## Illustrator & GIS +グラフ理論

2018年度スタートアップゼミ #3 2018/5/1

> 山本正太郎 (M2) 小林里瑳 (M1)

## Adobe Illustrator

#### はじめに

・Illustratorは有料ソフトウェアなので、無理して全員が 入れる必要はありません。

・なので今回のスタートアップゼミではイラレに関する課 題は出しませんし、基礎の導入もしません。

・でも図面等を研究で多用する人には必須ですし,**TeXや** パ**ワポとの相性もいい**ので,慣れればダイアグラム作成の 質とスピードが上がります.

・イラレを使っていて分からないことがあれば、先輩に聞くかググればすぐに解決します(デバッグより全然楽)

#### Illustrator とは...

・ベクタイメージを編集するためのソフトウェア
・ロゴやイラスト、ダイアグラム、図面やグラフを作成できる
・論文の図面作成やパワポのダイアグラム作成にどうぞ

学生なら980円/月で導入できます (2台までインストール可能)



## Let's Illustrator !

#### Illustratorで扱えるファイル形式



.ai : Illustratorの最も基本的なファイル形式 .eps:次のスライドで解説します .pdf:言わずもがな,ブラウザでも開けます .svg:Webページなどで使われるベクタデータ





Encapsulated PostScriptの略. .aiはIllustratorでしか開けないが, .epsは他のソフトでも開くことが出来る.

#### 重要:TeXは.epsと相性がいい

(.pngとかも埋め込めないことはないが,別途操作が必要)

## 具体的に, 羽藤研では どんなときに使うの?

### 1. 図面の作成(都市形成史研究など)



2.ダイアグラムの作成





.eps保存すれば... TeXに埋め込んで論文の 図として使える. .pngで書き出しすれば... 上のようにパワーポイ ントに直接貼ったりで きる.

3. グラフの作成 (これは正直Excelでもいいです)

(円)

タブ区切りの.txtファ イルを読み込んでグ ラフを作成できます.



曜日ごとの売上高

.eps保存すれば... TeXに埋め込んで論文の 図として使える. .pngで書き出しすれば... 上のようにパワーポイ ントに直接貼ったりで きる.

# Geographic Information System)

## GIS について

### 【ソフトウェアの紹介



#### Arc GIS

・有料ソフト(但し工学系の学生は 無料で使用できる)

・豊富なデータ分析機能,大規模 データの処理にも強い

・印刷やpdf出力がやりやすい



#### QGIS

・無料ソフト・オープンソース ・直感的なUI, プラグインが豊富な ので機能はArc GISと遜色ない

・フリーソフトなので動作が不安定 になりがち

## GISでできること

#### ■空間的に結びついた各種データを投影するための ツール







## GISでできること

#### ■空間的に結びついた各種データを投影するための ツール



▼投影することで見えてくることがある(**分析**) ▼計算結果を図示できる(**描画**)

GIS の基礎1:使うデータ・使えるデータ

**1**シェープファイル

図形情報と属性情報をもった地図データファイル

| abt  | 屋州の桂銀が伊方         | looproad.dbf        | DBF ファイル     | 9 KB         |
|------|------------------|---------------------|--------------|--------------|
| .upi | 周上の月報が休行         | 📄 looproad.prj      | PRJ ファイル     | 1 KB         |
| chn  | 図形の 麻梗が 保友 🚽 🚽   | 📄 looproad.qpj      | QPJ ファイル     | 1 KB         |
| .sup |                  | looproad.shp        | AutoCAD シェイプ | 1 KB         |
| shx  | shnの図形とdbfの属性 —— | looproad.shx        | AutoCAD コンパイ | 1 KB         |
|      |                  | map_polyline.cpg    | CPG ファイル     | 1 KB         |
| の対応  | 、関係が保存           | map_polyline.dbf    | DBF ファイル     | 1,114,619 KB |
|      |                  | 📄 map_polyline.prj  | PRJ ファイル     | 1 KB         |
| nri  | 投影法の情報が保存        | 📄 map_polyline.qpj  | QPJ ファイル     | 1 KB         |
| .6.1 |                  | 🔊 map_polyline.shp  | AutoCAD シェイプ | 4,111 KB     |
| etc  |                  | 🔜 map_polyline.shx  | AutoCAD コンパイ | 193 KB       |
|      |                  | merge.cpg           | CPG ファイル     | 1 KB         |
|      |                  | 📄 merge.dbf         | DBF ファイル     | 9 KB         |
|      |                  | 📄 merge.prj         | PRJ ファイル     | 1 KB         |
| ▼    | (の役割を持ったアータ      | 📄 merge.qpj         | QPJ ファイル     | 1 KB         |
|      | よい 推 代           | 🖄 merge.shp         | AutoCAD シェイプ | 1 KB         |
| セット  | から 博 成           | 🔜 merge.shx         | AutoCAD コンパイ | 1 KB         |
|      |                  | MTYMminato_line.cpg | CPG ファイル     | 1 KB         |

GIS の基礎1:使うデータ・使えるデータ

**1** シェープファイル

図形情報と属性情報をもった地図データファイル



#### GIS の基礎1:使うデータ・使えるデータ

②csvファイル

カンマ区切りのデータファイル

ファイル(F) 編集(E) 鲁式(O) 表示(V) ヘルプ(H) X

 7r/1k/f)
 **i B**(i)
 **B**(ii)
 **B**(iii)
 **B**(iii)
 **D**(iiii)
 **D**(iiiii)
 **D**(iiiii)
 **D**(iiiii)
 **D**(iiiii)
 **D**(iiiii)
 **D**(iiiii)
 **D**(iiiiii)
 **D**(iiiiii)
 **D**(iiiiii)
 **D**(iiiiii)
 **D**(iiiiii)
 **D**(iiiiii)
 **D**(iiiiiii)
 **D**(iiiiiiii)
 **D**(iiiiiiii)
 **D**(iiiiiii)
 **D**(iiiiii)
 **D**(iiiiiii)
 **D**(iiiiiii)
 **D**(iiiiiii)
 **D**(iiiiiii)
 **D**(iiiiiii)
 **D**(iiiiiii)
 **D**(iiiiii)
 **D**(iiiiii)
 **D**(iiiiii)
 **D**(iiiiii)
 **D**(iiiiii)
 **D**(iiiii)
 **D**(iiii)
 **D**(iiiiiiiiii)
 **D**(iiiiiiii)
 **D**(iiiiiii)
 **D**(iiiiiii)
 **D**(iiiiiii)
 **D**(iiiiiii)
 **D**(iiiii)
 **D**(iiiiii)
 **D**(iiiii)
 **D**(iiiii)
 **D**(iiiii)
 **D**(iiiiii)
 **D**(iiiii)
 **D**(iiiii)
 **D**(iiiii)
 **D**(iiiii)
 **D**(iiiiii)
 **D**(iiii)
 **D**(iiii)<

