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Main Challenge
1. The need for informative features and effective 

regularization to impose structure on the cost.
2. The difficulty of learning the cost function under unknown 

dynamics for high-dimensional continuous systems.

Contribution
1. This paper presents an algorithm capable of learning arbitrary 

nonlinear cost functions, such as neural networks, without 
meticulous feature engineering.

2. This paper formulates an efficient sample-based 
approximation for MaxEnt IOC.

Validation
• Simulation tasks
• Real-world robotic manipulation problems
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1. Introduction
• Reinforcement Learning Challenges

• Difficult to define a cost function that encodes the correct task and can be optimized 
effectively.

• Cost shaping often used to solve complex real-world problems (Ng et al., 1999).
• Inverse Optimal Control (IOC)

• IOC and inverse reinforcement learning (IRL) learn a cost function directly from expert 
demonstrations (Ng et al., 2000; Abbeel & Ng, 2004; Ziebart et al., 2008).

• Challenges: Many costs induce the same behavior, and solving the forward problem 
(finding an optimal policy) in the inner loop of iterative cost optimization.

• Proposed Approach
• Use expressive, nonlinear function approximators like neural networks to represent the 

cost.
• Reduces the engineering burden and allows learning complex cost functions without hand-

designed features.
• Advantages

• Can handle unknown dynamics and high-dimensional systems.
• Combines policy learning and cost learning, making it practical and efficient.
• Achieves good global costs even for complex tasks.

• Key Contributions
• Simultaneous policy and cost learning from demonstrations.
• Guided cost learning algorithm based on policy optimization over a good region of the 

space.
• Outperforms prior methods in simulated benchmarks and real-world tasks without 

manually designed cost functions.
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Issue #1 in IOC (or IRL)
The set of demonstrations is not necessarily optimal

• Maximum margin formulations
• Probabilistic models
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Issue #1 in IOC (or IRL)
The set of demonstrations is not necessarily optimal

• Maximum margin formulations
• Probabilistic models

• Maximum entropy IOC model

There is still a great deal of ambiguity…
1. More detailed features
2. More powerful regularization
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Solving the forward control 
problem

• Requires knowledge of the system 
dynamics to solve the problem

• This paper’s method is based on the 
principle of maximum entropy which 
can handle unknown dynamics

Issue #2 in IOC (or IRL)
Necessity of solving a variant of the forward control problem
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Solving the forward control 
problem

• Requires knowledge of the system 
dynamics to solve the problem

• This paper’s method is based on the 
principle of maximum entropy which 
can handle unknown dynamics

Issue #2 in IOC (or IRL)
Necessity of solving a variant of the forward control problem

Comparing with other 
sample base methods…

• Adapts the sampling distribution using 
policy optimization

• This adaptation is crucial for obtaining 
good results
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Summary
This paper’s method combines key features for effective algorithms

Handles unknown dynamics
Crucial for real-world robotic tasks

Eliminates the need for hand-
engineering of cost features

Learns complex,
expressive cost functions

Utilizes neural networks

Manages high-dimensional, 
complex systems

Applicable to real torque-controlled robotic arms



3. Preliminaries and Overview 
Probabilistic Max-Ent IOC 

(Ziebart et al., 2008)
• Assumes that experts act probabilistically 

and nearly optimally with respect to an 
unknown cost function

• Assumes that the expert samples the
demonstrated trajectory 𝜏! from 
distribution

𝑝 𝜏 =
1
𝑍 exp −𝑐" 𝜏

• 𝜏 = 𝐱!, 𝐮!, … , 𝐱" , 𝐮"
Trajectory sample of expert demonstrations

• −𝑐# 𝜏 = ∑$ 𝑐# 𝐱$ , 𝐮$
Unknown cost function characterized by parameters 𝜃

• 𝐱$ , 𝐮$
State/Input at time 𝑡
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Challenges and Solutions
• Calculating the partition function 𝑍 is 

difficult
• Ziebart (2008) first calculated 𝑍 exactly using 

dynamic programming
• Laplace Approximation (Levine & Koltun, 2012)
• Value Function Approximation (Huang & Kitani, 

2014)
• Sampling (Boularias et al., 2011) 

Significance
• Can perform IOC even with unknown system 

dynamics!
Crucial for robotics interacting with objects of unknown physical 
properties
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4-1. Sample-Based Approach to Maximum Entropy IOC
Sample-Based Approach to Max-Ent IOC

• The partition function 𝑍 = ∫exp 𝑐# 𝜏 𝑑𝜏 is 
estimated using a background distribution 𝑞(𝜏)

• Prior methods:
• A linear representation for the cost function to simplify the cost 

learning problem (e.g., Boularias et al., 2011)

