A deep generative model for feasible
and diverse population synthesis

Kim, Eui-Jin, and Prateek Bansal. "A deep generative model for feasible and diverse population
synthesis." Transportation Research Part C: Emerging Technologies 148 (2023): 104053.

B4 FIiRIEE



Abstract

- AO&FRk(Population synthesis) I UL\ T, sampling zero% #/X— L 2, structural zero% & /)\BR (Z#]]
ZB1=0D2DONIBREHEIRE

« ARRETILOHREREIZE LT, feasibility & diversityz A3
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- ABMOWHREE THEIERAOZNET LI LT, BROET Y vV TEBEADBREGR ZRET 5

« Two loss functions to cover sampling zeros while minimizing structural zeros in population synthesis.
« Feasibility and diversity are used as improvement metrics for the generative model.
« The proposed loss functions achieve higher accuracy compared to traditional models.

« By improving the synthetic population, which is the first stage of ABM, the propagation of errors to later
modeling stages is avoided.

2024/5/23 2



1.Introduction
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ABM & Population synthesis

e ABMOAAE L TITERAAOEFOERAE OEIANEENS
« ZOMETIE, BERBHEDEESMEBRMT 52 EZxBiET

« IKITHEETET /L (activity-based model) (CELRZH T2 (EROFEHLBENVETH D) 7-
», AOAEBIEthe regional household travel survey (HTS, AOD#1~5%) ICHRkEFT S

 The inputs for ABM include the synthetic population and its decision-making process.
e This study aims to mimic the joint distribution of individual attributes.

- |t focuses on the travel demand model (activity-based model), which requires detailed
individual attributes, and thus the population synthesis relies on the regional household travel
survey (HTS), covering about 1-5% of the population. (Castiglione et al., 2014)
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ABM & Population synthesis

ANOERIZIZ3DDEREA B 5

1. EANEEDRENTZHREEAGOEZRTIERT—IVZERT S

2. WEDZ—7 v MIHTEIREXHNLERANDZHEET 27-DICEAGTHZHETE

3. FEoOANOEGRZERL TABMIZEIY) Z T3
« REFEDAE (re-weighting) TIZHTSHY > 7ILICIZFTFE LA WA, ERODAOICIXFET 2EBHEOEAED
BZERTE AL

« ERETIVGM) L EREDREEHERIMEFE TSI L TIDHNERRTE S

« Population synthesis consists of three stages (Borysov et al., 2019; Rich, 2018):
1. Generating synthetic pools representing realistic and diverse combinations of individual attributes.
2. Estimating weighting factors to construct a representative synthetic population for future targets.
3. Generating future synthetic populations and allocating them to the ABM.

 Traditional methods (re-weighting) cannot generate attribute combinations that do not exist in HTS
samples but are present in the actual population.

- Generative models (GMs) can overcome this limitation by learning the joint probability distribution.
(Farooq et al., 2013; Saadi et al., 2016; Sun et al., 2018; Sun and Erath, 2015)
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The generated data from GM

« GMICK W EREINI=T — 2 (BHEOHEAEDE) 42D IL—TIZHalF oD
general sample : > 7T — 2 OEHrDERINT-T —XOFICHLEFEET S

missing sample : > 7T — X OFRIZFET AHVERINIZT — KX OFICIFFELAEWL
sampling zero : EEO ANOICIZHFET 5 A, MEES 700 (CIFFEL R
structural zero : ERICIIFELAWZOERRKEBEWRZTTHHDIC, ERINTLED

= w e

« The data (attribute combinations) generated by GMs can be divided into four groups:

general sample : Exists both in the sample data and the generated data.

missing sample : Exists in the sample data but not in the generated data.

sampling zero : Exists in the actual population but not in the small-scale sample.

structural zero : Should not exist because it does not exist in the actual population, but is generated.