#### 属性情報として読み込む

Mesh4 POP 13

|   | FID   Snape | mesnju    | GIT LOODE | 1 -0-2010 | 1 -0-2020 | F0F2023 | 1 00 2030 | F0F2035 | 040    | F0F2043  | F0F2030 | INDEX2020 | INDEX2025 | INDEX2030   | INDEX2035  | INDEX2040  |
|---|-------------|-----------|-----------|-----------|-----------|---------|-----------|---------|--------|----------|---------|-----------|-----------|-------------|------------|------------|
| Г | 2 Polygon   | 374112353 | 13421     | 368.16    | 383.59    | 349.79  | 312.74    | 272.18  | 229.53 | 186.57   | 146.64  | 104.218   | 95.01     | 84.947      | 73.93      | 62.371     |
|   | 3 Polycon   | 394271731 | 1 3 4 2 1 | 1.08      | 0         | 0       | 0         | 0       | 0      | 0        | 0       | 0         | 0         | 0           | 0          | (          |
|   | 4 Polygon   | 394271534 | 13421     | 0.66      | 0         | 0       | 0         | 0       | 0      | 0        | 0       | 0         | 0         | 0           | 0          | (          |
|   | 5 Polyson   | 394271624 | 1 3 4 2 1 | 383.15    | 381.48    | 377.67  | 376.93    | 375.65  | 374.8  | 376.51   | 380.6   | 99.564    | 98.57     | 98.377      | 98.043     | 97.821     |
|   | 6 Polygon   | 394271721 | 1 3 4 2 1 | 0.95      | 0.88      | 0.84    | 0.75      | 0.74    | 0.66   | 0.6      | 0.54    | 92,532    | 88.421    | 78,947      | 77,895     | 69.474     |
|   | 7 Polyson   | 394271722 | 1 3 4 2 1 | 117.05    | 1 08 7 3  | 103.84  | 98.39     | 91.52   | 83.82  | 77.26    | 70.81   | 92.892    | 88.714    | 84.058      | 78.189     | 71.61      |
|   | 8 Polygon   | 404241752 | 1 3 4 2 1 | 4.15      | 8.56      | 8.32    | 8.38      | 8.3     | 8.3    | 8.42     | 2.95    | 206.265   | 200.482   | 201.928     | 200        | 20         |
|   | 9 Polyson   | 404241763 | 1 3 4 2 1 | 1.19      | 0         | 0       | 0         | 0       | 0      | 0        | 0       | 0         | 0         | 0           | 0          | (          |
|   | 10 Polygon  | 404241854 | 1 3 4 2 1 | 41.37     | 39.4      | 37.3    | 34.64     | 31.76   | 29.19  | 26.8     | 15.11   | 95.238    | 90.162    | 83,732      | 76.771     | 70.55      |
|   | 11 Polyson  | 404241861 | 1 3 4 2 1 | 70.28     | 91.24     | 90.59   | 91.35     | 91.65   | 90.55  | 89.45    | 89.99   | 129.824   | 128,899   | 1 2 9 . 9 8 | 1 30.407   | 128.84     |
|   | 12 Polycon  | 404241862 | 1 3 4 2 1 | 1.67      | 2.18      | 2.18    | 2.19      | 2.18    | 2.19   | 2.13     | 2.15    | 130,539   | 130,539   | 131.138     | 130,539    | 131.138    |
|   | 13 Polycon  | 404241864 | 1 3 4 2 1 | 7.15      | 9.22      | 9.14    | 9.23      | 9.27    | 9.13   | 9.01     | 9.11    | 1 28.951  | 127.832   | 1 29.091    | 1 2 9 .6 5 | 127.693    |
|   | 14 Polygon  | 404241964 | 13421     | 2.5       | 3.28      | 3.27    | 0         | 0       | 0      | 0        | 0       | 126154    | 125,769   | 0           | 0          |            |
|   | 15 Polycon  | 404251151 | 1 3 4 2 1 | 196.79    | 228.56    | 225.28  | 220.6     | 210.63  | 200.76 | 192.12   | 188.73  | 116.144   | 114.477   | 112.099     | 1 07 .033  | 1 02.01    |
|   | 16 Polygon  | 404251152 | 13421     | 64.5      | 65.82     | 63.64   | 62.27     | 60.29   | 58.46  | 57.2     | 56.62   | 1 02 .047 | 98.667    | 96.543      | 93,473     | 90.63      |
|   | 17 Polycon  | 404251153 | 1 3 4 2 1 | 545       | 56.25     | 53.24   | 5013      | 47.01   | 43.07  | 39.94    | 38.46   | 1 03.211  | 97.588    | 91.982      | 86.257     | 79.02      |
|   | 18 Polygon  | 404251154 | 13421     | 346.66    | 342.88    | 348.88  | 346.69    | 344.78  | 344.09 | 339.96   | 333.34  | 98.91     | 100.64    | 1 00.009    | 99.458     | 99.25      |
