a is given by:

â ¼ X%1
<i )Xi;<i;

where

X<i ¼ CovðI<i; I<iÞ ¼

Covð~I1;~I1Þ Covð~I1;~I2Þ Covð~I1;~I3Þ ) ) ) Covð~I1;~Ii%1Þ
Covð~I2;~I1Þ Covð~I2;~I2Þ Covð~I2;~I3Þ ) ) ) Covð~I2;~Ii%1Þ
Covð~I3;~I1Þ CovðI3; I2Þ Covð~I3;~I3Þ ) ) ) Covð~I3;~Ii%1Þ

..

.

Covð~Ii%1;~I1Þ Covð~Ii%1;~I2Þ Covð~Ii%1;~I3Þ ) ) ) Covð~Ii%1;~Ii%1Þ

2

66666664

3

77777775

; ð6Þ

and

Xi;<i ¼ CovðI<i; IiÞ ¼

Covð~Ii;~I1Þ
Covð~Ii;~I2Þ
Covð~Ii;~I3Þ

..

.

Covð~Ii;~Ii%1Þ

2

66666664

3

77777775

: ð7Þ

Finally, putting the estimate of â back in Eq. (5), and predicting the expected value of ~Ii conditional on ~I<i ¼ 1 (i.e.,
~I1 ¼ 1;~I2 ¼ 1;~Ii%1 ¼ 1Þ, we get the following approximation for Eq. (4):

PrðWi < wijW1 < w1;W2 < w2; . . . ;Wi%1 < wi%1Þ * UðwiÞ þ ðX%1
<i )Xi;<iÞ0ð1%Uðw1Þ;1%Uðw2Þ . . . 1%Uðwi%1ÞÞ0 ð8Þ

This conditional probability approximation can be plugged into Eq. (2) to approximate the multivariate orthant probability in
Eq. (1). The resulting expression for the multivariate orthant probability comprises only univariate and bivariate standard
normal cumulative distribution functions.

One remaining issue is that the decomposition of Eq. (1) into conditional probabilities in Eq. (2) is not unique. Further,
different permutations (i.e., orderings of the elements of the random vector W = (W1, W2, W3, . . . , WI)) for the decomposition
into the conditional probability expression of Eq. (2) will lead, in general, to different approximations. One approach to
resolve this is to average across the I!/2 permutation approximations. However, as indicated by Joe (1995), the average over
a few randomly selected permutations is typically adequate for the accurate computation of the multivariate orthant
probability. In the case when the approximation is used for model estimation (where the integrand in each individual’s

2 Note that, theoretically, this approximation can be viewed as a first-order approximation. The approximation can be continually improved by increasing the
order of the approximation. For instance, a second-order approximation would approximate the right side of Eq. (4) by the expectation from a linear regression
model that has ~Ii as the ‘‘dependent’’ random variable and ~I<i ¼ ð~I1;~I2; . . .~Ii%1;~I12 ;~I13; . . . I1;i%1 ;~I23;~I24 ; . . .~I2;i%1; . . . Ii%2;i%1Þ as the independent random variable
vector, where ~Ii0 j0 ¼ ~Ii0

~Ij0 . Essentially this adds second-order interactions in the independent random variable vector (see Joe, 1995). However, doing so entails
trivariate and four-variate normal cumulative distribution function (CDF) evaluations (when I > 4) as opposed to univariate and bivariate normal CDF
evaluations in the first-order approximation, thus increasing computational burden. As we discuss later and show empirically in a companion paper (Bhat and
Sidharthan, forthcoming), the first-order approximation is more than adequate (when combined with the CML approach) for estimation of any MNP model.
Thus, in the rest of this paper, we will use the term approximation to refer to the first-order approximation evaluation of the MVNCD function.
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同時確率を下記のように分布の積に分解	

二変量周辺分布	 単変量条件つき分布（I>3）	

【設定1:	  分布の分解】	

【設定2：インディケータIでの分散共分散表現	  】	

Ii =
1 Wi < wi
0 otherwise

!
"
#
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where qij is the ijth element of the correlation matrix R. With the above preliminaries, consider the following conditional
probability:
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The right side of the expression may be approximated by a linear regression model, with ~Ii being the ‘‘dependent’’ random
variable and ~I<i ¼ ð~I1;~I2; . . .~Ii%1Þ being the independent random variable vector.2 In deviation form, the linear regression for
approximating Eq. (4) may be written as:

~Ii % Eð~IiÞ ¼ a0½~I<i % Eð~I<iÞ' þ ~g; ð5Þ

where a is the least squares coefficient vector and ~g is a mean zero random term. In this form, the usual least squares esti-
mate of a is given by:

â ¼ X%1
<i )Xi;<i;

where

X<i ¼ CovðI<i; I<iÞ ¼
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Finally, putting the estimate of â back in Eq. (5), and predicting the expected value of ~Ii conditional on ~I<i ¼ 1 (i.e.,
~I1 ¼ 1;~I2 ¼ 1;~Ii%1 ¼ 1Þ, we get the following approximation for Eq. (4):
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<i )Xi;<iÞ0ð1%Uðw1Þ;1%Uðw2Þ . . . 1%Uðwi%1ÞÞ0 ð8Þ

This conditional probability approximation can be plugged into Eq. (2) to approximate the multivariate orthant probability in
Eq. (1). The resulting expression for the multivariate orthant probability comprises only univariate and bivariate standard
normal cumulative distribution functions.

One remaining issue is that the decomposition of Eq. (1) into conditional probabilities in Eq. (2) is not unique. Further,
different permutations (i.e., orderings of the elements of the random vector W = (W1, W2, W3, . . . , WI)) for the decomposition
into the conditional probability expression of Eq. (2) will lead, in general, to different approximations. One approach to
resolve this is to average across the I!/2 permutation approximations. However, as indicated by Joe (1995), the average over
a few randomly selected permutations is typically adequate for the accurate computation of the multivariate orthant
probability. In the case when the approximation is used for model estimation (where the integrand in each individual’s

2 Note that, theoretically, this approximation can be viewed as a first-order approximation. The approximation can be continually improved by increasing the
order of the approximation. For instance, a second-order approximation would approximate the right side of Eq. (4) by the expectation from a linear regression
model that has ~Ii as the ‘‘dependent’’ random variable and ~I<i ¼ ð~I1;~I2; . . .~Ii%1;~I12 ;~I13; . . . I1;i%1 ;~I23;~I24 ; . . .~I2;i%1; . . . Ii%2;i%1Þ as the independent random variable
vector, where ~Ii0 j0 ¼ ~Ii0

~Ij0 . Essentially this adds second-order interactions in the independent random variable vector (see Joe, 1995). However, doing so entails
trivariate and four-variate normal cumulative distribution function (CDF) evaluations (when I > 4) as opposed to univariate and bivariate normal CDF
evaluations in the first-order approximation, thus increasing computational burden. As we discuss later and show empirically in a companion paper (Bhat and
Sidharthan, forthcoming), the first-order approximation is more than adequate (when combined with the CML approach) for estimation of any MNP model.
Thus, in the rest of this paper, we will use the term approximation to refer to the first-order approximation evaluation of the MVNCD function.
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PrðWi < wijW1 < w1;W2 < w2;W3 < w3; . . . ;Wi%1 < wi%1Þ: ð2Þ

Next, define the binary indicator ~Ii that takes the value 1 if Wi < wi and zero otherwise. Then Eð~IiÞ ¼ UðwiÞ, where U(.) is the
univariate normal standard cumulative distribution function. Also, we may write the following:

Covð~Ii;~IjÞ ¼ Eð~Ii
~IjÞ % Eð~IiÞEð~IjÞ ¼ U2ðwi;wj;qijÞ %UðwiÞUðwjÞ; i – j

Covð~Ii;~IiÞ ¼ Varð~IiÞ ¼ UðwiÞ %U2ðwiÞ ¼ UðwiÞ½1%UðwiÞ';
ð3Þ

where qij is the ijth element of the correlation matrix R. With the above preliminaries, consider the following conditional
probability:

PrðWi < wijW1 < w1;W2 < w2;W3 < w3; . . . ;Wi%1 < wi%1Þ ¼ Eð~Iij~I1 ¼ 1;~I2 ¼ 1;~I3 ¼ 1; . . . ;~Ii%1 ¼ 1Þ: ð4Þ

The right side of the expression may be approximated by a linear regression model, with ~Ii being the ‘‘dependent’’ random
variable and ~I<i ¼ ð~I1;~I2; . . .~Ii%1Þ being the independent random variable vector.2 In deviation form, the linear regression for
approximating Eq. (4) may be written as:

~Ii % Eð~IiÞ ¼ a0½~I<i % Eð~I<iÞ' þ ~g; ð5Þ

where a is the least squares coefficient vector and ~g is a mean zero random term. In this form, the usual least squares esti-
mate of a is given by:

â ¼ X%1
<i )Xi;<i;

where

X<i ¼ CovðI<i; I<iÞ ¼

Covð~I1;~I1Þ Covð~I1;~I2Þ Covð~I1;~I3Þ ) ) ) Covð~I1;~Ii%1Þ
Covð~I2;~I1Þ Covð~I2;~I2Þ Covð~I2;~I3Þ ) ) ) Covð~I2;~Ii%1Þ
Covð~I3;~I1Þ CovðI3; I2Þ Covð~I3;~I3Þ ) ) ) Covð~I3;~Ii%1Þ
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and

Xi;<i ¼ CovðI<i; IiÞ ¼
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Covð~Ii;~I3Þ
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Finally, putting the estimate of â back in Eq. (5), and predicting the expected value of ~Ii conditional on ~I<i ¼ 1 (i.e.,
~I1 ¼ 1;~I2 ¼ 1;~Ii%1 ¼ 1Þ, we get the following approximation for Eq. (4):

PrðWi < wijW1 < w1;W2 < w2; . . . ;Wi%1 < wi%1Þ * UðwiÞ þ ðX%1
<i )Xi;<iÞ0ð1%Uðw1Þ;1%Uðw2Þ . . . 1%Uðwi%1ÞÞ0 ð8Þ

This conditional probability approximation can be plugged into Eq. (2) to approximate the multivariate orthant probability in
Eq. (1). The resulting expression for the multivariate orthant probability comprises only univariate and bivariate standard
normal cumulative distribution functions.