B W e
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The generated data from GM

BAWLERADIL, £ Tohsampling zero & general sample# &4, missing sample?’7: <, structural
zeroz g5/ N\BRICHDIR. B Z &
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EEEEINE
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Fig. 1. Conceptual diagram of the general sample, missing sample, sampling zero, and structural zero.
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Applying a deep generative model (DGMs)

« T TIEIVAECGANZEDODGM CBIRES B A LA > 74", B E (overfitting) DN
—sampling zeroD & R EESET

- [4BEFHA D 72 122D D I5IE (feasibility & diversity) = & A (£ ih)

e SINYFROEREINE=-T—R9GDOML—=v Yy TG EEBADEEAZATL, TN o2 H7-
HRIBLEHE L CDGMICEA T A2 2 & TpkD b L — A 7 #H|EHT 5

- Recently, deep generative models (DGMs) have been able to generate attributes with high
reproducibility. However, there is a risk of overfitting, which can lead to a decrease in the ability to
generate sampling zeros. (Kim et al., 2022)

 To evaluate performance, two metrics(feasibility&diversity) are introduced:

« By measuring the distance from the generated data distribution in a mini-batch to the entire
training sample distribution and incorporating these distances into new loss functions, the trade-off
mentioned above can be controlled.
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Hypothetical population and sample

REFEORITICIEAODEREHEL T3, SREIZI005 AU LD DITET — & DKRIFE
Yo ERWAZ ETZ ORE 0]k

« 2 VT T—2%{KEBAD (h-population), TR DO—EEREH > 7L (h-sample) & 33

« TNFTIFHTSOY > FILEDHIBRIC K Y, structural zero®E|E & sampling zeroDEIE IR Y
HE L TWZRIEESED D 5

« The validation of the proposed method typically requires attributes of the entire
population, but in this study, we circumvent this requirement by using a large-scale sample
(>1 million) of travel behavior data.

- We treat the entire sample data as a hypothetical population (A-population) and a portion of
it as a hypothetical sample (hA-sample) for training.

e Previous studies have been limited by the sample size of HTS data, potentially leading to
biases in the of structural zeros and sampling zeros rates.
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2.Data acquisition
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2-1 Data preparation and assumptions

« 20104, 20164, 2021F(CEETITONIZHTIST — X ZHAEDLE TER I NT-EABE =5
DRBELY Y TNT —2%EAT 5T, AIRDEALT — & DO AFAA BN D FHE % ]

« 27— X4ty k% h-population& L, DD HB5%% h-sample& L 7=

 The issue of unavailability of the entire population data is circumvented by using a large-
scale sample data with individual-level attributes created by combining HTS data from South
Korea in 2010, 2016, and 2021.

 The entire dataset is treated as the h-population, with only 5% used as the h-sample.

h-sample <=——> A-population

HTS sample <=— the true population

This method of verification

— — — — — —

In practice
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2-1 Data preparation and assumptions

Table 1
Descriptive Statistics of the h-Population (N = 1,066,319).

Attribute (Dimensions) Category Proportion (%) Category Proportion (%)

° 7r§77 Ej] '%E' E&L )@ ﬁ % H_:__I—I: ZU ‘j: /f A OD - )%TXL E/\j 73: 7r§77 Ej] 1. Household income (6) < l.mlillion WOI.I ) 8.47 5 millio.n - 10 million 16.09
RE—>EFRLTVS e b

2. Household car owner (2) Yes 83.91 No 16.19
—_ > ~ N —_ 3. Driver’s license (2) Yes 60.13 No 39.87
o j] 7 U ,E, '|‘é|:|_ D J)L 75\ H 7|(% EX é 7h, % T ﬁ ‘j: , 4. Gender (2) Male 51.23 Female 48.77
N 5. Home type (6) Apartment 55.41 Single house 21.32
HRABEDEABHETT — DT EE ER e
- < NS Multi-family 9.48 Other 0.89
EE —a_ % — C\_/_ 75\ E_l- Hb 6. Age (17) 5-10 years 4.96 51 - 55 years 8.89
11 - 15 years 7.59 56 — 60 years 7.38
16 - 20 years 7.48 61 — 65 years 5.57
21 — 25 years 4.96 66 -70 years 4.27
26 - 30 years 6.08 71 - 75 years 3.02
“ 31 - 35 years 7.03 76 — 80 years 2.23
° 1 36 - 40 years 9.42 81 — 85 years 1.16
The major travel mode of regular travel 3040 vears .42 g0 years L8
H H 46 - 50 years 9.67
and the major departure tlme Of regU|ar 7. Number of working days (4) 5 days per week 27.81 1 - 4 days per week 10.05
1 VT ! 6 days per week 17.33 Inoccupation/non-regular 44.82
travel represent an individual's general 8. Warking types 9 St Mansgen/ofhc
Inoccupation/Housewife 18.40 Agriculture and fisher 5.68
travel patterns. Bxperts 1.07 Simple labor 1231
Service 15.69 Others 4.43
. H . Sales 5.44
« The data consisting only of categorical 9. Kid in the household (2 Yes 11.04 No 86.96
. 10. Number of households (7) 1 7.56 5 9.67
attributes can represent the data 2 18.16 6 132
. . . . . . 3 25.27 7 0.14
distribution with a finite number of 4 7.8
. . . 11. Major travel mode of regular travel (6) Car 25.65 Taxi 0.31
attribute combinations. Bike/Bicycle 214 Walking 2153
Public transportation 22.49 None 27.87
12. Major departure time of regular travel (4) Peak 56.38 Others 2.31
Non-Peak 13.45 None 27.87
13. Students (4) Kid 0.58 University 4.75
Elementary/Middle/High 18.01 None 76.67