|   | 19 Polygon  | 404251161 | 1 3 4 2 1 | 2.79      | 2.96      | 2.96    | 2.95      | 2.96    | 2.89   | 2.93     | 2.91    | 1 06 .093 | 1 06 .093 | 105.735     | 1 06 .093  | 1 03 58    |
|   | 20 Polygon  | 404251163 | 13421     | 458.94    | 480.9     | 480.49  | 478.8     | 474.36  | 471.87 | 467.31   | 467.29  | 104.785   | 104.696   | 104.327     | 1 03 36    | 1 02 .81 7 |
|   | 21 Polycon  | 404251164 | 13421     | 11.18     | 11.74     | 11.59   | 11.29     | 11.27   | 11.37  | 9.59     | 8.01    | 1 05 .009 | 104.562   | 100.984     | 100.805    | 1 01 .595  |
|   | 22 Polygon  | 404251252 | 1 3 4 2 1 | 615.79    | 597.7     | 602.77  | 612.16    | 620.2   | 625.8  | 626.86   | 628     | 97.062    | 97.886    | 99,411      | 100.716    | 1 01 .626  |
|   | 23 Polycon  | 483956504 | 13402     | 194.98    | 183.82    | 179.16  | 174.41    | 166.97  | 158.05 | 1 48 52  | 139.34  | 94.276    | 91.886    | 89.45       | 85.534     | 81.06      |
|   | 24 Polygon  | 493956814 | 1 3 4 0 1 | 0.84      | 0.85      | 0       | 0         | 0       | 0      | 0        | 0       | 101.19    | 0         | 0           | 0          | (          |
|   | 25 Polygon  | 493946734 | 1 3 4 0 1 | 36.37     | 34        | 30.15   | 25.57     | 20.55   | 16.58  | 13.85    | 5.72    | 93.484    | 82,898    | 70.305      | 56,805     | 45.58      |
|   | 26 Polygon  | 493946742 | 1 3 4 0 1 | 22.43     | 16.74     | 14.95   | 12.79     | 1071    | 8.78   | 7.25     | 6.09    | 74.632    | 66.652    | 57.022      | 47.749     | 39.144     |
|   | 27 Polygon  | 493946743 | 1 3 4 0 1 | 14.04     | 917       | 7.56    | 6.3       | 5.44    | 4.91   | 4.5      | 4.58    | 65.313    | 53.846    | 44.872      | 38.746     | 34.971     |
|   | 28 Polygon  | 493946744 | 1 3 4 0 1 | 213.96    | 181.58    | 161.26  | 1 42 7 9  | 1 28.49 | 115.81 | 1 03 .69 | 97.6    | 84.866    | 75.369    | 66,737      | 60.053     | 54.123     |
|   | 29 Polygon  | 493946751 | 1 3 4 0 1 | 35.22     | 29.58     | 25.59   | 21.92     | 18.76   | 15.92  | 12.76    | 11.17   | 84.27     | 72.942    | 62.237      | 53.265     | 45.203     |
|   | 30 Polygon  | 493946753 | 1 3 4 0 1 | 150.07    | 1 26.61   | 115.84  | 106.55    | 95.9    | 86.01  | 76.46    | 71.89   | 84.367    | 77.1.91   | 71          | 63.904     | 57.310     |
|   | 31 Polygon  | 493946824 | 1 3 4 0 1 | 0.77      | 0         | 0       | 0         | 0       | 0      | 0        | 0       | 0         | 0         | 0           | 0          | (          |
|   | 32 Polygon  | 493946831 | 1 3 4 0 1 | 3.59      | 3.37      | 3.08    | 2.79      | 2.53    | 2.32   | 2.09     | 1.95    | 93.872    | 85.794    | 77,716      | 70.474     | 64.62      |
|   | 33 Polygon  | 493946832 | 1 3 4 0 1 | 193,98    | 176.92    | 163.7   | 1 48 7 3  | 136.69  | 124.87 | 113.26   | 107.6   | 91.205    | 84.39     | 76,673      | 70.466     | 64.373     |
|   | 34 Polygon  | 493946833 | 1 3 4 0 1 | 113.37    | 84.03     | 75.81   | 68.72     | 62.94   | 56.25  | 49.54    | 46.01   | 74.12     | 66.87     | 60.616      | 55.517     | 49.510     |
|   | 35 Polygon  | 493946834 | 1 3 4 0 1 | 136.36    | 101.12    | 88.19   | 76.76     | 65.29   | 54.43  | 44.98    | 39.24   | 74157     | 64.674    | 56.292      | 47,881     | 39.916     |
|   | 36 Polygon  | 493946841 | 1 3 4 0 1 | 35.64     | 25.36     | 20.33   | 15.99     | 12.29   | 9.28   | 7.06     | 5.49    | 71.156    | 57.043    | 44.865      | 34.484     | 26.03      |
|   |             | 400046040 | 10404     | 10000     | 1 49 71   | 196.72  | 11911     | 99.26   | 87.35  | 76.97    | 69.46   | 74721     | 66 354    | 58 699      | 52 024     | 45.73      |