• This paper: 
• Generalizes and uses a non-linear parameterized cost function

• The negative log-likelihood of 𝑝 𝜏 is given by
ℒ!"# 𝜃 =

1
𝑁

*
$!∈&"#$%

𝑐' 𝜏( + log𝑍

ℒ!"# 𝜃

≈
1
𝑁

*
$!∈&"#$%

𝑐' 𝜏( + log
1
𝑀

*
$&∈&'($)

exp −𝑐' 𝜏)
𝑞(𝜏))

• 𝐷*+,-: Set of 𝑁 demonstrated trajectories
• 𝐷./,0: Set of 𝑀 trajectories sampled from the 

background distribution
• 𝑞: Often manually chosen as the demonstration 

distribution or a uniform distribution
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• To find the gradient of this objective function with respect to 

𝜃, define 𝑤) =
*+, -.1 $&

/($&)
(so that 𝑍 = ∑)𝑤))

• The gradient is

𝑑ℒ!"#
𝑑𝜃

=
1
𝑁

*
$!∈&"#$%

𝑑𝑐'
𝑑𝜃

(𝜏() −
1
𝑍

*
$&∈&'($)

𝑑𝑐'
𝑑𝜃

(𝜏))

• If the cost function is approximated by a neural network:
• Backpropagate 2

3
for 𝜏( ∈ 𝐷4567

• Backpropagate −8&
9

for 𝜏) ∈ 𝐷:;6<



4-2. Adaptive Sampling via Policy Optimization
• Choosing the Background Sample Distribution 𝑞 𝜏 for Estimating ℒ!"# Is Crucial for 

the Success of Sample-Based IOC Algorithms
• The optimal importance sampling distribution to estimate the partition function 

𝑍 = ∫exp 𝑐! 𝜏 𝑑𝜏 is 𝑞 𝜏 ∝ exp −𝑐! 𝜏 = exp(−𝑐! 𝜏 )

• However, designing a single background distribution 𝑞 𝜏 is difficult
when the cost function 𝑐' is unknown

• Instead, adaptively improving 𝑞 𝜏 using the current cost function 𝑐' 𝜏
generates more samples in specific regions of the trajectory space

• To Achieve This
• IOC Optimization

• Find the cost function that maximizes the likelihood of the demonstrated 
trajectories

• Policy Optimization
• Improve the trajectory background distribution 𝑞 𝜏 with respect to the 

current cost
• Alternate between these two optimizations
• Since policy optimization can handle unknown system dynamics, adopt 

the method by Levine & Abbeel (2014), which iteratively fits time-varying 
linear dynamics using samples from the system dynamics.
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4-3. Cost Optimization and Importance Weights 
Optimizing the IOC Objective 

Function
• The IOC objective function can be optimized 

using standard nonlinear optimization 
methods and the gradient $ℒIJK

$#

• For neural networks, stochastic gradient 
methods can be used

• It is straightforward if the objective function is 
factored over samples, but the partition 
function here is not

• In this paper, the objective function can be 
optimized by sampling subsets of samples 
from demonstrations and the background 
distribution in each iteration
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Importance Sampling for Partition 
Function Estimation

• Importance sampling is required for estimating the partition 
function

• Previous works (Kalakrishnan et al., 2013; Aghasadeghi & Bretl, 
2011) suggest dropping importance weights, but this generates 
inconsistent likelihood estimates and poor cost functions

• To evaluate importance weights, construct a composite distribution 
as samples are drawn from multiple distributions

• When samples are drawn from 𝑘 distribution 𝑞2 𝜏 , … , 𝑞3 𝜏 , a 
consistent estimate of the expectation of function 𝑓 𝜏 under a 
uniform distribution is:

𝐸 𝑓 𝜏 ≈
1
𝑀
-
4!

1
∑3 𝑞3 𝜏5

𝑓 𝜏5

Accordingly, the importance weight is:

𝑧5 =
1

∑3 𝑞3 𝜏5

62

Objective Function:
ℒ789 𝜃 =

1
𝑁

-
4"∈;#$%&

𝑐< 𝜏= + log
1
𝑀

-
4!∈;'(%)

𝑧5 exp −𝑐< 𝜏5

4-3. Cost Optimization and Importance Weights 
Optimizing the IOC Objective 

Function
• The IOC objective function can be optimized 

using standard nonlinear optimization 
methods and the gradient $ℒIJK

$#

• For neural networks, stochastic gradient 
methods can be used

• It is straightforward if the objective function is 
factored over samples, but the partition 
function here is not

• In this paper, the objective function can be 
optimized by sampling subsets of samples 
from demonstrations and the background 
distribution in each iteration
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4-4. Learning Costs and Controllers
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Algorithm Capabilities
• Produces both a cost function 𝑐# 𝐱$ , 𝐮$ and a 

controller 𝑞(𝐮$|𝐱$).
• Can execute desired behaviors directly using the 

generated controller.