Note: The ‘regular travels’ in the 11th and 12th attributes include working and non-working purposes such as commuting, going to school, and going
to the senior citizen center.

2024/5/23 12




2-2 Sampling zeros according to a sampling rate

h-populationDBIEDHEAEHLE DELEIX264,006TH 2 DI L, A-sampledH ©1£30,837
(11.7%) L i e h - 7 (MT 0 EE LR)

RWERIE, BHEOHEAEHLEZERMICIG L CEXMTIT LIz TIZ, A-sampledENTZ TR
DIAEHLEEHN—TETTWVWEHLEWVWHITEAEZERLTWES

h-sample h-population
(30,837 combinations) (264,005 combinations)

1.0 94.5%  96.5%_ 98.3%

0.9

« The h-population has 264,005 unique

92.2% 86.6% L 935% I

1

|
combinations of attributes, but only 30,837 08 | | ge1% 894% 754% i
(11.7%) were extracted from the h-sample (shown 07 E v e |
by the yellow line in the figure). - 26 o !
o | ) |
. o I
« The red line represents how much of the total 2‘3‘ E 50% o Faen NP
combinations the h-sample covers when the . - . :
. . . . 1 . ampled combinations |
combinations are weighted according to the 01 | W% !

. 3.1%

number of observations. 00 = '

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Sampling rate

Fig. 2. The degree of sampling zeros according to the sampling rate.
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3.Methodologies




3-1 Hypothesis for sampling and structural zero

Hypothesis

sampling zerolZ, structural zerok Y L 2EFED ML —= v Y Y T BHDIBERICEWVEFTICAIE T 5 A A
D E L

The sampling zeros are more likely to be located nearer the boundary of the entire training sample distribution than the
structural zeros.

. g zero & structual zerolSEREE HIFH | TEEh\(io: Y FROY TN HIE NN -TE TG
AR BT S i, AAO L s s HHEERT S HED B

« —E8MDsampling zeroL;t, structural zerok YV H ¥ > 7ILEBFR 5
e BRI YU TILOERZEEOIKANAALDELE ERAZAIEELDH S
o 2 HRERANOEHIIBEEOREREZZER L TUL AL

« Sampling zeros and structural zeros are located in the loosely connected areas where the probability
density is very low (not covered by the sample distribution in the mini-batch), so it is necessary to use
the entire training sample distribution.

« Some sampling zeros may be farther from the sample boundary than structural zeros.
Reason 1: The shape of the probability density of the sample may differ from that of the population.
Reason 2: The distance in the discrete space does not take into account the contextual relationship between attributes.
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3-1 Hypothesis for sampling and structural zero

Hypothesis

structural zeros.

The sampling zeros are more likely to be located nearer the boundary of the entire training sample distribution than the

Introduce of the embeddings to transform
high-dimensional discrete data into a
lower-dimensional continuous vector

2024/5/23

Original discrete space

(Infinite discrete combinations) Number of
observation

Categorical
attributes 1

Structural zero: 8 dist. I Sampling zero: 4 dist I

General sample
: 0 dist.

Boundary of generated
data in the mini-batch

Boundary of population data

Categorical
attributes 2

‘: Generated data
fitting the hypothesis

(a)

x : Generated data

against the hypothesis

Embedded
attributes 1

Embedded continuous space
(Finite continuous combinations) Number of
observation

Structural zero: 1.2 dist.

LR e Tl

= S

~ . ,’ e
Boundary of entire -7 -
TTRRUTTN_training data _.-7_.-”
~ » o® -

~

Boundary of generated “~. ">~ o-Z2-
data in the mini-batch

General sample: 0 dist.