GIS の基礎1:使うデータ・使えるデータ

#### ③kmlファイル

図形情報と属性情報(関連コンテンツ)をもった地図データ ファイル

Goolge Earthなど一般の人も良く使う形式。



#### **GISで扱う座標系**

「座標系」=特定の位置を示すために座標を用いる際の、 座標表現についての取り決めのこと。



#### ■測地系について

「世界測地系」を使おう

測地系:緯度経度の座標軸を使って、地図画面上の特定の位置を示す際の基 準となる前提条件

→これが異なると、同じ位置でも座標値が異なる →GIS上で表示するとズレが生じる

| 533945091<br>53393         | 5994 | 53394 | 5092<br>53 | 3936: | 903      | 53394 | 5001<br>5339 | 3690 | 5339-<br>)4 | 46002<br>53393 | 691.3 | 5339 | 46011 | 5339 | 3691-  | 5339<br>4 | 946012 | 53393      | 6923 | 53394 | 46 O2 1<br>50 | 3936  | 5<br>5924 | 3394 | 6022<br>53393 | 6933 | 53394       | 46031<br>53393 | 6934  | 5339  | 46032<br>5339    | 533<br>36943 | 9460          | 41        |
|----------------------------|------|-------|------------|-------|----------|-------|--------------|------|-------------|----------------|-------|------|-------|------|--------|-----------|--------|------------|------|-------|---------------|-------|-----------|------|---------------|------|-------------|----------------|-------|-------|------------------|--------------|---------------|-----------|
| 533935993<br>3935991 53393 | 5992 | 53393 | 5994<br>53 | 3936: | 8<br>901 | 53393 | 5903<br>5339 | 3690 | 5339:<br>)2 | 36904          |       | 5339 | 36913 | 5339 | 3691   | 5339<br>2 | 936914 | 1<br>53393 | 6921 | 5339: | 36923<br>5:   | 33936 | 5922      | 3393 | 6924<br>53393 | 6931 | 53393       | 36933<br>53393 | 6932  | 5339: | 36934<br>5339:   | 533<br>36941 | 9369<br>5339: | 43<br>369 |
| 533935991<br>3935893 53393 | 5894 | 53393 | 5992<br>53 | 3936: | 803<br>8 | 53393 | 5901<br>5339 | 3680 | 5339:<br>)4 | 36902<br>53393 | 6813  |      |       | 5339 | 3681 - | 5338<br>4 | 936912 | 53393      | 6823 | 5339: | 36921<br>5:   | 3936  | 5         | 3393 | 6922<br>53393 | 6833 | 53393       | 36931<br>53393 | 6834  | 5339: | 36932<br>5339:   | 533<br>36843 | 9369<br>5339: | 41<br>368 |
| 533935893<br>3935891 53393 | 5892 | 53393 | 5894<br>53 | 3936: | 5<br>301 | 53393 | 5803<br>5339 | 3680 | 5339:<br>)2 | 36804<br>53393 | 6811  | 5339 | 36813 | 5339 | 3681   | 5338<br>2 | 936814 | 1<br>53393 | 6821 | 5339: | 36823<br>53   | 3936  | 5         | 3393 | 6824          |      | 53393       | 36833<br>53393 | 6832  | 5339: | 36834<br>5339:   | 532<br>36841 | 9368<br>5339: | 43<br>368 |
| 533935891<br>3935793 53393 | 5794 | 53393 | 5892<br>53 | 39361 | 703      | 53393 | 5801<br>5339 | 3670 | 5339:<br>)4 | 36802          |       | 5339 | 36811 |      |        | 5338      | 936812 | 2          |      | 53393 | 36821         |       | 5         | 3393 | 6822          |      |             | 53393          | 6734  | 5339: | 36832<br>5339:   | 533<br>36743 | 9368<br>5339: | 41<br>367 |
| 533935793<br>3935791 53393 | 5792 | 53393 | 5794<br>53 | 39361 | 5<br>701 | 53393 | 5703<br>5339 | 3670 | 5339:<br>)2 | 36704          |       |      |       |      |        |           |        |            |      |       |               |       |           |      |               |      |             | 53393          | 6732  | 5339: | 36734<br>5339:   | 533<br>36741 | 9367<br>5339: | 43<br>367 |
| 533935791<br>1935693 53393 | 5694 | 53393 | 5792<br>53 | 39361 | 503      | 53393 | 5701<br>5339 | 3660 | 5339:<br>)4 | 36702          |       |      |       |      |        |           |        |            |      |       | 53            | 33936 | 5624      |      | 53393         | 6633 |             | 53393          | 36634 | 5339: | 36732<br>5339:   | 533<br>36643 | 9367          | 41        |
| 533935693<br>1935691 53393 | 5692 | 53393 | 5694<br>53 | 39361 | 501      | 53393 | 5603         |      | 5339        | 36604          |       |      |       |      |        |           |        | 53393      | 6621 |       | 53            | 3393( | 5         | 3393 | 5524<br>53393 | 6631 | 53393       | 36633<br>53393 | 6632  | 5339: | 36634            | 533          | 9366          | 43        |
| 533935691<br>1935593 53393 | 5594 | 53393 | 5692<br>53 | 3936! | 503      | 53393 | 5601<br>5339 | 3650 | )4          |                |       |      |       |      |        |           |        | 53393      | 6523 | 5339: | 36621         |       | 5         | 3393 | 6622<br>53393 | 6533 | 53393       | 36631<br>53393 | 6534  | 5339: | 36632            |              |               |           |
| 533935593<br>9935591 53393 | 5592 | 53393 | 5594<br>53 | 3936! | 501      | 53393 | 5503<br>5339 | 3650 | 5339:<br>)2 | 36504          |       |      |       |      |        |           |        |            |      | 5339: | 36523         |       |           | (    | ) 250         | 50   | 53393<br>00 | 36533          | 00    | 5339: | <sup>36534</sup> |              | 00            | 0         |
| 533935591<br>1935493 53393 | 5494 | 53393 | 5592<br>53 | 3936. | 403      | 53393 | 5501<br>5339 | 3640 | 5339:<br>)4 | 36502          |       |      |       | 5339 | 3641   | 4         |        | 53393      | 6423 |       |               |       |           |      |               |      |             |                |       |       | .,000            | 2            | n             | ñ         |
| 533935493                  |      | 53393 | 5494       |       | Ę        | 3393  | 5403         |      | 5339        | 36404          |       |      |       |      |        | 5220      | 25414  |            |      | 52291 | 26492         |       |           |      |               |      | 1           |                |       |       | I                |              |               |           |

赤:日本測地系(Tokyo)

青:世界測地系(WGS\_1984)

#### ■測地系について

#### 「世界測地系」を使おう

測地系:緯度経度の座標軸を使って、地図画面上の特定の位置を示す際の基 準となる前提条件

→これが異なると、同じ位置でも座標値が異なる →GIS上で表示するとズレが生じる

世界測地系:JGD2000(2011), WGS1984 など 国土数値情報はJGD2000 GPSデータはWGS1984

#### データの測地系・座標系に気を配りましょう。 ArcもQも「レイヤプロパティ」から確認できます。



【バッファの作成





【バッファの作成







「バッファの作成





「バッファの作成





【バッファの作成





#### ■空間検索



#### **GIS**の実践例

#### ■空間検索



120 702 25 700 座(10)件)