One remaining issue is that the decomposition of Eq. (1) into conditional probabilities in Eq. (2) is not unique. Further,
different permutations (i.e., orderings of the elements of the random vector W = (W1, W2, W3, . . . , WI)) for the decomposition
into the conditional probability expression of Eq. (2) will lead, in general, to different approximations. One approach to
resolve this is to average across the I!/2 permutation approximations. However, as indicated by Joe (1995), the average over
a few randomly selected permutations is typically adequate for the accurate computation of the multivariate orthant
probability. In the case when the approximation is used for model estimation (where the integrand in each individual’s

2 Note that, theoretically, this approximation can be viewed as a first-order approximation. The approximation can be continually improved by increasing the
order of the approximation. For instance, a second-order approximation would approximate the right side of Eq. (4) by the expectation from a linear regression
model that has ~Ii as the ‘‘dependent’’ random variable and ~I<i ¼ ð~I1;~I2; . . .~Ii%1;~I12 ;~I13; . . . I1;i%1 ;~I23;~I24 ; . . .~I2;i%1; . . . Ii%2;i%1Þ as the independent random variable
vector, where ~Ii0 j0 ¼ ~Ii0

~Ij0 . Essentially this adds second-order interactions in the independent random variable vector (see Joe, 1995). However, doing so entails
trivariate and four-variate normal cumulative distribution function (CDF) evaluations (when I > 4) as opposed to univariate and bivariate normal CDF
evaluations in the first-order approximation, thus increasing computational burden. As we discuss later and show empirically in a companion paper (Bhat and
Sidharthan, forthcoming), the first-order approximation is more than adequate (when combined with the CML approach) for estimation of any MNP model.
Thus, in the rest of this paper, we will use the term approximation to refer to the first-order approximation evaluation of the MVNCD function.
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Next, define the binary indicator ~Ii that takes the value 1 if Wi < wi and zero otherwise. Then Eð~IiÞ ¼ UðwiÞ, where U(.) is the
univariate normal standard cumulative distribution function. Also, we may write the following:

Covð~Ii;~IjÞ ¼ Eð~Ii
~IjÞ % Eð~IiÞEð~IjÞ ¼ U2ðwi;wj;qijÞ %UðwiÞUðwjÞ; i – j

Covð~Ii;~IiÞ ¼ Varð~IiÞ ¼ UðwiÞ %U2ðwiÞ ¼ UðwiÞ½1%UðwiÞ';
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where qij is the ijth element of the correlation matrix R. With the above preliminaries, consider the following conditional
probability:

PrðWi < wijW1 < w1;W2 < w2;W3 < w3; . . . ;Wi%1 < wi%1Þ ¼ Eð~Iij~I1 ¼ 1;~I2 ¼ 1;~I3 ¼ 1; . . . ;~Ii%1 ¼ 1Þ: ð4Þ

The right side of the expression may be approximated by a linear regression model, with ~Ii being the ‘‘dependent’’ random
variable and ~I<i ¼ ð~I1;~I2; . . .~Ii%1Þ being the independent random variable vector.2 In deviation form, the linear regression for
approximating Eq. (4) may be written as:

~Ii % Eð~IiÞ ¼ a0½~I<i % Eð~I<iÞ' þ ~g; ð5Þ

where a is the least squares coefficient vector and ~g is a mean zero random term. In this form, the usual least squares esti-
mate of a is given by:

â ¼ X%1
<i )Xi;<i;

where

X<i ¼ CovðI<i; I<iÞ ¼

Covð~I1;~I1Þ Covð~I1;~I2Þ Covð~I1;~I3Þ ) ) ) Covð~I1;~Ii%1Þ
Covð~I2;~I1Þ Covð~I2;~I2Þ Covð~I2;~I3Þ ) ) ) Covð~I2;~Ii%1Þ
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and
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Finally, putting the estimate of â back in Eq. (5), and predicting the expected value of ~Ii conditional on ~I<i ¼ 1 (i.e.,
~I1 ¼ 1;~I2 ¼ 1;~Ii%1 ¼ 1Þ, we get the following approximation for Eq. (4):

PrðWi < wijW1 < w1;W2 < w2; . . . ;Wi%1 < wi%1Þ * UðwiÞ þ ðX%1
<i )Xi;<iÞ0ð1%Uðw1Þ;1%Uðw2Þ . . . 1%Uðwi%1ÞÞ0 ð8Þ

This conditional probability approximation can be plugged into Eq. (2) to approximate the multivariate orthant probability in
Eq. (1). The resulting expression for the multivariate orthant probability comprises only univariate and bivariate standard
normal cumulative distribution functions.

One remaining issue is that the decomposition of Eq. (1) into conditional probabilities in Eq. (2) is not unique. Further,
different permutations (i.e., orderings of the elements of the random vector W = (W1, W2, W3, . . . , WI)) for the decomposition
into the conditional probability expression of Eq. (2) will lead, in general, to different approximations. One approach to
resolve this is to average across the I!/2 permutation approximations. However, as indicated by Joe (1995), the average over
a few randomly selected permutations is typically adequate for the accurate computation of the multivariate orthant
probability. In the case when the approximation is used for model estimation (where the integrand in each individual’s

2 Note that, theoretically, this approximation can be viewed as a first-order approximation. The approximation can be continually improved by increasing the
order of the approximation. For instance, a second-order approximation would approximate the right side of Eq. (4) by the expectation from a linear regression
model that has ~Ii as the ‘‘dependent’’ random variable and ~I<i ¼ ð~I1;~I2; . . .~Ii%1;~I12 ;~I13; . . . I1;i%1 ;~I23;~I24 ; . . .~I2;i%1; . . . Ii%2;i%1Þ as the independent random variable
vector, where ~Ii0 j0 ¼ ~Ii0

~Ij0 . Essentially this adds second-order interactions in the independent random variable vector (see Joe, 1995). However, doing so entails
trivariate and four-variate normal cumulative distribution function (CDF) evaluations (when I > 4) as opposed to univariate and bivariate normal CDF
evaluations in the first-order approximation, thus increasing computational burden. As we discuss later and show empirically in a companion paper (Bhat and
Sidharthan, forthcoming), the first-order approximation is more than adequate (when combined with the CML approach) for estimation of any MNP model.
Thus, in the rest of this paper, we will use the term approximation to refer to the first-order approximation evaluation of the MVNCD function.
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W:	  多変量標準正規分布	  

PrðW < wÞ ¼ PrðW1 < w1;W2 < w2Þ $
YI

i¼3

PrðWi < wijW1 < w1;W2 < w2;W3 < w3; . . . ;Wi%1 < wi%1Þ: ð2Þ

Next, define the binary indicator ~Ii that takes the value 1 if Wi < wi and zero otherwise. Then Eð~IiÞ ¼ UðwiÞ, where U(.) is the
univariate normal standard cumulative distribution function. Also, we may write the following:

Covð~Ii;~IjÞ ¼ Eð~Ii
~IjÞ % Eð~IiÞEð~IjÞ ¼ U2ðwi;wj;qijÞ %UðwiÞUðwjÞ; i – j

Covð~Ii;~IiÞ ¼ Varð~IiÞ ¼ UðwiÞ %U2ðwiÞ ¼ UðwiÞ½1%UðwiÞ';
ð3Þ

where qij is the ijth element of the correlation matrix R. With the above preliminaries, consider the following conditional
probability:

PrðWi < wijW1 < w1;W2 < w2;W3 < w3; . . . ;Wi%1 < wi%1Þ ¼ Eð~Iij~I1 ¼ 1;~I2 ¼ 1;~I3 ¼ 1; . . . ;~Ii%1 ¼ 1Þ: ð4Þ

The right side of the expression may be approximated by a linear regression model, with ~Ii being the ‘‘dependent’’ random
variable and ~I<i ¼ ð~I1;~I2; . . .~Ii%1Þ being the independent random variable vector.2 In deviation form, the linear regression for
approximating Eq. (4) may be written as:

~Ii % Eð~IiÞ ¼ a0½~I<i % Eð~I<iÞ' þ ~g; ð5Þ

where a is the least squares coefficient vector and ~g is a mean zero random term. In this form, the usual least squares esti-
mate of a is given by:

â ¼ X%1
<i )Xi;<i;

where

X<i ¼ CovðI<i; I<iÞ ¼

Covð~I1;~I1Þ Covð~I1;~I2Þ Covð~I1;~I3Þ ) ) ) Covð~I1;~Ii%1Þ
Covð~I2;~I1Þ Covð~I2;~I2Þ Covð~I2;~I3Þ ) ) ) Covð~I2;~Ii%1Þ
Covð~I3;~I1Þ CovðI3; I2Þ Covð~I3;~I3Þ ) ) ) Covð~I3;~Ii%1Þ

..

.

Covð~Ii%1;~I1Þ Covð~Ii%1;~I2Þ Covð~Ii%1;~I3Þ ) ) ) Covð~Ii%1;~Ii%1Þ

2
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; ð6Þ

and

Xi;<i ¼ CovðI<i; IiÞ ¼

Covð~Ii;~I1Þ
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Covð~Ii;~I3Þ

..
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Covð~Ii;~Ii%1Þ

2
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: ð7Þ

Finally, putting the estimate of â back in Eq. (5), and predicting the expected value of ~Ii conditional on ~I<i ¼ 1 (i.e.,
~I1 ¼ 1;~I2 ¼ 1;~Ii%1 ¼ 1Þ, we get the following approximation for Eq. (4):

PrðWi < wijW1 < w1;W2 < w2; . . . ;Wi%1 < wi%1Þ * UðwiÞ þ ðX%1
<i )Xi;<iÞ0ð1%Uðw1Þ;1%Uðw2Þ . . . 1%Uðwi%1ÞÞ0 ð8Þ

This conditional probability approximation can be plugged into Eq. (2) to approximate the multivariate orthant probability in
Eq. (1). The resulting expression for the multivariate orthant probability comprises only univariate and bivariate standard
normal cumulative distribution functions.

One remaining issue is that the decomposition of Eq. (1) into conditional probabilities in Eq. (2) is not unique. Further,
different permutations (i.e., orderings of the elements of the random vector W = (W1, W2, W3, . . . , WI)) for the decomposition
into the conditional probability expression of Eq. (2) will lead, in general, to different approximations. One approach to
resolve this is to average across the I!/2 permutation approximations. However, as indicated by Joe (1995), the average over
a few randomly selected permutations is typically adequate for the accurate computation of the multivariate orthant
probability. In the case when the approximation is used for model estimation (where the integrand in each individual’s

2 Note that, theoretically, this approximation can be viewed as a first-order approximation. The approximation can be continually improved by increasing the
order of the approximation. For instance, a second-order approximation would approximate the right side of Eq. (4) by the expectation from a linear regression
model that has ~Ii as the ‘‘dependent’’ random variable and ~I<i ¼ ð~I1;~I2; . . .~Ii%1;~I12 ;~I13; . . . I1;i%1 ;~I23;~I24 ; . . .~I2;i%1; . . . Ii%2;i%1Þ as the independent random variable
vector, where ~Ii0 j0 ¼ ~Ii0

~Ij0 . Essentially this adds second-order interactions in the independent random variable vector (see Joe, 1995). However, doing so entails
trivariate and four-variate normal cumulative distribution function (CDF) evaluations (when I > 4) as opposed to univariate and bivariate normal CDF
evaluations in the first-order approximation, thus increasing computational burden. As we discuss later and show empirically in a companion paper (Bhat and
Sidharthan, forthcoming), the first-order approximation is more than adequate (when combined with the CML approach) for estimation of any MNP model.
Thus, in the rest of this paper, we will use the term approximation to refer to the first-order approximation evaluation of the MVNCD function.
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　3-‐2.	  MACMLアプローチ(2)	 13	

【線形回帰モデルでの展開】	
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PrðWi < wijW1 < w1;W2 < w2;W3 < w3; . . . ;Wi%1 < wi%1Þ: ð2Þ

Next, define the binary indicator ~Ii that takes the value 1 if Wi < wi and zero otherwise. Then Eð~IiÞ ¼ UðwiÞ, where U(.) is the
univariate normal standard cumulative distribution function. Also, we may write the following:

Covð~Ii;~IjÞ ¼ Eð~Ii
~IjÞ % Eð~IiÞEð~IjÞ ¼ U2ðwi;wj;qijÞ %UðwiÞUðwjÞ; i – j

Covð~Ii;~IiÞ ¼ Varð~IiÞ ¼ UðwiÞ %U2ðwiÞ ¼ UðwiÞ½1%UðwiÞ';
ð3Þ

where qij is the ijth element of the correlation matrix R. With the above preliminaries, consider the following conditional
probability:

PrðWi < wijW1 < w1;W2 < w2;W3 < w3; . . . ;Wi%1 < wi%1Þ ¼ Eð~Iij~I1 ¼ 1;~I2 ¼ 1;~I3 ¼ 1; . . . ;~Ii%1 ¼ 1Þ: ð4Þ

The right side of the expression may be approximated by a linear regression model, with ~Ii being the ‘‘dependent’’ random
variable and ~I<i ¼ ð~I1;~I2; . . .~Ii%1Þ being the independent random variable vector.2 In deviation form, the linear regression for
approximating Eq. (4) may be written as:

~Ii % Eð~IiÞ ¼ a0½~I<i % Eð~I<iÞ' þ ~g; ð5Þ

where a is the least squares coefficient vector and ~g is a mean zero random term. In this form, the usual least squares esti-
mate of a is given by:

â ¼ X%1
<i )Xi;<i;

where

X<i ¼ CovðI<i; I<iÞ ¼

Covð~I1;~I1Þ Covð~I1;~I2Þ Covð~I1;~I3Þ ) ) ) Covð~I1;~Ii%1Þ
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and
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Finally, putting the estimate of â back in Eq. (5), and predicting the expected value of ~Ii conditional on ~I<i ¼ 1 (i.e.,
~I1 ¼ 1;~I2 ¼ 1;~Ii%1 ¼ 1Þ, we get the following approximation for Eq. (4):

PrðWi < wijW1 < w1;W2 < w2; . . . ;Wi%1 < wi%1Þ * UðwiÞ þ ðX%1
<i )Xi;<iÞ0ð1%Uðw1Þ;1%Uðw2Þ . . . 1%Uðwi%1ÞÞ0 ð8Þ

This conditional probability approximation can be plugged into Eq. (2) to approximate the multivariate orthant probability in
Eq. (1). The resulting expression for the multivariate orthant probability comprises only univariate and bivariate standard
normal cumulative distribution functions.