Boundary of

population data Embedded

attributes 2
x : Generated data

against the hypothesis

(b)

.: Generated data
fitting the hypothesis

Fig. 3. Hypothesis for sampling and structural zero in the (a) original discrete space and (b) embedded continuous space.
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3-1 Hypothesis for sampling and structural zero

- HOKEHVIB0RAR Gy F 7 — s EERLT, <L
FhHTF T EMEEHEREICET

c BHIABFY P T—0lE, TREREELY FHEX
?%ftﬁﬁ,%éfﬁkﬁﬁtvF%ﬁﬁﬁéiv

« YRV INICBIEERMTT AERIC, AT AVEMERED
XIRBBE®RAEZE I NS

« We use self-supervised embedding networks to
transform multi-categorical attributes into numerical
attributes.

« The embedding network is trained to output a
complete set of individual attributes given an
incomplete set of attributes.

« In filling the masked attributes, the contextual
lrelatiogships among categorical attributes are
earne
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Fig. 4. Model structure of self-supervised embedding networks.
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3-1 Hypothesis for sampling and structural zero

2DDT —ZANY RV (X, X;)EOERIE, TORXDLSIZ20D~7 bLEDI—7 ) v FEEEEIC
S-oTHESIND

SBOANAZRTIE2DDT —XRA > MEERNY bbb & L TRRI NS /- BEEEEREDAIE Al 8

The distance between the two data vectors (Xl-,Xj) is measured by the Euclidean distance
between the two vectors as shown in the equation below.

In the embedding space, the two data points are represented as continuous vectors, making it
possible to directly measure the Euclidean distance.

the Euclidean distance between two vectors

Dist(X;, X;) = \/ (% - X)°
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3-2 Deep Generative models (DGMs)

DGMIZ. Y7 ILDEM X% ERAL T, BERDEM P(X) DiESHERD T % 1T

%?BUCNT%GANKVAM)@M%:/Ww—vyz%%f%\l,\ INLZE2DDEERET I
& L TERH

The DGM approximates the joint probability distribution of the population’s attributes, P(X),
using the sample’s attributes, X°.

Considering the superior performance of a GAN and a VAE for population synthesis, we adopt
them as the two main models.
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3-2 Deep Generative models (DGMs)

Generative adversarial network (GAN)

- The generator, G(z; ¢,4), parameterized by ¢4, estimates the P¢()?), with a z sampled from a prior
random distribution, P(z).

« The parameterized discriminator, D(X; ¢4), outputs whether the attribute combination is the real data
(X) or the generated data (X = G(2))

The value function to estimate ¢, and ¢q4

minmaxEy o [logD(X)] + E: ro[log(1 ~ D(G(@))) |

« The D is trained to maximize the value function by imposing the higher D(X) and lower D(G(2)).
» The G is trained to minimize log(1 — D(G(2))) by deceiving D with realistic data.
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3-2 Deep Generative models (DGMs)

Generative adversarial network (GAN)

« The generated distribution P¢()?) : discrete on a K-dimensional set of simplex

« The real distribution P(X) : continuous over this simplex set
—— instability and saturation of equilibrium

— employ a Wasserstein GAN (WGAN) with a gradient penalty (GP)

The loss function

| Co. i
Ly = r;zi:l —D(X;) +D(G(z,) ). —— maximizing the value function

1 «—m
Ly = ,;Z,-zl —D(G(z:) ). — minimizing log(1 — D(G(2))) to train the G

1 —m ~ :
Lop = ZZM,{(HV;D (X,-) |, — 1) . — regularizes it based on D’s gradients

X; = aX; + (1 — a)X;, a Uniform|0, 1]. —— a weighted average of the generated and real data
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3-2 Deep Generative models (DGMs)

Variational autoencoder (VAE)

« The encoder Q(X; 8,) maps the input data (X) into the parameters of latent prior distribution P(z).
« The decoder R(z,6,) generates the data (X) mimicking X from the z sampled from P(z2).

« The decoder parameter 6, is estimated together with the encoder parameter 6, based on a
reparameterization trick.