■空間検索



湖口され たつノーチャポホ つつつこ

120.027 25 200 度/103年



■空間検索



100 070 00 000 座/100年

## ネットワークデータ作成

ネットワークデータの作成方法

#### 【ネットワークデータをQGISで作ってみよう



ネットワークデータの作成方法

#### ▋例題:岩手県釜石市(津波被災前)



ネットワークデータの作成方法

#### 【ラスタデータの読み込み

#### レイヤ>レイヤの追加>ラスタレイヤの追加 から釜石2002\_modified.tifを追加

| И  | ヤ(L) | 設定(S)  | プラグイン(P) | ベクタ(0) | ラスタ(R) | デー       | -タベース(D)     | Web(W)      | プロセッシング(C) | ヘルプ(H)       |   |
|----|------|--------|----------|--------|--------|----------|--------------|-------------|------------|--------------|---|
|    | レイヤ  | の作成    |          |        | +      |          | A 🖪          | ጦ 🔁         | Q. Q       | R - 8 - I    | 6 |
|    | レイヤ  | の追加    |          |        | •      | võ       | ベクタレイヤム      | D追加…        |            | Ctrl+Shift+V | Ē |
| 0  | 埋めえ  | 込みレイヤと | :グループ    |        |        |          | ラスタレイヤの      | D追加…        |            | Ctrl+Shift+R | L |
|    | レイヤ  | 定義ファイ  | ルからの追加…  |        |        | œ.       | PostGISレイ    | ヤの追加…       |            | Ctrl+Shift+D |   |
| ß  | スタイ  | ルのコピー  |          |        |        | Po       | SpatiaLite L | イヤの追加       |            | Ctrl+Shift+L | E |
|    | スタイ  | ルの貼り付  | t        |        |        | Pa       | MSSQL 空間     | 間レイヤの追      | 力o         | Ctrl+Shift+M | F |
|    |      |        |          |        |        | 082      | DB2 空間レ      | イヤの追加       |            | Ctrl+Shift+2 | K |
|    | 周性:  | テーブルを開 | 猒(A)     | F6     |        | <b>Q</b> | Oracle Spat  | tial レイヤの   | 追加…        | Ctrl+Shift+O | k |
|    | 編集   | モード切替  |          |        |        |          | WMS/WMT      | Sレイヤの追知     |            | Ctrl+Shift+W | R |
| 5  | レイヤ  | (編集内容) | の保存      |        |        | 8        | ArcGIS Map   | Server レイ   | ヤの追加(G)    |              | D |
| 11 | 現在   | の編集    |          |        | ►.     | e,       | Oracleジオラ    | うスタレイヤの     | 追加…        |              | E |
|    | 名前   | をつけて保存 | 芛(S)     |        |        |          | WCSLITZ      | 〕追加…        |            |              |   |
|    | レイヤ  | 定義ファイ  | ルとして保存…  |        |        | V.       | WFSレイヤの      | )追加…        |            |              | 1 |
|    | レイヤ  | 7グループの | 消兆余      | Ctrl+  | ·D     |          | ArcGIS Fea   | itureServer | レイヤの追加(C)… |              |   |
|    | レイヤ  | の複製    |          |        |        | 9.       | デリミティッド      | テキストレイヤ     | ?の追加…      |              | P |
|    | レイヤ  | を表示する  | 縮尺の設定    |        |        | V.       | 仮想レイヤの       | 〕追加/編集      |            |              |   |

ネットワークデータの作成方法

#### 【ノードデータの作成

レイヤ>レイヤの作成>新規シェープファイルレイヤ

レイヤ(L) 設定(S) プラグイン(P) ベクタ(O) ラスタ(R) データベース(D) Web(W) プロセッシング(C) ヘルプ(H)

|   | レイヤの作成         | ⊁ | V        | 新規シェープファイルレイヤ                                                                                                    | Ctrl+Shift+N | 8 |
|---|----------------|---|----------|------------------------------------------------------------------------------------------------------------------|--------------|---|
|   | レイヤの追加         | • | P        | 新規SpatiaLiteレイヤ                                                                                                  |              | F |
|   | 埋め込みレイヤとグループ   |   | <b>%</b> | 新規GeoPackageレイヤ                                                                                                  |              |   |
|   | レイヤ定義ファイルからの追加 |   | <b>~</b> | 新しい一時スクラッチレイヤ                                                                                                    |              | C |
| ß | スタイルのコピー       |   | -        | 新規GPXレイヤ作成(C)                                                                                                    |              | 8 |
|   |                |   | 101.0    | and the second |              |   |

#### ノードなのでタイプは「点」

🕺 新規シェープファイルレイヤ 7  $\times$ タイナ () 点 ○ ライン ○ ポリゴン

ネットワークデータの作成方法

【ノードデータの作成

#### 拡張子は.shp





ネットワークデータの作成方法

### 【ノードデータの作成 下図のように、交差点にノードを打っていく.



ネットワークデータの作成方法

#### ノードデータの作成 ノードを打ち終わったら、属性テーブルから「フィール ド計算機」を起動し、各ノードにIDを付与します

| 🧾 選択されている0個の地物のみ更新する        |                                                                                                                                                                                                                            |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 🔄 新しいフィールドを作る ―――           | 🔽 既存のフィールドを更新する ————————————————————————————————————                                                                                                                                                                       |
| ── 仮想フィールド作成                |                                                                                                                                                                                                                            |
| 出力フィールド名                    |                                                                                                                                                                                                                            |
| 出力フィールドタイプ 整数値(integer) 🗾 👻 | ld 🗸                                                                                                                                                                                                                       |
| 出力フィールド長 10 🗣 精度 0 🜲        |                                                                                                                                                                                                                            |
| 式 関数エディタ                    |                                                                                                                                                                                                                            |
| = + - / * ^    ( ) ¥n'      | 検索                                                                                                                                                                                                                         |
| @row_number                 | row_number         Aggregates         Custom         あいまい一致         ジオメトリ         フィールドと値         レコード         一般情報         演算子         最近(fieldcalc)         条件         色         数学         日付と時刻         文字列         変換 |
| 出力プレビュー: 1                  |                                                                                                                                                                                                                            |

「既存のフィールド を更新する」を選択 し,式には 「**@row\_number**」と 入力します.