One remaining issue is that the decomposition of Eq. (1) into conditional probabilities in Eq. (2) is not unique. Further,
different permutations (i.e., orderings of the elements of the random vector W = (W1, W2, W3, . . . , WI)) for the decomposition
into the conditional probability expression of Eq. (2) will lead, in general, to different approximations. One approach to
resolve this is to average across the I!/2 permutation approximations. However, as indicated by Joe (1995), the average over
a few randomly selected permutations is typically adequate for the accurate computation of the multivariate orthant
probability. In the case when the approximation is used for model estimation (where the integrand in each individual’s

2 Note that, theoretically, this approximation can be viewed as a first-order approximation. The approximation can be continually improved by increasing the
order of the approximation. For instance, a second-order approximation would approximate the right side of Eq. (4) by the expectation from a linear regression
model that has ~Ii as the ‘‘dependent’’ random variable and ~I<i ¼ ð~I1;~I2; . . .~Ii%1;~I12 ;~I13; . . . I1;i%1 ;~I23;~I24 ; . . .~I2;i%1; . . . Ii%2;i%1Þ as the independent random variable
vector, where ~Ii0 j0 ¼ ~Ii0

~Ij0 . Essentially this adds second-order interactions in the independent random variable vector (see Joe, 1995). However, doing so entails
trivariate and four-variate normal cumulative distribution function (CDF) evaluations (when I > 4) as opposed to univariate and bivariate normal CDF
evaluations in the first-order approximation, thus increasing computational burden. As we discuss later and show empirically in a companion paper (Bhat and
Sidharthan, forthcoming), the first-order approximation is more than adequate (when combined with the CML approach) for estimation of any MNP model.
Thus, in the rest of this paper, we will use the term approximation to refer to the first-order approximation evaluation of the MVNCD function.

926 C.R. Bhat / Transportation Research Part B 45 (2011) 923–939
PrðW < wÞ ¼ PrðW1 < w1;W2 < w2Þ $
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i¼3

PrðWi < wijW1 < w1;W2 < w2;W3 < w3; . . . ;Wi%1 < wi%1Þ: ð2Þ

Next, define the binary indicator ~Ii that takes the value 1 if Wi < wi and zero otherwise. Then Eð~IiÞ ¼ UðwiÞ, where U(.) is the
univariate normal standard cumulative distribution function. Also, we may write the following:

Covð~Ii;~IjÞ ¼ Eð~Ii
~IjÞ % Eð~IiÞEð~IjÞ ¼ U2ðwi;wj;qijÞ %UðwiÞUðwjÞ; i – j

Covð~Ii;~IiÞ ¼ Varð~IiÞ ¼ UðwiÞ %U2ðwiÞ ¼ UðwiÞ½1%UðwiÞ';
ð3Þ

where qij is the ijth element of the correlation matrix R. With the above preliminaries, consider the following conditional
probability:

PrðWi < wijW1 < w1;W2 < w2;W3 < w3; . . . ;Wi%1 < wi%1Þ ¼ Eð~Iij~I1 ¼ 1;~I2 ¼ 1;~I3 ¼ 1; . . . ;~Ii%1 ¼ 1Þ: ð4Þ

The right side of the expression may be approximated by a linear regression model, with ~Ii being the ‘‘dependent’’ random
variable and ~I<i ¼ ð~I1;~I2; . . .~Ii%1Þ being the independent random variable vector.2 In deviation form, the linear regression for
approximating Eq. (4) may be written as:

~Ii % Eð~IiÞ ¼ a0½~I<i % Eð~I<iÞ' þ ~g; ð5Þ

where a is the least squares coefficient vector and ~g is a mean zero random term. In this form, the usual least squares esti-
mate of a is given by:

â ¼ X%1
<i )Xi;<i;

where

X<i ¼ CovðI<i; I<iÞ ¼

Covð~I1;~I1Þ Covð~I1;~I2Þ Covð~I1;~I3Þ ) ) ) Covð~I1;~Ii%1Þ
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and

Xi;<i ¼ CovðI<i; IiÞ ¼
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Finally, putting the estimate of â back in Eq. (5), and predicting the expected value of ~Ii conditional on ~I<i ¼ 1 (i.e.,
~I1 ¼ 1;~I2 ¼ 1;~Ii%1 ¼ 1Þ, we get the following approximation for Eq. (4):

PrðWi < wijW1 < w1;W2 < w2; . . . ;Wi%1 < wi%1Þ * UðwiÞ þ ðX%1
<i )Xi;<iÞ0ð1%Uðw1Þ;1%Uðw2Þ . . . 1%Uðwi%1ÞÞ0 ð8Þ

This conditional probability approximation can be plugged into Eq. (2) to approximate the multivariate orthant probability in
Eq. (1). The resulting expression for the multivariate orthant probability comprises only univariate and bivariate standard
normal cumulative distribution functions.

One remaining issue is that the decomposition of Eq. (1) into conditional probabilities in Eq. (2) is not unique. Further,
different permutations (i.e., orderings of the elements of the random vector W = (W1, W2, W3, . . . , WI)) for the decomposition
into the conditional probability expression of Eq. (2) will lead, in general, to different approximations. One approach to
resolve this is to average across the I!/2 permutation approximations. However, as indicated by Joe (1995), the average over
a few randomly selected permutations is typically adequate for the accurate computation of the multivariate orthant
probability. In the case when the approximation is used for model estimation (where the integrand in each individual’s

2 Note that, theoretically, this approximation can be viewed as a first-order approximation. The approximation can be continually improved by increasing the
order of the approximation. For instance, a second-order approximation would approximate the right side of Eq. (4) by the expectation from a linear regression
model that has ~Ii as the ‘‘dependent’’ random variable and ~I<i ¼ ð~I1;~I2; . . .~Ii%1;~I12 ;~I13; . . . I1;i%1 ;~I23;~I24 ; . . .~I2;i%1; . . . Ii%2;i%1Þ as the independent random variable
vector, where ~Ii0 j0 ¼ ~Ii0

~Ij0 . Essentially this adds second-order interactions in the independent random variable vector (see Joe, 1995). However, doing so entails
trivariate and four-variate normal cumulative distribution function (CDF) evaluations (when I > 4) as opposed to univariate and bivariate normal CDF
evaluations in the first-order approximation, thus increasing computational burden. As we discuss later and show empirically in a companion paper (Bhat and
Sidharthan, forthcoming), the first-order approximation is more than adequate (when combined with the CML approach) for estimation of any MNP model.
Thus, in the rest of this paper, we will use the term approximation to refer to the first-order approximation evaluation of the MVNCD function.
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Next, define the binary indicator ~Ii that takes the value 1 if Wi < wi and zero otherwise. Then Eð~IiÞ ¼ UðwiÞ, where U(.) is the
univariate normal standard cumulative distribution function. Also, we may write the following:

Covð~Ii;~IjÞ ¼ Eð~Ii
~IjÞ % Eð~IiÞEð~IjÞ ¼ U2ðwi;wj;qijÞ %UðwiÞUðwjÞ; i – j

Covð~Ii;~IiÞ ¼ Varð~IiÞ ¼ UðwiÞ %U2ðwiÞ ¼ UðwiÞ½1%UðwiÞ';
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where qij is the ijth element of the correlation matrix R. With the above preliminaries, consider the following conditional
probability:
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The right side of the expression may be approximated by a linear regression model, with ~Ii being the ‘‘dependent’’ random
variable and ~I<i ¼ ð~I1;~I2; . . .~Ii%1Þ being the independent random variable vector.2 In deviation form, the linear regression for
approximating Eq. (4) may be written as:

~Ii % Eð~IiÞ ¼ a0½~I<i % Eð~I<iÞ' þ ~g; ð5Þ

where a is the least squares coefficient vector and ~g is a mean zero random term. In this form, the usual least squares esti-
mate of a is given by:

â ¼ X%1
<i )Xi;<i;

where
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Finally, putting the estimate of â back in Eq. (5), and predicting the expected value of ~Ii conditional on ~I<i ¼ 1 (i.e.,
~I1 ¼ 1;~I2 ¼ 1;~Ii%1 ¼ 1Þ, we get the following approximation for Eq. (4):

PrðWi < wijW1 < w1;W2 < w2; . . . ;Wi%1 < wi%1Þ * UðwiÞ þ ðX%1
<i )Xi;<iÞ0ð1%Uðw1Þ;1%Uðw2Þ . . . 1%Uðwi%1ÞÞ0 ð8Þ

This conditional probability approximation can be plugged into Eq. (2) to approximate the multivariate orthant probability in
Eq. (1). The resulting expression for the multivariate orthant probability comprises only univariate and bivariate standard
normal cumulative distribution functions.

One remaining issue is that the decomposition of Eq. (1) into conditional probabilities in Eq. (2) is not unique. Further,
different permutations (i.e., orderings of the elements of the random vector W = (W1, W2, W3, . . . , WI)) for the decomposition
into the conditional probability expression of Eq. (2) will lead, in general, to different approximations. One approach to
resolve this is to average across the I!/2 permutation approximations. However, as indicated by Joe (1995), the average over
a few randomly selected permutations is typically adequate for the accurate computation of the multivariate orthant
probability. In the case when the approximation is used for model estimation (where the integrand in each individual’s

2 Note that, theoretically, this approximation can be viewed as a first-order approximation. The approximation can be continually improved by increasing the
order of the approximation. For instance, a second-order approximation would approximate the right side of Eq. (4) by the expectation from a linear regression
model that has ~Ii as the ‘‘dependent’’ random variable and ~I<i ¼ ð~I1;~I2; . . .~Ii%1;~I12 ;~I13; . . . I1;i%1 ;~I23;~I24 ; . . .~I2;i%1; . . . Ii%2;i%1Þ as the independent random variable
vector, where ~Ii0 j0 ¼ ~Ii0

~Ij0 . Essentially this adds second-order interactions in the independent random variable vector (see Joe, 1995). However, doing so entails
trivariate and four-variate normal cumulative distribution function (CDF) evaluations (when I > 4) as opposed to univariate and bivariate normal CDF
evaluations in the first-order approximation, thus increasing computational burden. As we discuss later and show empirically in a companion paper (Bhat and
Sidharthan, forthcoming), the first-order approximation is more than adequate (when combined with the CML approach) for estimation of any MNP model.
Thus, in the rest of this paper, we will use the term approximation to refer to the first-order approximation evaluation of the MVNCD function.
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Next, define the binary indicator ~Ii that takes the value 1 if Wi < wi and zero otherwise. Then Eð~IiÞ ¼ UðwiÞ, where U(.) is the
univariate normal standard cumulative distribution function. Also, we may write the following:

Covð~Ii;~IjÞ ¼ Eð~Ii
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where qij is the ijth element of the correlation matrix R. With the above preliminaries, consider the following conditional
probability:
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The right side of the expression may be approximated by a linear regression model, with ~Ii being the ‘‘dependent’’ random
variable and ~I<i ¼ ð~I1;~I2; . . .~Ii%1Þ being the independent random variable vector.2 In deviation form, the linear regression for
approximating Eq. (4) may be written as:

~Ii % Eð~IiÞ ¼ a0½~I<i % Eð~I<iÞ' þ ~g; ð5Þ

where a is the least squares coefficient vector and ~g is a mean zero random term. In this form, the usual least squares esti-
mate of a is given by:

â ¼ X%1
<i )Xi;<i;

where

X<i ¼ CovðI<i; I<iÞ ¼
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Finally, putting the estimate of â back in Eq. (5), and predicting the expected value of ~Ii conditional on ~I<i ¼ 1 (i.e.,
~I1 ¼ 1;~I2 ¼ 1;~Ii%1 ¼ 1Þ, we get the following approximation for Eq. (4):

PrðWi < wijW1 < w1;W2 < w2; . . . ;Wi%1 < wi%1Þ * UðwiÞ þ ðX%1
<i )Xi;<iÞ0ð1%Uðw1Þ;1%Uðw2Þ . . . 1%Uðwi%1ÞÞ0 ð8Þ

This conditional probability approximation can be plugged into Eq. (2) to approximate the multivariate orthant probability in
Eq. (1). The resulting expression for the multivariate orthant probability comprises only univariate and bivariate standard
normal cumulative distribution functions.