Hypothesis
• Training on new task instances provides better cost 

function and reduces overfitting.
• Demonstrations cover limited task variations; new 

samples improve task execution understanding.

Policy Optimization
• Learned cost function can optimize policies for new task instances 

without additional cost learning.
• In challenging tasks, continuous policy learning with IOC 

outperforms using a single learned cost.

Advantages
• Uses knowledge that demonstrations are near-optimal under some 

unknown cost function.
• Similar to recent IOC work by direct loss minimization (Doerr et al., 

2015).

Contrast with Previous Methods
• Unlike many previous IOC and IRL methods, our approach 

simultaneously learns a cost and optimizes the policy for new task 
instances without demonstrations.

Changes positions
of a cup



5. Representation and Regularization 
• Expressiveness

• Affine cost functions lack sufficient 
expressiveness (Section 6.2).

• Neural network parameterizations are useful for 
learning visual representations from raw image 
pixels

• Uses an unsupervised visual feature 
learning method (Finn et al., 2016) to learn 
cost functions dependent on visual input

• Challenges of Nonlinear Cost Functions
• Introduce significant model complexity.
• Requires regularization to mitigate overfitting.

• Existing Regularization Methods
• Penalize the 𝑙!or  𝑙& norm of the cost 

parameters (Ziebart, 2010; Kalakrishnan et al., 
2013).

• Insufficient for high-dimensional nonlinear cost 
functions.
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Proposed Regularization Methods:
• Local Change Rate Regularization (General)

• Encourages the cost of demo and sample 
trajectories to change at a constant rate.

• Reduces high-frequency fluctuations indicative of 
overfitting and promotes cost redistribution.

• Formula:
𝑔>?@ 𝜏 = -

A*∈4

(𝑐< 𝑥BC2 − 𝑐< 𝑥B ) − (𝑐< 𝑥B − 𝑐< 𝑥B62 ) D

• Monotonicity Regularization (Local)
• Tailored for one-shot episodic tasks.
• Uses squared hinge loss to ensure cost of demo 

trajectories decreases monotonically over time.
• Assumes tasks progress monotonically towards 

goals on a potentially nonlinear manifold.
• Formula: 

𝑔,-E- 𝜏 = -
A*∈4

max(0, (𝑐< 𝑥B − 𝑐< 𝑥B62 − 1) D



6-1. Simulated Comparisons
• Tasks

• 2D Navigation
• 3-Link Arm
• 3D Peg Insertion

• Methodology
• Compared guided cost learning with prior sample-based methods on task 

performance and sample complexity.
• Used MuJoCo physics simulator for experiments.
• Sampled from different initializations and regularizations (detailed in 

Appendix E).
• Sampling Methods

• Used suboptimal samples for estimating the partition function.
• Samples obtained either by a baseline random controller or by fitting a 

linear-Gaussian controller to demonstrations.
• Key Findings

• More complex cost function required for precise tasks like peg insertion.
• Demonstrations and additional samples provided better learning for 

complex tasks.
• Prior methods required additional samples, but did not improve 

performance with more samples from the same distribution.
• Proposed method effectively handled complex, high-dimensional tasks.
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6-2. Real-world robotics
• Tasks

• Placing a Plate into a Dish Rack
• Pouring Almonds from One Cup to Another

• Results
• Dish Rack Task

• Neural network-based method achieved 100% success rate.
• Relative entropy IRL failed (0% success).

• Pouring Task
• Neural network method had an 84.7% success rate; affine cost function failed.
• Neural network method required fewer samples than relative entropy IRL.

• Generalizability
• Learned cost used to optimize policies for new positions successfully.
• Demonstrates the need for rich function approximators in complex domains.

• Insights
• Learned policies succeeded even when cost functions were local and too 

specific.
• Indicates potential for further exploration of training on different novel instances 

to improve generalizability.
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7. Discussion
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Main Challenge
1. The need for informative features and effective regularization to impose 

structure on the cost.
2. The difficulty of learning the cost function under unknown dynamics for high-

dimensional continuous systems.

Contribution
1. This paper presents an algorithm capable of learning arbitrary nonlinear cost 

functions, such as neural networks, without meticulous feature engineering.
2. This paper formulates an efficient sample-based approximation for MaxEnt

IOC.

Validation

Future Work
• Extend approach to learn cost functions directly from natural images.
• Introduce regularization methods developed for domain adaptation in computer vision (Tzeng 

et al., 2015).
• Encode prior knowledge that demonstrations have similar visual features to samples.



所感

•強化学習の事前知識があればやっていることは単純…?
• 分配関数の定式化が難しい

•手法の評価について、さまざまなパターンで実験されているのは信頼感がお
けていいのではないか
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