The loss function

Fp = %Z:"zl XilogX,;. — minimizing the discrepancy between the input and generated data

minimaizing the Kullback-Leibler (KL) divergence between the prior P(z) and

L = —PDr[Q(X)||P(2)]. — estimated latent distribution that is the output of the encoder
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3-2 Deep Generative models (DGMs)

A summay of GAN and VAE

I mamaratod data B 1Y e it

Random sample Generator y Generated data : i Realdata |
(2) G(2) 1 X) | : X) I

1

LbLocsuasasas | W o -
L3 \/

________________ Discriminator
— Flow of the data e | (D) o
------ » Flow of the loss to train Ly+ Lgp
(@)
Ly
S il
"""" - Estimated >« E T
: Real data e ] Random sample Decoder I Generated data :
: &) ' distribution. (2) Hie) ! X) !
______ \\‘_T_‘_, S |
v
£ Prior latent |
b distribution - L
KL
P(z)

(b)

Fig. 5. The training procedure of (a) GAN and (b) VAE.
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3-3 Novel loss functions for regularization

Distance to the boundary of the sample distribution

RO ML —Z v T U TN OIER £ TOHE
P, BEENZER CHIBHIAAZRE THsampling zero &
structural zero# XB| 3 27D E W EIETH S =
CxnL TS,

WGANIZ & » THERE NL7zsampling zero &
structural zerolx, VAEICLX > TEKREINT=H D &
)BRFEICX RIS NAERAH S,

The result shows that the distance to the
boundary of the entire training sample distribution
is a good indicator to distinguish the sampling and

structural zeros in discrete and embedding spaces.

The sampling and structural zeros generated by
WGAN tend to be more clearly distinct than those

generated by VAE.
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Fig. 6. Histograms of distance from sampling zeros and structural zeros to the boundary of the entire training sample distribution.
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3-3 Novel loss functions for regularization

Regularizations based on the distance to the sample distribution

The ‘boundary distance regularization’ (Rgp)

discouraging the generation of structural zero far
from the sample boundary

S 1 «—M . s
Rep (X’XS) :A_l j=1ie{1:AIJI}1;2{1:M}(DlSt(Xj’Xf)) 7

Ny FROBEERT—EZHASNEOLE ML —Z v T — 2 F TORBIEHMAETE L, MEDLER
TLTﬁﬁ%HXOt%OD

ZNYTFOIEICEWTEEDO ML —Z v T TN HEEELT, T —2DIlET—X D%
I FEFALEHICLTWAS,

« The Rgp calculates the nearest distance from each generated data in the mini-batch to N entire
training data and averages them for M generated data.

« Considering the entire training sample distribution in each mini-batch training
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3-3 Novel loss functions for regularization

Regularizations based on the distance to the sample distribution

The ‘average distance regularization’ (R,p)

l M v . = encouraging the generation of missing
Rip= ——)  Dist(X;,X° —_— )
b NME:FIE::1 (%, %) samples and sampling zero

+ RpIMEDOEMT — 2D [2FD L —=> 59> TS H~OFER] OTFHEHEL T, £RT —
XN T — X EEODHISH L TEYNICEH S E2 L5 ICLTLWD.

« missing sample & sampling zerold&fED b L —=Z > 7% > T IS T 2 FHHEEEA R LMER]

« The R,p computes the average for the ‘average distance to the entire training sample distribution’ of
the M generated data.

« The missing sample and sampling zero tend to have a long average distance to the entire training
sample distribution.
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3-3 Novel loss functions for regularization

Regularizations based on the distance to the sample distribution

Probability
e RppldEAAI(Cstructural zeroZ @ o density S e PN SENTARY YRR
7b§\, samp li Ng zero :E) El—l‘j& - C B?Ef@“ % E_I- A —— : Sample distribution 8 : Structural zero @ : Sampling zero
-E\E/r/_jzl_ -bi‘ % % . — : Generated distribution @ : Misclassified Sampling zero
« SEFR, missing sample & sampling zero ooty £ Mode Mode
Cj:/i\'TZI:@ l\ L —— 7-'j_ >/ 7°)l/§j\ﬁ [Z }l(TJ' ' B_D co'llap.se C(:)Ilap:se
55 TR E - o -

« The Rgp is expected to reduce the
structural zero but can also falsely
remove the sampling zero. Sampling zero

removed by Ry, [t

e The missing sample and sampling zero
tend to have a long average distance to

ry > Data space

the entire training sample distribution. XX 00 2 3
Structural zero Sampling zero Missing sampling Missing sampling
Filtered by Rz,  Induced by Ry, Induced by Ry, Induced by Ry,

Fig. 7. The generated data considered by Rgp and R,p on the simplified data space.
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3-3 Novel loss functions for regularization

Variants of the DGM

The final loss functions of WGAN and VAE adopting Rz, and Ry

Lwoan =La+ Ly +Lop + 755V Rep + 55N Rap

ZLyar ::eE?R‘*'eE?KL'+'YZQFIQBD'+'YX2F13AD

YEAN y AN o FAE o VAE - the regularization weights

* Rgp : discouraging the generation of structural zero far from the sample boundary
* R,p :encouraging the generation of missing samples and sampling zero
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3-4 Evaluation metrics