One remaining issue is that the decomposition of Eq. (1) into conditional probabilities in Eq. (2) is not unique. Further,
different permutations (i.e., orderings of the elements of the random vector W = (W1, W2, W3, . . . , WI)) for the decomposition
into the conditional probability expression of Eq. (2) will lead, in general, to different approximations. One approach to
resolve this is to average across the I!/2 permutation approximations. However, as indicated by Joe (1995), the average over
a few randomly selected permutations is typically adequate for the accurate computation of the multivariate orthant
probability. In the case when the approximation is used for model estimation (where the integrand in each individual’s

2 Note that, theoretically, this approximation can be viewed as a first-order approximation. The approximation can be continually improved by increasing the
order of the approximation. For instance, a second-order approximation would approximate the right side of Eq. (4) by the expectation from a linear regression
model that has ~Ii as the ‘‘dependent’’ random variable and ~I<i ¼ ð~I1;~I2; . . .~Ii%1;~I12 ;~I13; . . . I1;i%1 ;~I23;~I24 ; . . .~I2;i%1; . . . Ii%2;i%1Þ as the independent random variable
vector, where ~Ii0 j0 ¼ ~Ii0

~Ij0 . Essentially this adds second-order interactions in the independent random variable vector (see Joe, 1995). However, doing so entails
trivariate and four-variate normal cumulative distribution function (CDF) evaluations (when I > 4) as opposed to univariate and bivariate normal CDF
evaluations in the first-order approximation, thus increasing computational burden. As we discuss later and show empirically in a companion paper (Bhat and
Sidharthan, forthcoming), the first-order approximation is more than adequate (when combined with the CML approach) for estimation of any MNP model.
Thus, in the rest of this paper, we will use the term approximation to refer to the first-order approximation evaluation of the MVNCD function.
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Next, define the binary indicator ~Ii that takes the value 1 if Wi < wi and zero otherwise. Then Eð~IiÞ ¼ UðwiÞ, where U(.) is the
univariate normal standard cumulative distribution function. Also, we may write the following:

Covð~Ii;~IjÞ ¼ Eð~Ii
~IjÞ % Eð~IiÞEð~IjÞ ¼ U2ðwi;wj;qijÞ %UðwiÞUðwjÞ; i – j

Covð~Ii;~IiÞ ¼ Varð~IiÞ ¼ UðwiÞ %U2ðwiÞ ¼ UðwiÞ½1%UðwiÞ';
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where qij is the ijth element of the correlation matrix R. With the above preliminaries, consider the following conditional
probability:

PrðWi < wijW1 < w1;W2 < w2;W3 < w3; . . . ;Wi%1 < wi%1Þ ¼ Eð~Iij~I1 ¼ 1;~I2 ¼ 1;~I3 ¼ 1; . . . ;~Ii%1 ¼ 1Þ: ð4Þ

The right side of the expression may be approximated by a linear regression model, with ~Ii being the ‘‘dependent’’ random
variable and ~I<i ¼ ð~I1;~I2; . . .~Ii%1Þ being the independent random variable vector.2 In deviation form, the linear regression for
approximating Eq. (4) may be written as:

~Ii % Eð~IiÞ ¼ a0½~I<i % Eð~I<iÞ' þ ~g; ð5Þ

where a is the least squares coefficient vector and ~g is a mean zero random term. In this form, the usual least squares esti-
mate of a is given by:

â ¼ X%1
<i )Xi;<i;

where

X<i ¼ CovðI<i; I<iÞ ¼

Covð~I1;~I1Þ Covð~I1;~I2Þ Covð~I1;~I3Þ ) ) ) Covð~I1;~Ii%1Þ
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and
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Finally, putting the estimate of â back in Eq. (5), and predicting the expected value of ~Ii conditional on ~I<i ¼ 1 (i.e.,
~I1 ¼ 1;~I2 ¼ 1;~Ii%1 ¼ 1Þ, we get the following approximation for Eq. (4):

PrðWi < wijW1 < w1;W2 < w2; . . . ;Wi%1 < wi%1Þ * UðwiÞ þ ðX%1
<i )Xi;<iÞ0ð1%Uðw1Þ;1%Uðw2Þ . . . 1%Uðwi%1ÞÞ0 ð8Þ

This conditional probability approximation can be plugged into Eq. (2) to approximate the multivariate orthant probability in
Eq. (1). The resulting expression for the multivariate orthant probability comprises only univariate and bivariate standard
normal cumulative distribution functions.

One remaining issue is that the decomposition of Eq. (1) into conditional probabilities in Eq. (2) is not unique. Further,
different permutations (i.e., orderings of the elements of the random vector W = (W1, W2, W3, . . . , WI)) for the decomposition
into the conditional probability expression of Eq. (2) will lead, in general, to different approximations. One approach to
resolve this is to average across the I!/2 permutation approximations. However, as indicated by Joe (1995), the average over
a few randomly selected permutations is typically adequate for the accurate computation of the multivariate orthant
probability. In the case when the approximation is used for model estimation (where the integrand in each individual’s

2 Note that, theoretically, this approximation can be viewed as a first-order approximation. The approximation can be continually improved by increasing the
order of the approximation. For instance, a second-order approximation would approximate the right side of Eq. (4) by the expectation from a linear regression
model that has ~Ii as the ‘‘dependent’’ random variable and ~I<i ¼ ð~I1;~I2; . . .~Ii%1;~I12 ;~I13; . . . I1;i%1 ;~I23;~I24 ; . . .~I2;i%1; . . . Ii%2;i%1Þ as the independent random variable
vector, where ~Ii0 j0 ¼ ~Ii0

~Ij0 . Essentially this adds second-order interactions in the independent random variable vector (see Joe, 1995). However, doing so entails
trivariate and four-variate normal cumulative distribution function (CDF) evaluations (when I > 4) as opposed to univariate and bivariate normal CDF
evaluations in the first-order approximation, thus increasing computational burden. As we discuss later and show empirically in a companion paper (Bhat and
Sidharthan, forthcoming), the first-order approximation is more than adequate (when combined with the CML approach) for estimation of any MNP model.
Thus, in the rest of this paper, we will use the term approximation to refer to the first-order approximation evaluation of the MVNCD function.
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Next, define the binary indicator ~Ii that takes the value 1 if Wi < wi and zero otherwise. Then Eð~IiÞ ¼ UðwiÞ, where U(.) is the
univariate normal standard cumulative distribution function. Also, we may write the following:

Covð~Ii;~IjÞ ¼ Eð~Ii
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where qij is the ijth element of the correlation matrix R. With the above preliminaries, consider the following conditional
probability:
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The right side of the expression may be approximated by a linear regression model, with ~Ii being the ‘‘dependent’’ random
variable and ~I<i ¼ ð~I1;~I2; . . .~Ii%1Þ being the independent random variable vector.2 In deviation form, the linear regression for
approximating Eq. (4) may be written as:

~Ii % Eð~IiÞ ¼ a0½~I<i % Eð~I<iÞ' þ ~g; ð5Þ

where a is the least squares coefficient vector and ~g is a mean zero random term. In this form, the usual least squares esti-
mate of a is given by:
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Finally, putting the estimate of â back in Eq. (5), and predicting the expected value of ~Ii conditional on ~I<i ¼ 1 (i.e.,
~I1 ¼ 1;~I2 ¼ 1;~Ii%1 ¼ 1Þ, we get the following approximation for Eq. (4):
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This conditional probability approximation can be plugged into Eq. (2) to approximate the multivariate orthant probability in
Eq. (1). The resulting expression for the multivariate orthant probability comprises only univariate and bivariate standard
normal cumulative distribution functions.

One remaining issue is that the decomposition of Eq. (1) into conditional probabilities in Eq. (2) is not unique. Further,
different permutations (i.e., orderings of the elements of the random vector W = (W1, W2, W3, . . . , WI)) for the decomposition
into the conditional probability expression of Eq. (2) will lead, in general, to different approximations. One approach to
resolve this is to average across the I!/2 permutation approximations. However, as indicated by Joe (1995), the average over
a few randomly selected permutations is typically adequate for the accurate computation of the multivariate orthant
probability. In the case when the approximation is used for model estimation (where the integrand in each individual’s

2 Note that, theoretically, this approximation can be viewed as a first-order approximation. The approximation can be continually improved by increasing the
order of the approximation. For instance, a second-order approximation would approximate the right side of Eq. (4) by the expectation from a linear regression
model that has ~Ii as the ‘‘dependent’’ random variable and ~I<i ¼ ð~I1;~I2; . . .~Ii%1;~I12 ;~I13; . . . I1;i%1 ;~I23;~I24 ; . . .~I2;i%1; . . . Ii%2;i%1Þ as the independent random variable
vector, where ~Ii0 j0 ¼ ~Ii0

~Ij0 . Essentially this adds second-order interactions in the independent random variable vector (see Joe, 1995). However, doing so entails
trivariate and four-variate normal cumulative distribution function (CDF) evaluations (when I > 4) as opposed to univariate and bivariate normal CDF
evaluations in the first-order approximation, thus increasing computational burden. As we discuss later and show empirically in a companion paper (Bhat and
Sidharthan, forthcoming), the first-order approximation is more than adequate (when combined with the CML approach) for estimation of any MNP model.
Thus, in the rest of this paper, we will use the term approximation to refer to the first-order approximation evaluation of the MVNCD function.
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　誤差項	

【単変量正規分布での近似】	
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Next, define the binary indicator ~Ii that takes the value 1 if Wi < wi and zero otherwise. Then Eð~IiÞ ¼ UðwiÞ, where U(.) is the
univariate normal standard cumulative distribution function. Also, we may write the following:

Covð~Ii;~IjÞ ¼ Eð~Ii
~IjÞ % Eð~IiÞEð~IjÞ ¼ U2ðwi;wj;qijÞ %UðwiÞUðwjÞ; i – j
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where qij is the ijth element of the correlation matrix R. With the above preliminaries, consider the following conditional
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The right side of the expression may be approximated by a linear regression model, with ~Ii being the ‘‘dependent’’ random
variable and ~I<i ¼ ð~I1;~I2; . . .~Ii%1Þ being the independent random variable vector.2 In deviation form, the linear regression for
approximating Eq. (4) may be written as:
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â ¼ X%1
<i )Xi;<i;

where

X<i ¼ CovðI<i; I<iÞ ¼

Covð~I1;~I1Þ Covð~I1;~I2Þ Covð~I1;~I3Þ ) ) ) Covð~I1;~Ii%1Þ
Covð~I2;~I1Þ Covð~I2;~I2Þ Covð~I2;~I3Þ ) ) ) Covð~I2;~Ii%1Þ
Covð~I3;~I1Þ CovðI3; I2Þ Covð~I3;~I3Þ ) ) ) Covð~I3;~Ii%1Þ

..