フィールドidに, 作成順に整数のIDが 付与されます.

ネットワークデータの作成方法

#### 【リンクデータの作成

レイヤ>レイヤの作成>新規シェープファイルレイヤ

レイヤ(L) 設定(S) プラグイン(P) ベクタ(O) ラスタ(R) データベース(D) Web(W) プロセッシング(C) ヘルプ(H)

|   | レイヤの作成         | ⊁ | V.       | 新規シェープファイルレイヤ                                                                                                  | Ctrl+Shift+N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E |
|---|----------------|---|----------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|   | レイヤの追加         | • | P        | 新規SpatiaLiteレイヤ                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F |
|   | 埋め込みレイヤとグループ   |   |          | 新規GeoPackageレイヤ                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
|   | レイヤ定義ファイルからの追加 |   | <b>~</b> | 新しい一時スクラッチレイヤ                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ¢ |
| ß | スタイルのコピー       |   | -        | 新規GPXレイヤ作成(C)                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8 |
|   |                |   | 10.11    | the second s | and the second se |   |

#### リンクなのでタイプは「ライン」



ネットワークデータの作成方法

#### 【リンクデータの作成



ここで、ノードとリンクの起終点を紐付ける操作が必要 になります. (あとで説明します)

ネットワークデータの作成方法

【リンクデータの作成

設定から「スナップオプション」を起動.

🕺 スナップオプション

? X

#### レイヤ選択 アドバンスト 🔹

| ×         | レイヤ                                         | モード     | 許容範囲       | 単位       | 交差の禁止 | ~ |  |  |  |  |
|-----------|---------------------------------------------|---------|------------|----------|-------|---|--|--|--|--|
|           | nodes_1973                                  | 頂点と線分 ▼ | 10.00000   | ピクセル 🔹   |       |   |  |  |  |  |
| $\square$ | nodes_1973                                  | 頂点と線分 ▼ | 15.00000   | ピクセル 🔹   |       |   |  |  |  |  |
| $\square$ | nodes_1979                                  | 頂点と線分 ▼ | 15.00000 🖨 | ピクセル 🔹 🔻 |       |   |  |  |  |  |
| $\square$ | nodes_1994                                  | 頂点と線分 ▼ | 15.00000 🖨 | ピクセル 🔹 🔻 |       |   |  |  |  |  |
| $\square$ | nodes_1994                                  | 頂点と線分 ▼ | 16.00000 ≑ | ピクセル 👻   |       |   |  |  |  |  |
| $\square$ | nodes_1999                                  | 頂点と線分 ▼ | 15.00000 ≑ | ピクセル 👻   |       |   |  |  |  |  |
| $\square$ | nodes_2002                                  | 頂点と線分 ▼ | 15.00000 ≑ | ピクセル 👻   |       |   |  |  |  |  |
| $\square$ | nodes_2002                                  | 頂点と線分 ▼ | 15.00000 ≑ | ピクセル 👻   |       | 1 |  |  |  |  |
| $\square$ | link_2002                                   | 頂点と線分 ▼ | 0.00000    | 地図上の単位 🔻 |       |   |  |  |  |  |
|           |                                             |         |            |          |       | / |  |  |  |  |
|           | □ トポロジ編集を有効にする ○ 交差部でスナップを有効にする OK キャンセル 適用 |         |            |          |       |   |  |  |  |  |

リンクデータの紐づけ先であるnodes\_2002を選択. 許容範囲は15ピクセルに設定.

ネットワークデータの作成方法

#### **リンクデータの作成** こんな感じになります.



## グラフ理論とネットワーク分析

グラフ理論/ネットワーク分析

#### 【ネットワーク分析

ネットワーク分析では、人間関係やウエブサイトのリン クなどのネットワーク構造を**点と線(グラフ)**によって 抽象化して捉える.都市における街路構造も、同じよう にグラフ化して捉えることが可能である.

#### ┃グラフ理論

ノード(節点・頂点)の集合と エッジ(辺・リンク)の集合で構成 されるグラフに関する数学の理論.



ネットワーク分析手法

## 【ノードの重要性を評価する(距離)1. 離心中心性

他の頂点との距離を、中心性を測る指標とする.

ノード
$$i$$
の離心中心性 $C_{ec}$ は、 $C_{ec}(i) = \frac{1}{\max(d_{ij})}$ 

 $\max(d_{ij})$ はノード*i*から他のノードへの最短距離の最大値を表すので、 離心中心性の高いノードほどグラフの中心に近い位置にある.

#### 2. 近接中心性

同じく他の頂点との距離を中心性を測る指標とする.

ノード
$$i$$
の近接中心性 $C_c$ は,  $C_c(i) = \frac{1}{\sum_{j=1}^n d_{ij}}$ 

 $\sum_{j=1}^{n} d_{ij}$ はノードiから他のノードへの最短距離の合計を表す.

ネットワーク分析手法

# 【ノードの重要性を評価する(次数) 3. 次数中心性 【→ 頂点に接続している 辺の数

各点の次数によって定義され,次数が高いほど中心性が高いとする. あるグラフの隣接行列を $A = (a_{ij})$ とすると,

無向グラフの次数中心性 $C_d(i)$ は、 $C_d(i) = \sum_{j=1}^n a_{ij}$ 

#### 4. 固有ベクトル中心性

次数中心性の概念を拡張させ、隣接する頂点の中心性を反映させる 指標. すなわち**重要なノードと接続しているほど高く評価される.** ある無向グラフの隣接行列を $A = (a_{ij})$ とし、そこに含まれる頂点の 中心性を成分とする列ベクトルを $c = (c_i)$ とすると、 頂点iの中心性 $c_i$ は、 $c_i = \frac{1}{\lambda} \sum_{j=1}^n a_{ij} c_j$ (中心性 $c_i$ はノードiに対してリンクを張っているノードjの中心性 の値を全て足し合わせた形)

ネットワーク分析

ノードの重要性を評価する(次数)
 4. 固有ベクトル中心性(続き)
 つまり,隣接行列の固有ベクトルを用いて,隣接する頂点の中心性を反映した中心性を得ることが出来る.

したがって無向グラフにおける頂点iの固有ベクトル中心性 $C_{ev}(i)$ は,

$$C_{ev}(i) = \frac{1}{\lambda} \sum_{j=1}^{n} a_{ij} C_{ev}(j)$$

ここで $a_{ij}$ は無向グラフの隣接行列Aの成分であり、 $\lambda$ はAの最大固有値である.

ネットワーク分析

# ノードの重要性を評価する(媒介や伝達)5. 媒介中心性

媒介中心性 $C_b$ は次式で表される.

$$C_b(i) = \sum_{i \neq j \neq k} \frac{g_{jk}(i)}{g_{jk}}$$

 $g_{jk}$ は頂点jと頂点k間の最短経路数であり、 $g_{jk}(i)$ はその最短経路のうち点iを通るものの数である.

例えば右のグラフからノード3を削除すると、 グラフは2つに分離してしまう.このような ノードを切断点(cutpoint)と呼ぶ.切断点となる ようなノードは交通網のボトルネックだったり、 対人ネットワークにおけるキーパーソンだったり、 うする.このような点を抽出する指標として媒 介中心性は用いられる.



ネットワーク分析

#### ■実際にRで計算してみよう

様々なネットワークデータが公開されているサイト <u>http://www-personal.umich.edu/~mejn/netdata/</u>から



データセット"Les Misérables"(レ・ミゼラブル)をダウンロード



lesmis.gmlというファイルに 「レ・ミゼラブル」の登場人物の ネットワーク構造が格納されてい ます.

ノードは登場人物を表し、同じ章 に登場した人物の間にリンクが張 られています.またリンクには登 場回数による重み付けがなされて います.

ネットワーク分析

#### ■実際にRで計算してみよう

パッケージ「igraph」で簡単に分析できます

##ディレクトリの設定## setwd("C:/workspace/startup/lesmis/")

##igraphライブラリの読み込み## library(igraph)

##GMLファイルの読み込み## g <- read.graph("lesmis.gml", format ="GML")

##試しにプロット##

set.seed(1) #プロット時のズレを回避

plot(g,vertex.size=3, edge.arrow.size=0.5)





ネットワーク分析

#### 離心中心性の計算

##離心中心性##

g.ecc<-eccentricity(g) #関数eccentricityで離心中心性を計算

set.seed(1) #プロット時のズレを回避 plot(g,vertex.size=g.deg\*0.5,main='Eccentricity\_Centarlity',edge .arrow.size=0.5)

### 媒介中心性の計算

##媒介中心性##

```
g.bw<-betweenness(g,directed = T)
set.seed(1)
plot(g, vertex.label.cex=0.7,
vertex.size=g.bw*0.02,main='Betweeness_Centrality')</pre>
```



ネットワーク分析

#### ■離心中心性の計算(結果)









主人公のヴァルジャンは 勿論,浮浪児のガヴロー シュや司教のミリエル, ファンティーヌなどの媒 介中心性が高くなってい る.

媒介中心性の高い登場人 物の多くは,Wikipediaで 「主要人物」として紹介 されている.

ネットワーク分析

先程作成方法を導入した釜石市のデータセットとigraphのパッケージを使って、媒介中心性を計算します.

#### **手順1. リンクデータにノードの属性を紐づけ** ベクタ>データマネジメントツール>属性の結合

#### 💋 属性の結合

| パラメータ                                 | ログ             |                   |          | バッチプロセスとして実 | 〔行… | Join attributes by location                                                                                                                  |
|---------------------------------------|----------------|-------------------|----------|-------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------|
| 対象ベクタレ                                | ~1∀<br>[EDCO.1 | 000]              |          |             | ^   | This algorithm takes an input vector layer and<br>creates a new vector layer that is an extended<br>version of the input one with additional |
| Tink_2002 [                           | LEPSG:4        | 326]              |          | ▼           |     | attributes in its attribute table.                                                                                                           |
| ベクタレイヤを                               | を結合す           | 3                 |          |             |     | The additional attributes and their values are                                                                                               |
| nodes_2003                            | 2(1) [EF       | PSG:4326]         |          | ▼ 🦻         |     | taken from a second vector layer. A spatial<br>critera is applied to select the values from the                                              |
| ジオメトリのジ                               | 述語             |                   | _        |             |     | second layer that are added to each feature                                                                                                  |
| ☑ 交差する                                | 5              |                   | ☑ 接触する   |             |     | nom ale met layer in the resulting one.                                                                                                      |
| 🗹 含む                                  |                |                   | 🦳 重なりがある |             |     |                                                                                                                                              |
| 📃 交わらな                                | ί.)            |                   | 範囲内      |             | а.  |                                                                                                                                              |
| - 等しい                                 |                |                   | ☑ 交差する   |             |     |                                                                                                                                              |
| 精度                                    |                |                   |          |             |     |                                                                                                                                              |
| 0.000000                              |                |                   |          | ····        |     |                                                                                                                                              |
| 属性値の概                                 | 要              |                   |          |             |     |                                                                                                                                              |
| 交差する全                                 | ての地物           | かの属性を総合して利用する     |          | -           |     |                                                                                                                                              |
| 統計サマリー                                | - (דעב)        | 区切り) [オブション]      |          |             |     |                                                                                                                                              |
| sum, mean, r                          | min,ma×        | ,median           |          |             |     |                                                                                                                                              |
| 結合されるテ                                | テーブル           |                   |          |             |     |                                                                                                                                              |
| 全てのレコー                                | -ドを残           | す(マッチしない対象レコードも含む | )        | -           |     |                                                                                                                                              |
| · · · · · · · · · · · · · · · · · · · | ~              |                   |          |             | Ť   |                                                                                                                                              |
|                                       |                |                   |          |             |     |                                                                                                                                              |
|                                       |                |                   |          |             |     | 0%                                                                                                                                           |
|                                       |                |                   |          |             |     | Run 閉じる                                                                                                                                      |

この操作によって, maxid とminidに始点と終点の ノードidが格納されます.