.

Covð~Ii%1;~I1Þ Covð~Ii%1;~I2Þ Covð~Ii%1;~I3Þ ) ) ) Covð~Ii%1;~Ii%1Þ

2

66666664

3

77777775

; ð6Þ
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Finally, putting the estimate of â back in Eq. (5), and predicting the expected value of ~Ii conditional on ~I<i ¼ 1 (i.e.,
~I1 ¼ 1;~I2 ¼ 1;~Ii%1 ¼ 1Þ, we get the following approximation for Eq. (4):

PrðWi < wijW1 < w1;W2 < w2; . . . ;Wi%1 < wi%1Þ * UðwiÞ þ ðX%1
<i )Xi;<iÞ0ð1%Uðw1Þ;1%Uðw2Þ . . . 1%Uðwi%1ÞÞ0 ð8Þ

This conditional probability approximation can be plugged into Eq. (2) to approximate the multivariate orthant probability in
Eq. (1). The resulting expression for the multivariate orthant probability comprises only univariate and bivariate standard
normal cumulative distribution functions.

One remaining issue is that the decomposition of Eq. (1) into conditional probabilities in Eq. (2) is not unique. Further,
different permutations (i.e., orderings of the elements of the random vector W = (W1, W2, W3, . . . , WI)) for the decomposition
into the conditional probability expression of Eq. (2) will lead, in general, to different approximations. One approach to
resolve this is to average across the I!/2 permutation approximations. However, as indicated by Joe (1995), the average over
a few randomly selected permutations is typically adequate for the accurate computation of the multivariate orthant
probability. In the case when the approximation is used for model estimation (where the integrand in each individual’s

2 Note that, theoretically, this approximation can be viewed as a first-order approximation. The approximation can be continually improved by increasing the
order of the approximation. For instance, a second-order approximation would approximate the right side of Eq. (4) by the expectation from a linear regression
model that has ~Ii as the ‘‘dependent’’ random variable and ~I<i ¼ ð~I1;~I2; . . .~Ii%1;~I12 ;~I13; . . . I1;i%1 ;~I23;~I24 ; . . .~I2;i%1; . . . Ii%2;i%1Þ as the independent random variable
vector, where ~Ii0 j0 ¼ ~Ii0

~Ij0 . Essentially this adds second-order interactions in the independent random variable vector (see Joe, 1995). However, doing so entails
trivariate and four-variate normal cumulative distribution function (CDF) evaluations (when I > 4) as opposed to univariate and bivariate normal CDF
evaluations in the first-order approximation, thus increasing computational burden. As we discuss later and show empirically in a companion paper (Bhat and
Sidharthan, forthcoming), the first-order approximation is more than adequate (when combined with the CML approach) for estimation of any MNP model.
Thus, in the rest of this paper, we will use the term approximation to refer to the first-order approximation evaluation of the MVNCD function.
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a b s t r a c t

This paper evaluates the ability of the maximum approximate composite marginal likeli-
hood (MACML) estimation approach to recover parameters from finite samples in mixed
cross-sectional and panel multinomial probit models. Comparisons with the maximum
simulated likelihood (MSL) estimation approach are also undertaken. The results indicate
that the MACML approach recovers parameters much more accurately than the MSL
approach in all model structures and covariance specifications. The MACML inference
approach also estimates the parameters efficiently, with the asymptotic standard errors
being, in general, only a small proportion of the true values. As importantly, the MACML
inference approach takes only a very small fraction of the time needed for MSL estimation.
In particular, the results suggest that, for the case of five random coefficients, the MACML
approach is about 50 times faster than the MSL for the cross-sectional random coefficients
case, about 15 times faster than the MSL for the panel inter-individual random coefficients
case, and about 350 times or more faster than the MSL for the panel intra- and inter-indi-
vidual random coefficients case. As the number of alternatives in the unordered-response
model increases, one can expect even higher computational efficiency factors for the MAC-
ML over the MSL approach. Further, as should be evident in the panel intra- and inter-indi-
vidual random coefficients case, the MSL is all but practically infeasible when the mixing
structure leads to an explosion in the dimensionality of integration in the likelihood func-
tion, but these situations are handled with ease in the MACML approach. It is hoped that
the MACML procedure will spawn empirical research into rich model specifications within
the context of unordered multinomial choice modeling, including autoregressive random
coefficients, dynamics in coefficients, space–time effects, and spatial/social interactions.

! 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Consider the following random-coefficients formulation in which the utility that an individual q associates with alterna-
tive i is given by:

Uqi ¼ b0qxqi þ eqi ð1Þ

where xqi is a (K % 1)-column vector of exogenous attributes, and bq is an individual-specific (K % 1)-column vector of cor-
responding coefficients that is a realization from a multivariate normal density function with mean vector b and covariance
matrix X. eqi is assumed to be an independently and identically distributed (across alternatives and across individuals) error
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term, which is also independent of the covariate vector xqi. If eqi is normally distributed with a mean zero and variance of
one-half, then the likelihood contribution of individual q who chooses alternative m is:

Lq ¼
Z 1

b¼"1

Z 1

k¼"1

Y

i–m

U "
ffiffiffi
2
p
ðb0zqimÞ

h i
þ k

n oh i !

/ðkÞdk

( )

f ðbjb;XÞdb; ð2Þ

where zqim ¼ xqi " xqm, Uð:Þ is the univariate cumulative distribution function and /ð:Þ is the univariate normal density func-
tion. In the case of panel data, the utility structure may be written with the inclusion of choice occasion t as:

Uqit ¼ b0qxqit þ eqit: ð3Þ

In this case, the individual likelihood contribution of individual q choosing alternative mt at choice occasion t when eqit is
normally distributed, is:

Lq ¼
Z 1

b¼"1
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t¼1
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U "
ffiffiffi
2
p
ðb0zqimt tÞ

h i
þ k

n oh i !

/ðkÞdk

" #

f ðbjb;XÞdb; ð4Þ

where zqimt t ¼ xqit " xqmt .
Finally, in the case of panel data, and when the random coefficients have both an intra-individual and inter-individual

random component (see Bhat and Castelar, 2002; Bhat and Sardesai, 2006; Hess and Rose, 2009), the utility structure
may be written as:

Uqit ¼ b0qtxqit þ eqit; ð5Þ

where bqt ¼ bq þ ~bqt , bq & Nðb;XÞ, ~bqt & Nð0; eXÞ.
In this case, when eqit is normally distributed

Lq ¼
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The likelihood contribution of individual q in Eqs. (2), (4), and (6) entails the evaluation of an analytically intractable func-
tion with multidimensional integrals. This has led to the development of various simulation techniques in high dimensions
as part of a maximum simulated likelihood (MSL) estimation approach. Unfortunately, for many practical situations, the
computational cost to ensure good asymptotic MSL estimator properties can be prohibitive and literally infeasible (in the
context of the computation resources available and the time available for estimation) as the number of dimensions of inte-
gration increases.

In a companion paper, Bhat (2011a) proposed the use of an alternative maximum approximate composite marginal like-
lihood (MACML) estimator within the class of frequentist estimators for the estimation of multinomial probit (MNP) models.
Bhat’s MACML estimator is based solely on univariate and bivariate cumulative normal distribution evaluations, regardless
of the dimensionality of integration. This should substantially reduce computation time compared to more cumbersome
simulation techniques to evaluate multidimensional integrals. At the same time, the MACML estimator retains the properties
of being consistent and asymptotically normally distributed.

The specific objectives of this study are motivated by the discussion above. The first objective is to examine the ability of
the MACML estimator to recover parameters from finite samples in mixed cross-sectional and panel multinomial probit
models. We use simulated data sets with known underlying model parameters to evaluate the MACML approach. The sec-
ond, related, objective is to compare the performance of the MACML approach with the MSL approach in mixed MNP sim-
ulations when the MSL approach is feasible. In doing so, we examine the relative ability of the two approaches to recover
parameters and the computation time of the two approaches.

The rest of the paper is structured as follows. Section 2 presents the experimental design for the simulation experiments
and Section 3 presents the results. Section 4 concludes the paper by highlighting important findings.

2. Experimental design

In the simulation set-up to examine the performance of the MSL and MACML inference approaches, we consider the case
of five alternatives with five independent variables. For all the datasets generated in the experimental design, the values of
each of the five independent variables for the alternatives are drawn from a standard univariate normal distribution. For the
cross-sectional data set, we generate a sample of 5000 realizations of the five independent variables corresponding to 5000
individuals, while, for the panel data set, we generate a sample of 2500 realizations of the five independent variables corre-
sponding to a situation, where 500 individuals each have five choice occasions for a total of 2500 choice occasions. We allow
random coefficients on all the five independent variables. This leads to a five-dimensional integral in the mixed model. In the
subsequent three sections, we discuss the set-up for each of the following three cases in more detail: (1) cross-sectional ran-
dom coefficients, (2) panel inter-individual coefficients and (3) panel intra-individual and inter-individual random
coefficients.
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parameters and the computation time of the two approaches.
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and Section 3 presents the results. Section 4 concludes the paper by highlighting important findings.
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In the simulation set-up to examine the performance of the MSL and MACML inference approaches, we consider the case
of five alternatives with five independent variables. For all the datasets generated in the experimental design, the values of
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cross-sectional data set, we generate a sample of 5000 realizations of the five independent variables corresponding to 5000
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2.1. Cross-sectional random coefficients model structure

In the cross-sectional case, the coefficient vector bq for individual q is assumed to be a realization from a multivariate
normal distribution with a mean vector b = (1.5, –1, 2, 1, –2) and covariance matrix X. Two specifications for X are con-
sidered. The first specification, which we label as the diagonal covariance specification, assumes independence among
the random coefficients; that is, the matrix X is assumed to be diagonal. This specification has been frequently used
in the literature. The entries along the diagonal are set to the value of 1 in our experimental design. This first specifi-
cation entails the estimation of five parameters in the covariance matrix. The second specification, which we label as the
non-diagonal covariance specification, allows the random coefficients to be correlated. In this specification, we specify
the matrix X to be as follows:

X ¼

1 "0:50 0:25 0:75 0
"0:50 1 0:25 "0:50 0
0:25 0:25 1 0:33 0
0:75 "0:50 0:33 1 0

0 0 0 0 1

2

6666664

3

7777775

This positive definite non-diagonal specification involves the estimation of 10 covariance matrix parameters. Finally, values
for the error terms eqi (q = 1, 2, . . . , Q; i = 1, 2, . . . , I) in Eq. (1) are generated from a univariate normal distribution with a var-
iance of 0.5, leading to the mixed MNP model structure. The alternative with the highest utility for each observation is then
identified as the chosen alternative. The above data generation process is undertaken 20 times with different realizations of
the bq vector and the error term eqi to generate 20 different data sets each for the diagonal specification and the non-diagonal
specification of the X matrix.

The MSL and MACML estimators are applied to each data set to estimate data specific values of b and L (X ¼ LL0, where L
is the lower Cholesky decomposition of X; note that it is the Cholesky parameters that are estimated to ensure the positive
definiteness of the variance–covariance matrix X). In the case of the diagonal covariance specification, L is also a diagonal
matrix with entries of ‘1’ along the diagonal. The MSL estimator is applied to each dataset 10 times with different (indepen-
dent) draws for the random coefficients for each individual. This allows us to estimate the simulation error in the MSL case
by computing the standard deviation of estimated parameters among the 10 different estimates on the same data set. Sim-
ilarly, for the MACML approach, the approximation error is obtained by computing the standard deviation of estimated
parameters among the 10 different estimates on the same data set by using different permutations to decompose the mul-
tivariate normal cumulative distribution (MVNCD) function into a product sequence of marginal and conditional probabil-
ities (see Section 2.1 of Bhat, 2011a).

For the MSL estimation, we use draws from the Halton sequence for the random coefficients vector bq, because it is the
most commonly used QMC sequence in the literature. While some other QMC systems have been shown to provide better
results for a given number of draws, the Halton has the advantage of very easy generation. Thus, as indicated by Sandor and
Train (2004), one can generate many more draws per individual of the Halton sequence than other QMC sequences for the
same amount of time. Within the context of Halton draws, we experimented with different kinds of scramblings and
randomizations of the Halton sequence (see Bhat, 2003 and Sivakumar et al., 2005 for a review of these scrambling and
randomization techniques). The experiments indicated that the best performance was obtained using a procedure that com-
bined Bratten–Weller scrambling with the Tuffin randomization, further enhanced by the random assignment of Halton
dimensions to coefficients. Also, while a higher number of draws per individual (based on the combination scrambling/ran-
domization discussed above) generally provided improved results, we used 250 draws per individual, which is more than
what is typically used in most applications of the MSL procedure. Further, with a total of 400 total estimations for the
cross-sectional random coefficients case (20 simulation runs for each of 10 different data samples for each of the diagonal
and non-diagonal covariance case), an important factor was to keep the computation cost per estimation to a reasonable
amount of time (even with 250 draws per individual, the total computer time for the 400 estimations was over 800 h, as
we discuss in more detail later). Finally, note that one has to integrate out the inner one-dimensional integral over the scalar
k that is distributed standard normal (see Eq. (2)). While this integration can also be performed using QMC draws, we under-
take this inner one-dimensional integration using the more efficient hermite quadrature technique with 10 quadrature
points.

For the MACML method, a single random permutation is generated for each individual (the random permutation
varies across individuals, but is the same across iterations for a given individual), and the multivariate normal cumu-
lative distribution (MVNCD) function is approximated using the resulting conditional probability sequence. We used
different numbers of random permutations per individual to approximate the MVNCD function corresponding to the
individual likelihood contribution. However, there was hardly any difference between using a single permutation
and higher numbers of permutations, and hence we used a single permutation per individual (in one of the 400 esti-
mations undertaken in the cross-sectional case, using two permutations per individual instead of a single permutation
provided stability to the iterations).
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真値の設定	

q:	  個人	  
i :	  選択肢	  
ε:	  誤差項	  IIDガンベル	  
	  

5000人分の仮想データを乱数を用いて20セットの実験データを作成	  
	  

The MVNCD approximation of Section 2.1 is computationally efficient and straightforward to implement when maximiz-
ing the likelihood function of Eq. (18).8,9 As such, the MVNCD approximation can be used for any value of K and any value of I,
as long as there is data support for the estimation of parameters. Of course, parsimonious factor-analytic or other spatial struc-
tures may be imposed on the covariance matrix X based on the process under study to reduce the number of parameters to be
estimated and increase estimator efficiency.

One final issue in the MACML estimation relates to the procedure to ensure that the symmetric matrix X is positive-def-
inite (that is, all the eigenvalues of the matrix should be positive, or, equivalently, the determinant of the entire matrix and
every principal submatrix of X should be positive). To do so, X may be reparameterized through a Cholesky matrix decom-
position, and then these Cholesky-decomposed parameters may be estimated.

4. Panel multinomial probit models

In the discussion below, we will assume that the number of choice occasions per individual is the same across all indi-
viduals. We discuss the case of different numbers of choice occasions per individual in Section 4.2.

4.1. The panel MNP model

Consider the following model with ‘t’ now being an index for choice occasion:

Uqit ¼ b0qxqit þ eqit;bq # MVNðb;XÞ; q ¼ 1;2; . . . ;Q ; i ¼ 1;2; . . . ; I; t ¼ 1;2; . . . ; T ð19Þ

Let eqit be IID normal over individuals, alternatives, and choice occasions with a variance of 0.5. We will assume that the coef-
ficients bq are constant over choice situations of a given decision maker.

The traditional simulation procedures are similar to the cross-sectional case. Consider an individual who selects alternative
mt at the tth choice occasion. When the number of random coefficients K (the cardinality of the vector bq) is less than
[(I & 1) ⁄ T] & 2, as will mostly be the case in application, it is convenient to write the likelihood contribution of individual q as:

Lqðb;XÞ ¼
Z 1

b¼&1

YT

t¼1

Z 1

k¼&1

Y

i–mt

½Uf½&
ffiffiffi
2
p
ðb0zqimt tÞ( þ kg(

 !
/ðkÞdk

" #
f ðbjb;XÞdb ð20Þ

where zqimt t ¼ ðxqit & xqmt tÞ. Another approach is to write the likelihood contribution in terms of the latent utility differentials
y)qimt t ¼ b0qzqimt t þ gqimt t ;gqimt t ¼ eqit & eqmt t (i – mt). These latent utility differentials have an (I & 1) ⁄ T mean vector Bqðb0zq1m1;

b0zq2m11 . . . b0zqIm11ði – m1Þ; b0zq1m22;b
0zq2m22 . . . b0zqIm22ði – m2Þ; . . . ;b0zq1mT T ; b

0zq2mT T ; . . . ;b0zqImT T ði – mTÞÞ and a covariance
matrix given by Rq ¼ ~zqX~z0q þ IDT*ðI&1Þ, where ~zq is a [T * (I & 1)] * K matrix obtained by vertically concatenating the trans-
pose of the K * 1 vectors zqimt t (i = 1, 2, . . . , I, i – mt; t = 1, 2, . . . , T) (note that there are T * (I & 1) vectors in zqimt t), and
IDT*(I&1) is a block-diagonal matrix with each block matrix of size (I & 1) * (I & 1) with values of one along the diagonal
and values of 0.5 on the off-diagonals. The likelihood contribution of individual q then takes the multidimensional (I & 1) * T
integral form below:

Lqðb;XÞ ¼ FðI&1Þ*Tð&Bq;RqÞ; ð21Þ

with F(I&1)*T being the multivariate cumulative normal distribution of (I & 1) * T dimensions.
The simulation approaches for evaluating the panel likelihood function are time-consuming. In our MACML estimation

approach, we propose a combination of the approximation method for multivariate normal orthant probabilities and the
composite marginal likelihood method. Specifically, based on Eq. (12) and the notation defined there, the analyst may con-
struct the following pairwise CML function across the choice occasions of individual q:

LCML;qðb;XÞ ¼
YT&1

t¼1

YT

w¼tþ1

ProbðCqt ¼ mt; Cqw ¼ mwÞ ¼
YT&1

t¼1

YT

w¼tþ1

Prob ½y)qimt t < 08i – mtandy)qimww < 08i – mw( ð22Þ

8 As indicated earlier, the CML class of estimators subsumes the usual ordinary full-information likelihood estimator as a special case. It is this characteristic
of the CML approach that leads us to the label MACML for the estimation approach proposed here. Specifically, even in cross-sectional mixing distribution
contexts, when our approach involves only the approximation of the maximum likelihood function, the MACML label is appropriate since the maximum
likelihood function is a special case of the CML function. Of course, in a panel context or in cross-sectional/panel contexts with spatial/social error dependencies,
we use a specific pairwise (and non-ML) technique within the CML approach for estimation, as discussed in Section 4 and Section 5.

9 The use of the MVNCD approximation (as discussed in Section 2.1) has been shown to be accurate in the context of evaluating single multivariate integrals.
Joe (1995) indicates that the approximation has an error (even in the worst case of high correlations) in the third decimal place. In a companion paper, we have
examined the performance of the MVNCD approximation in the context of estimating parameters in cross-sectional and panel multinomial probit models. The
results indicate that the approximation provides parameter values very close to the ‘‘true’’ population parameter values in simulation experiments, with the
empirical absolute percentage bias being smaller than that from regular simulation techniques to evaluate the MVNCD function. Thus, the MVNCD-
approximated log-likelihood function as proposed here should be close to the log-likelihood function for all parameters in a neighborhood of the ‘‘true’’
parameter values, which implies that the covariance matrix computed using our MACML procedure should also be an accurate approximation to the actual
covariance matrix.

930 C.R. Bhat / Transportation Research Part B 45 (2011) 923–939
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Table 1a
Evaluation of the ability to recover true parameters for the cross-sectional diagonal case.

Parameter True
value

MSL method MACML method

Parameter estimates Standard error estimates Parameter estimates Standard error estimates

Mean
estimate

Absolute
percentage
bias (%)

Asymptotic
standard
error

Simulation
standard
error

Simulation adjusted
asymptotic standard
error

Mean
estimate

Absolute
percentage
bias (%)

Asymptotic
standard
error

Approximation
standard error

Approximation
adjusted asymptotic
standard error

Mean values of the b vector
b1 1.500 1.366 9.0 0.129 0.050 0.139 1.472 1.9 0.167 0.022 0.169
b2 !1.000 !0.906 9.4 0.089 0.033 0.095 !0.976 2.4 0.113 0.014 0.114
b3 2.000 1.801 10.0 0.167 0.066 0.180 1.940 3.0 0.218 0.028 0.219
b4 1.000 0.906 9.4 0.089 0.034 0.095 0.977 2.3 0.114 0.014 0.114
b5 !2.000 !1.820 9.0 0.170 0.067 0.182 !1.960 2.0 0.220 0.028 0.222

Standard deviations of the b vector
r1 1.000 0.885 11.5 0.111 0.038 0.117 0.958 4.2 0.135 0.017 0.137
r2 1.000 0.906 9.4 0.111 0.040 0.118 0.984 1.6 0.136 0.016 0.137
r3 1.000 0.867 13.3 0.112 0.041 0.119 0.941 5.9 0.135 0.017 0.136
r4 1.000 0.904 9.6 0.111 0.040 0.118 0.982 1.8 0.136 0.017 0.137
r5 1.000 0.927 7.3 0.117 0.041 0.124 1.002 0.2 0.140 0.016 0.141

Overall mean value across parameters – 9.8% 0.121 0.045 0.129 – 2.5 0.151 0.019 0.153
Mean time 66.09 1.96
Std. dev. of time 10.87 0.42
% of Runs converged 100% 100%
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Cross-‐sec@onal	  random	  coefficients	  model	  
【Diagonal	  case】	  
	  ・ 分散共分散行列の対角成分のみを推定	  
	  ・ 計算時間：平均で約34倍速く、かつ速度にバラツキがない（安定的）	  
	  ・ バイアス： 平均で7.3ポイント低く、分散成分についても良好	  



Cross-‐sec@onal	  random	  coefficients	  model	  
【Non	  Diagonal	  case】	  
	  ・ 分散共分散行列の下三角を推定	  
	  ・	  	  Diagonal	  caseと同様に約33倍早い（バイアスは2.1ポイント）	  
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Table 1b
Evaluation of the ability to recover true parameters for the cross!sectional non-diagonal case.