ネットワーク分析

手順2. igraphで読める形にデータを 変形

igraphパッケージがグラフデータとし て読み込めるようにデータを変形しま す.

読み込めるファイルには色んな種類が ありますが、今回は属性を結合し た.dbfファイルをタブ区切りテクスト に変換して下さい.

| 🥘 links_merged.txt - 义モ帳                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |       |        |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|--------|--|--|--|--|
| ファイル(F)                                                                                                                     | 編集(E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 書式(O) | 表示(V) | ヘルプ(H) |  |  |  |  |
| 383321<br>11213220<br>1451487572890111135442644511066687759<br>199111133333261451106688759<br>19911111354442644511066687759 | 39<br>40<br>38<br>22<br>33<br>20<br>44<br>56<br>69<br>98<br>713<br>12<br>11124<br>46<br>65<br>42<br>56<br>66<br>99<br>87<br>13<br>12<br>11244<br>14<br>66<br>54<br>22<br>56<br>66<br>99<br>87<br>13<br>12<br>11244<br>1466554<br>22<br>5166777<br>19<br>98<br>22<br>24<br>1127<br>23<br>32<br>20<br>11127<br>23<br>32<br>20<br>1127<br>23<br>32<br>20<br>1127<br>23<br>32<br>20<br>1127<br>23<br>32<br>20<br>1127<br>20<br>20<br>1127<br>20<br>20<br>1127<br>20<br>20<br>1127<br>20<br>20<br>1127<br>20<br>20<br>1127<br>20<br>20<br>1127<br>20<br>20<br>1127<br>20<br>20<br>1127<br>20<br>20<br>1127<br>20<br>20<br>1127<br>20<br>20<br>1127<br>20<br>20<br>1127<br>20<br>20<br>1127<br>20<br>20<br>1127<br>20<br>20<br>1127<br>20<br>20<br>1127<br>20<br>20<br>1127<br>20<br>20<br>1127<br>20<br>20<br>1127<br>20<br>20<br>1127<br>20<br>20<br>1127<br>20<br>20<br>1127<br>20<br>1122<br>20<br>1122<br>20<br>1122<br>20<br>1122<br>20<br>1122<br>20<br>1122<br>20<br>1122<br>20<br>1122<br>20<br>1122<br>20<br>1122<br>20<br>1122<br>20<br>1122<br>20<br>1122<br>20<br>1122<br>20<br>1122<br>20<br>1122<br>20<br>1122<br>20<br>1122<br>20<br>1122<br>20<br>1122<br>20<br>1122<br>20<br>1122<br>20<br>1122<br>20<br>1122<br>20<br>1122<br>20<br>1122<br>20<br>1122<br>20<br>1122<br>20<br>1122<br>20<br>1122<br>20<br>1122<br>20<br>1122<br>20<br>1122<br>20<br>1122<br>20<br>1122<br>20<br>1122<br>20<br>1122<br>20<br>1122<br>20<br>1122<br>20<br>1122<br>20<br>1122<br>20<br>1122<br>20<br>1122<br>20<br>112<br>20<br>112<br>20<br>112<br>20<br>20<br>112<br>20<br>20<br>112<br>20<br>20<br>112<br>20<br>20<br>20<br>20<br>20<br>112<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 |       |       |        |  |  |  |  |

ネットワーク分析

#### 手順3.Rを使って計算

library(igraph)

```
setwd("c:/workspace/Startup")
```

g<- read.graph("links\_merged.txt",format = "edgelist", directed=FALSE)
g.bt<- betweenness(g)</pre>

Write.table(g.bt ,file="result.csv",sep=",")

各ノードの媒介中心性計算結果がcsvファイルで出力されます.

ネットワーク分析

#### 手順4. GISを使って可視化



ネットワーク分析

手順4. GISを使って可視化







ネットワーク分析

#### ■媒介中心性と都市

都市における媒介中心性の高いノード →都市内の人の流動を扼する「**要衝**」

釜石の場合,臨港部と内陸住宅地を結び,大渡川を渡る橋梁が「**要衝**」



1958年から1998年 まで橋梁上には 「釜石橋上市場」 があり、1日1万人 の市民が訪れた.

街路の要衝には, 市場が形成されや すい.

ネットワーク分析

#### ■リンクの媒介中心性も計算できます





#### 1. 既存データセットを使ったネットワーク分析

<u>http://www-personal.umich.edu/~mejn/netdata/</u> からデータセットをダウンロードし, igraphに同梱されている様々 な中心性指標を使って分析し,その結果を比較してみよう.

#### 2. ネットワークデータの作成と媒介中心性分析

**2-1**. 先程導入したネットワーク作成方法を参考に,自分の好きな都市で範囲を決め,ネットワークデータを作成してみよう.

2-2. igraphパッケージ(Rでもpythonでも動きます)でネットワーク 分析をしてみよう.

2-3. 計算結果をGISやイラストレーターで可視化し、考察しよう.

#### 2. の結果をスライド5枚にまとめて発表して下さい.

参考資料・文献

鈴木努: ネットワーク分析, 共立出版, 2009.

グラフ・ネットワーク分析で遊ぶ(3):中心性(PageRank, betweeness, closeness, etc.) <u>https://tjo.hatenablog.com/entry/2015/12/09/190000</u> (2018/4/30閲覧)

Network data by Mark Newman <u>http://www-personal.umich.edu/~mejn/netdata/</u> (2018/4/30閲覧)