Parameter True
value

MSL method MACML method

Parameter estimates Standard error estimates Parameter estimates Standard error estimates

Mean
estimate

Absolute
percentage
bias (%)

Asymptotic
standard
error

Simulation
standard
error

Simulation adjusted
asymptotic standard
error

Mean
estimate

Absolute
percentage
bias (%)

Asymptotic
standard
error

Approximation
standard error

Approximation
adjusted asymptotic
standard error

Mean values of the b vector
b1 1.500 1.374 8.4 0.133 0.049 0.142 1.443 3.8 0.147 0.022 0.148
b2 !1.000 !0.912 8.8 0.093 0.037 0.100 !0.959 4.1 0.102 0.014 0.103
b3 2.000 1.830 8.5 0.174 0.068 0.187 1.923 3.8 0.191 0.029 0.193
b4 1.000 0.914 8.6 0.092 0.032 0.097 0.958 4.2 0.101 0.014 0.102
b5 !2.000 !1.849 7.6 0.176 0.068 0.189 !1.941 3.0 0.194 0.028 0.196

Cholesky parameters characterizing the covariance matrix of the b vector
l11 1.000 0.909 9.1 0.112 0.040 0.119 0.959 4.1 0.119 0.017 0.120
l12 !0.500 !0.463 7.3 0.085 0.029 0.090 !0.472 5.6 0.085 0.010 0.085
l13 0.250 0.231 7.5 0.089 0.036 0.096 0.233 6.7 0.087 0.009 0.088
l14 0.750 0.689 8.2 0.092 0.028 0.097 0.707 5.7 0.095 0.013 0.096
l15 0.000 0.006 0.6 0.086 0.040 0.095 0.015 1.5 0.088 0.008 0.089
l22 0.866 0.756 12.7 0.109 0.043 0.117 0.809 6.5 0.116 0.017 0.117
l23 0.433 0.431 0.5 0.105 0.050 0.117 0.436 0.6 0.100 0.012 0.101
l24 !0.144 !0.149 3.6 0.101 0.041 0.109 !0.170 17.8 0.093 0.010 0.094
l25 0.000 !0.021 2.1 0.101 0.055 0.115 !0.019 1.9 0.098 0.010 0.099
l33 0.866 0.750 13.4 0.130 0.073 0.149 0.812 6.3 0.131 0.019 0.132
l34 0.237 0.242 2.0 0.112 0.055 0.125 0.259 9.3 0.106 0.011 0.106
l35 0.000 !0.031 3.1 0.120 0.081 0.145 !0.029 2.9 0.116 0.011 0.117
l44 0.601 0.464 22.9 0.126 0.085 0.152 0.531 11.6 0.125 0.015 0.126
l45 0.000 !0.053 5.3 0.168 0.134 0.214 !0.053 5.3 0.171 0.017 0.172
l55 1.000 0.885 11.5 0.125 0.089 0.153 0.956 4.4 0.136 0.018 0.137

Overall mean value across parameters – 7.6 0.116 0.057 0.130 – 5.5 0.120 0.015 0.121
Mean time 174.32 5.19
Std. dev. of time 28.13 0.84
% of Runs converged 100 100
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•  正規分布を持つOpen-‐formなモデル（Mixed-‐Probit）を対象
とした新たな推定手法（MACML推定）を提案	  

•  パネルや空間相関を考慮した改良モデルに対しても
MACML推定が適用可能であることを提示	  

•  数値実験より高速かつ低バイアスなパラメータ推定値が得
られる事を確認	  

　3-‐2.	  MACMLのまとめ 	 17	

In	  closing,	  the	  MACML	  inference	  approach	  has	  the	  potenAal	  to	  dramaAcally	  
influence	  the	  use	  of	  the	  mixed	  mulAnomial	  probit	  model	  in	  pracAce,	  and	  should	  
facilitate	  the	  pracAcal	  applicaAon	  of	  rich	  model	  structures	  for	  unordered-‐
response	  discrete	  choice	  modeling.	

【著者談】	  



•  モデルを複雑にすることなく，経路重複構造（＝経路の相関）を
シンプルに表現 

•  Sub-networksでは，ネットワークの骨格となるリンク以外を削
除して部分グラフを構築し，物理的な重複の有無に関わらず経路
がリンクを共有した場合には相関していると仮定 
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the paths changes. Path 4 is more penalized than path 3 for c < 170 and then the order is inverted. Second,
even though path 3 is only 1% longer than path 2, its PS value decreases as c increases.

We conclude that the generalized formulation may produce counter intuitive results and the original PS
formulation should therefore be preferred, with the additional motivation that it has a theoretical foundation.
However, as pointed out earlier, the PS attribute can only capture part of the correlation. It is preferable to use
a model that accounts explicitly for correlation within the error structure, but without considerably increasing
the complexity. For this purpose, we propose to use subnetworks which are discussed in the next section.

4. Subnetworks

We are proposing a modeling approach which is designed to be both behaviorally realistic and convenient
for the analyst. We define a subnetwork component as a sequence of links corresponding to a part of the net-
work which can be easily labeled, and is behaviorally meaningful in actual route descriptions (Champs-Elysées
in Paris, Fifth Avenue in New York, Mass Pike in Boston, etc.). The analyst defines subnetwork components
either by arbitrarily selecting motorways and main roads in the network hierarchy, or by conducting simple
interviews to identify the most frequently used names when people describe itineraries. Note that the actual
relevance of a given subnetwork component can be tested after model estimation, so that various hypotheses
can be tried.

The model is designed such that paths sharing a subnetwork component are correlated. This allows for a
great deal of modeling flexibility, including the possibility to capture perceptual correlation among paths that
are not physically overlapping. For instance, two paths going through the city center may share unobserved
attributes, even if they do not share any link.

We propose to explicitly capture this correlation within a factor analytic specification of an EC model. The
model specification is combined with a PS attribute that accounts for the topological correlation on the com-
plete network. The EC model specification builds on the model presented by Bekhor et al. (2002). We define
the utility as

Un ¼ bTXn þ FnTfn þ mn; ð6Þ

where Fn(J·Q) is the factor loadings matrix (J is the number of paths and Q is the number of subnetwork com-
ponents), T(Q·Q) = diag(r1,r2, . . . ,rQ) (rq is the covariance parameter associated with subnetwork component
q, to be estimated), fn(Q·1) is a vector of i.i.d. N(0,1) variates, and m(J·1) is a vector of i.i.d. Extreme Value dis-
tributed variates. An element (fn)iq of Fn equals

ffiffiffiffiffiffiffi
lniq

p
where lniq is the length by which path i in choice set Cn

overlaps with subnetwork component q.
We illustrate the model specification with a small example presented in Fig. 4. We consider one origin–des-

tination pair, three paths and a subnetwork composed of two subnetwork components (Sa and Sb). Path 1 uses
both subnetwork components whereas path 2 only uses Sa and path 3 only Sb. Path 1 is assumed to be cor-
related with both path 2 and path 3 even though path 1 and path 2 do not physically overlap. The path utilities
for this example are consequently

Fig. 4. Example of a subnetwork.

E. Frejinger, M. Bierlaire / Transportation Research Part B 41 (2007) 363–378 369

G,	  Flö^eröd.,	  M,	  Bierlaire.	  :	  Capturing	  correla@on	  with	  subnetworks	  in	  route	  
choice	  models	  ,	  TransportaAon	  Research	  Part	  B,	  Vol.41,	  pp.363-‐378,	  2007.	



•  mixed logit の一種であるError Component Loigtを用いて記述 
•  複数のモデル（MNL、PSL、通常のEC）との比較した結果、既往
モデルと同等の尤度比が得られ、十分な適合度を持つ事が確認  
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the paths changes. Path 4 is more penalized than path 3 for c < 170 and then the order is inverted. Second,
even though path 3 is only 1% longer than path 2, its PS value decreases as c increases.

We conclude that the generalized formulation may produce counter intuitive results and the original PS
formulation should therefore be preferred, with the additional motivation that it has a theoretical foundation.
However, as pointed out earlier, the PS attribute can only capture part of the correlation. It is preferable to use
a model that accounts explicitly for correlation within the error structure, but without considerably increasing
the complexity. For this purpose, we propose to use subnetworks which are discussed in the next section.

4. Subnetworks

We are proposing a modeling approach which is designed to be both behaviorally realistic and convenient
for the analyst. We define a subnetwork component as a sequence of links corresponding to a part of the net-
work which can be easily labeled, and is behaviorally meaningful in actual route descriptions (Champs-Elysées
in Paris, Fifth Avenue in New York, Mass Pike in Boston, etc.). The analyst defines subnetwork components
either by arbitrarily selecting motorways and main roads in the network hierarchy, or by conducting simple
interviews to identify the most frequently used names when people describe itineraries. Note that the actual
relevance of a given subnetwork component can be tested after model estimation, so that various hypotheses
can be tried.

The model is designed such that paths sharing a subnetwork component are correlated. This allows for a
great deal of modeling flexibility, including the possibility to capture perceptual correlation among paths that
are not physically overlapping. For instance, two paths going through the city center may share unobserved
attributes, even if they do not share any link.

We propose to explicitly capture this correlation within a factor analytic specification of an EC model. The
model specification is combined with a PS attribute that accounts for the topological correlation on the com-
plete network. The EC model specification builds on the model presented by Bekhor et al. (2002). We define
the utility as

Un ¼ bTXn þ FnTfn þ mn; ð6Þ

where Fn(J·Q) is the factor loadings matrix (J is the number of paths and Q is the number of subnetwork com-
ponents), T(Q·Q) = diag(r1,r2, . . . ,rQ) (rq is the covariance parameter associated with subnetwork component
q, to be estimated), fn(Q·1) is a vector of i.i.d. N(0,1) variates, and m(J·1) is a vector of i.i.d. Extreme Value dis-
tributed variates. An element (fn)iq of Fn equals

ffiffiffiffiffiffiffi
lniq

p
where lniq is the length by which path i in choice set Cn

overlaps with subnetwork component q.
We illustrate the model specification with a small example presented in Fig. 4. We consider one origin–des-

tination pair, three paths and a subnetwork composed of two subnetwork components (Sa and Sb). Path 1 uses
both subnetwork components whereas path 2 only uses Sa and path 3 only Sb. Path 1 is assumed to be cor-
related with both path 2 and path 3 even though path 1 and path 2 do not physically overlap. The path utilities
for this example are consequently

Fig. 4. Example of a subnetwork.

E. Frejinger, M. Bierlaire / Transportation Research Part B 41 (2007) 363–378 369
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U1 = β
T X1 + l1aσ aζa + l1bσ bζb +ε1

U2 = β
T X 2 + l2aσ aζa +ε2

U3 = β
T X 3 + l3aσ aζa +ε3

βT：未知パラメータ	 	 Xn：説明変数ベクトル	 	 εn：誤差項	 
Fn：Error Componentの要素行列（J×Q）	 
T：分散共分散行列（Q×Q） l：subnetworkにおける経路重複長	 
J：経路数　Q：Subnetwork数　ξ：標準正規乱数N(0,1)	 



•  経路選択肢集合は選択肢の組合せ数だけ存在 
⇒列挙することは困難であり、効率化を図るためには確率的なサ
ンプリング方法が必要  

•  確率的な経路選択肢集合の特定方法として、ベイズ推定に基づく
新たなアプローチを提案  

•  経路の抽出を「任意の確率分布」から実行するもので、マルコフ
チェーン・モンテカルロ法（MCMC）の一種であるMetropolis-
Hasting（MH）アルゴリズムを応用した抽出確率分布の更新によ
り、最も現況再現性の高い経路をサンプリング 

•  MCMCの例 
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E,	  Frejinger.,	  M,	  Bierlaire.:	  Metropolis-‐Has@ngs	  sampling	  of	  paths	  ,	  
TransportaAon	  Research	  Part	  B,	  Vol.48,	  pp53-‐66,	  2013. 	
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In the context of route choice modeling, the potentially huge number of paths between an origin and a destination pre-
cludes their enumeration, which would be necessary to build the choice set. A method based on sampling of paths has been
proposed by Frejinger et al. (2009). As discussed in details by Frejinger and Bierlaire (2010), importance sampling of paths is
a powerful method for route choice models but requires to have access to the sampling probabilities in order to obtain a
consistent estimator. This paper proposes the first algorithm that is able to sample paths from an arbitrary distribution
for general networks.

Other existing Monte Carlo methods for path sampling do not give the analyst control over the sampling distribution; that
is, they provide samples but not their probabilities. The arguably most representative example of these methods is the com-
putation of shortest paths based on randomized link costs (e.g., Bekhor et al., 2006). Such methods may be computationally
more efficient than the approach presented here, but they are limited to applications where the sampling probabilities need
not be known.

Other choice models with large choice sets may also exploit the same ideas. For instance, the choice of activity sequence is
of similar combinatorial complexity as the route choice problem (Bowman and Ben-Akiva, 1998). Actually, it can be shown
that the activity sequencing problem can be phrased as the problem of choosing a path through a decision network, extend-
ing the relevance of the proposed sampling algorithm to this context.

The ability to sample paths from arbitrary distributions enables a new solution to the map matching problem with coarse
GPS data. Bierlaire et al. (2013) propose a method that assigns to each path in the network the probability that a given GPS
trace has been generated by a traveler following this path. The method proposed in the present article allows to exploit the
likelihood function of Bierlaire et al. (2013) in a sampling context.

The proposed method also fits naturally into iterated simulation approaches to the dynamic traffic assignment (DTA)
problem. Although it is often not stated explicitly, these simulations typically run a Markov chain of network states until
stationarity is reached, where in every iteration a demand simulator and a supply simulator are evaluated (Flötteröd
et al., 2011).

The consistent anticipatory route guidance (CARG) problem is to recommend routes to travelers such that the network
conditions that were assumed when computing the routes actually occur. The generation of such a guidance requires solving
a stochastic fixed point of route recommendations (Bottom, 2000; Bottom et al., 1999). In order to iteratively approach this
fixed point in a microsimulation setting, one has to sample from this distribution. The flexibility of the proposed method
does not only lend itself to this task; the fact that the stationary path distribution attained by the method constitutes itself
a stochastic fixed point again suggests to solve the CARG problem and the path sampling problem jointly in one Markov
chain.

The remainder of this article is organized as follows. The method is described in Section 2, and illustrated and validated in
Section 3. Finally, Section 4 concludes the article.

2. Framework

Starting with a brief repetition of the generic Metropolis–Hastings algorithm in Section 2.1, a family of concrete instances
of this algorithm for path generation is developed. Sections 2.2 and 2.3 define its state space and target weights. A general
class of irreducible proposal distributions is introduced in Section 2.4. A concrete instance of this framework is then specified
in Section 2.5. Finally, some implementation notes are given in Section 2.6.

2.1. Generic Metropolis–Hastings algorithm

The Metropolis–Hastings (MH) algorithm creates a Markov chain (MC) with a predefined stationary distribution. This dis-
tribution can be defined in unnormalized form through positive weights fbðiÞgi2S where S is the MC’s finite state space and
b(i) is proportional to the stationary probability of state i 2 S. The MH algorithm further requires to define an irreducible
proposal distribution Q = (q(i, j)) that defines the probability of proposing a transition from state i to state j. (Irreducibility
is given if every state j can be reached from every state i through one or more transitions.) In every iteration of the algorithm,
a proposal transition i ? j is drawn according to Q, and then this proposal is accepted with a certain probability a(i, j) that is
specified such that the desired stationary distribution is attained. Algorithm 1 specifies the generic MH algorithm.

Fig. 1. ‘‘Rubber band’’-like variation of a path.

54 G. Flötteröd, M. Bierlaire / Transportation Research Part B 48 (2013) 53–66
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計算手順の概要 
 

i.  任意の経路（例えば対象ODペア間の最短経路）を基準として、
固定点を定めて経路を変位させる区間を設定 

ii.  区間内から1ヶ所の移動点を設定して、輪ゴムのように別の位置
に変位させて経路を生成．変位幅はネットワーク上に制限 

iii. MHによるランダムな抽出を収束するまで繰り返す 
 



　4-‐2.	  MHを用いた経路サンプリング	  (3)	 22	

•  イスラエルのTel-Avivの道路ネットワークに適用した結果、高速
で経路選択肢集合を列挙可能であることが確認  

•  パラメータを変化させることで集合に含まれる経路数が変化  

iterations of the MH algorithm need to be skipped between two extracted path samples in order to ensure independence,
following the same criterion as used in Section 3.1. Finally, the last column reports how long it takes to extract a single inde-
pendent sample.

The total runtimes are fairly stable across different target distributions, i.e., across different l values. They are also very
stable across replications. The number of iterations per independent sample, on the other hand, increases substantially as the
covered state space gets larger, i.e., for smaller l. In addition, this number is quite variable. The number of iterations per
independent sample is hence decisive for the algorithm’s computational performance.

A ~l=l ratio of 2.0 is clearly inferior to ratios of 0.5 and 1.0. This can be explained by the very high within-chain correlation
that results from a too narrow proposal distribution (3).

A Psplice value of 0.25 is inferior to values of 0.5 and 0.75. It leads to the frequent occurrence of successive SHUFFLE oper-
ations, which do not add to the path variability and hence result in a high within-chain correlation.

The remaining configurations with Psplice 2 {0.5, 0.75} and ~l=l 2 f0:5;1:0g are quite similar in their performance, across
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v 公共交通機関配分モデル(Spiess and Florian 1989) 

頻度ベースで運行される公共交通機関を対象に，Common line problem 
に基づくHyperpath概念によって待ち時間を明示的に考慮した配分モデル	  
	  

 
　　 

Hyperpath:	  乗車方法の組み合わせ（乗車経路群）	  
Origin	 Stop B	Stop A	

Destination	

Hyperpath 1 	

Hyperpath 2	

Hyperpath 3	

Line a	

Line b	

旅客は一般化費用が最小となるHyperpathを選択することが「最適な
戦略＝乗車経路群」となり，それに基づいて交通量が配分される 
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有効頻度を用いてリンク交通量に依存した 
遅延による待ち時間の変化を記述 
 
　 

φ，φ，ξ，ω: パラメータ， α，β: 通過確率，x: リンク交通量 

v Hyperpath p の期待一般化費用 
　	

遅延（線路混雑）に相当	
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²  合成頻度：	

²  有効頻度: 	

²  混雑不効用:	

v Hyperpath p の期待一般化費用 
　	

列車内混雑に相当	

3. ノード iの混雑不効用 
旅客が混雑により感じる不効用を 
“混雑指標”を用いて表現 

4. リンクaの乗り換え時間(駅間) 

混雑に対して不変であることを仮定 	

φ，φ，ξ，ω: パラメータ， α，β: 通過確率，x: リンク交通量 

混雑の影響を考慮する場合には，出力される
リンク交通量を用いて逐次更新を行う　　　　
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No.15 is Optimal  
Hyperpath	
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Ø  共有メモリ型 
     マルチコアCPUやGPGPU （OpenMP, TBB, CUDAなど） 
　　【長所】　家庭用PCで計算可能，実装が比較的簡単 
　　【短所】　データ量（メモリ量）や並列数（コア数）に制限がある．　	

TSUBAME 2.0	

Ø  分散メモリ型 
     複数のPCを接続したクラスター計算機 （MPIなど） 
　　【長所】　接続PC数を増やすほど大規模計算が可能 
　　【短所】　マシン間での通信を考慮した実装，計算機の維持管理　	
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Ø  データ並列 

     入力データを複数のデータに分割して処理を行う　	

Ø  タスク並列 

     実行する処理を複数の処理に分割して実行する．　	

処理	

処理:a	

処理:b	

データ並列	 タスク並列	

実行する処理の性質により	  
並列化手法を選択する．	  
また，両者を組み合わせる	



　5-‐1.	  並列計算	 29	

• 総計算時間の90%以上がhyperpath探索に費やされる(Yaginuma et al.） 

共有メモリ型の計算環境でデータ並列を導入： 
“マルチコアCPUを用いて各CPUにタスクを割り当てる”手法を検討 

経路探索部分の並列化が必須となる…	  
	  

（e.g.最短経路探索：O(n2), hyperpath探索：O(m2) の計算量オーダー）	※ n:ノード数， m:リンク数	

Ø  交通分野における並列化 
•  マイクロシミュレーション：エージェントや対象空間を分割した並列処理 
•  交通量配分：最短経路探索（Hribar et al.,2001），最適化問題（Chen and Meyer, 
1988）を対象した並列処理 

多くの研究はデータ並列に基づく処理を導入	  
	  

Ø  エージェントはシンプルな処理で並列化の余地が少ない	  
Ø 	  最短経路探索は再帰的な構造で並列化が困難	  
⇒逐次的な処理が多く，タクス並列が難しい	
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STEP 0. ��
 
SET: Iteration n=0, 
         Link flow: xa=0, CDU=0�

STEP 1-1. ��) hyperpath�$ 
2"��38@AhyperpathG#�.�

STEP 1-2. �+/B.�1 
LNIB,'0�A�=5>STEP1-1B%�4
7D2!��38@A�+/GMOKHNJ 

�>B"��A�9>'6�

STEP 2. LNI�+/P���B�� 
LNI�+/GMSAA�=5>�� 
Update :EF, CDU. n+1 

����G�;:7P�<�E(#�A	-
:FC?&E*:.  �

v 並列化によるループ計算の高速化 
　	

高コストなhyperpath探索に対
して，着地点毎にCPUコアを
割り当てるデータ並列型処理
を採用 
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Ø  実行環境の比較 
     コンパイラおよび最適化オプションがもたらす影響を比較 
 

•  コンパイラ 
ü gcc：フリーで利用できるコンパイラ． 
ü Intel：intel社の商用コンパイラ 

•  最適化オプション 
ü  なし(gccのみ)：何も最適化を施していない　※intel はデフォルトがO2 

ü  O2 (gcc , intel)：ベクトル化を行い実行速度を上げる 
ü  O3 (gcc, intel) ：O2＋メモリやデータアクセスを最適化 
ü  fast (intelのみ）： O3+内部で利用される算術関数等を最適化 

　	
Ø  利用計算機 

     Apple iMac, CPU：intel core i7（HT利用で仮想8コア） Memory：8GB 
 

　  実装はC言語とOpenMPライブラリーを用いた 
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• 　グリット型の仮想ネットワークをランダムに生成 
ü  　10×10のネットワークを以下の条件で生成　 
　　　⇒hypergraph変換後は平均ノード数：897，リンク数：2687 

 

ü  　並列路線を表現（最大10路線） 
ü 　低い確率で駅間の徒歩移動を表現 
ü 　全ODペアからランダムに50ペアを抽出 

これらを10セット用意し，コンパイラと最適化オプションの
組み合わせの下で計算時間を比較	

変数	 発生方法	 設定値	

最大並列路線数	 一様乱数	 1～10	

リンク乗車時間	 一様乱数	 8～12	

リンク運行頻度	 一様乱数	 5～20	

ODペア	   一様乱数	 50ペア	

徒歩リンク	   並列数が1の場合に	  
10％の割合でランダムに生成	
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• 　2つの並列化手法でどの場合でも実行時間に差が見られない． 
　 ⇒ “旅客の負荷”が比較的高速（O(m)）． 
　　　　ODペアが多い場合には高速化が期待される． 

• 　コンパイラの違いで1.99倍，最適化により2.13倍の速度差が生じる 
    ⇒Intel はCPUが持つコアやレジスタの制御レベルで最適化している． 

• 　並列数4以上で速度改善が緩慢になり，6・7並列で最高速となる． 
　　⇒アムダール則に基づく並列化の低減効果 
　　　 CPUの特性（ハイパースレッティングの有無）により変化． 
　　 
 

並列化 1 並列化 2  
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•  個別に相談にのります！	