Distributional similarity

Standardized root mean square error (SRMSE)

~~ 2
R Z (Tw) = Fpy) / No evaluating the distributional similarity of
. RMSE(z,7) \ &) — . L
SRMSE(x, ) = = : marginal and bivariate distribution

7 Eikhyyﬂuxﬁ//A@
1t : categorical distributions of the h-population

Tt : categorical distributions of the generated data
N,, : the total number of category combinations

« BEFOFEIFEEL WD, BRITOMZLET 2L THEZHEICL TV,

« Evaluating overfitting is challenging.

« Comparing low-dimensional distributions helps simplifying the computation.
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3-4 Evaluation metrics

Feasibility and diversity

Feasibility : £ s N7=T — XD TTDT =X EENIZELTWED, TTDOT —X%EENFEITBIRTETWLWS D
w29 151Z. / Indicating how well the generated data resembles the population data.

The metrics to evaluate the feasibility

. 1 M measuring the ratio of generated data included in the feasible #-population,
Precision = i I~

_ — . .
j=1" X;eX that 1s one minus structural zero rates

Diversity : £ 7 — XD TTT —XDNY I =23 v ENEIFRATWEAZRTIER BFE OREE % .
/ Refering to the degree to which the generated data captures the population variations

The metrics to evaluate the diversity

I —w measuring the ratio of z#-population’s combinations included in the generated data
Recall = — E 1~ : .
N4&—i=1 Xxiex proportional to the sampling zero
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3-4 Evaluation metrics

Feasibility and diversity

Trade-off relationship : sampling zero% #&~>9 & structural zeroH & 2 % (precision&recallt b L — K7+ 7)

/ Precision and recall have a trade-off relationship.

The metrics indicating the overall quality

2 X Precision x Recall
Precision + Recall

F1 score =

,~~ " Population distribution
s

Z _/ Generated distribution

-------- 5z // _s A
- ~
[ A : :
1 4 \
\ y \
\‘ ’ \ B ¥
X BG v 4 =
’ A Y I/
" \ '
1 N c \| " c |
\ ~ 1 P
\ - G O ot
Precision: —2¢ Recall: —=2£
(Ag+Bg+Cg) (Ap+Bp+Cp)

Fig. 8. Conceptual diagram of precision and recall for evaluating generative model.
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4. Empirical application
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4-1 Model evaluation results

Evaluated models

data-generating process efficiently © VAN &YV 105,0.005) « v gykg (075,02

bl Fully Connected(32) =» u

Fully Connected(256) =+ RelLU =

Architecture | | Training parameters
, o WGAN VAE WGAN VAE
* . = * Discrimi . ini ini
The prototypical agent approach : re-weighting Discriminator Encoder o S i -
. . . . . . . . I Fully Connected(256) = LeakyReLU I - | Fully Connected(256) =» ReLU | ° léiezélr:lrslg er:at2e5.60.005 : ;ﬂ:l:i er:atzesz6 0.005
* BN : a GM decomposing the joint distribution into T —]
. .. .. . -~ b larizations (Discrete) izations (Di
a set of partial conditional distributions to learn the [Loear | ; e vor
« Generator I Fully Connected(64) = RelLU I 5 y/%w: 0.005 . yl"/"ﬁz 03
|
I

. Batch Normalization x3 -I Fully Connected(32) = o Reguclizfaltigns (Embedded) Regu‘liz_i:za;igns (Embedded)
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Fig. 9. Calibrated hyperparameters of WGAN and VAE.
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4-1 Model evaluation results

Table 2
Evaluation Results of Generated Data with Size of h-population.
Method Distributional Similarity Diversity Feasibility Overall Quality
Model Space Loss functions Marg. SRMSE Bivar. SRMSE # of comb” Recall Precision F1 score
Prototypical agent approach 0.008 0.020 30,837 56.4 % 100.0 % 72.1 %
BN 0.009 0.084 303,723 78.4 % 73.7 % 76.0 %
VAE - Vanilla 0.055 0.127 355,277 81.0 % 71.8 % 76.1 %
Discrete Rgp 0.095 0.218 265,875 79.9 % 79.2 % 79.5 %
(Dis) Rap 0.057 0.132 312,506 82.1 % 76.1 % 79.0 %
Rpp&Rap 0.079 0.173 329,097 82.0 % 73.6 % 77.6 %
Embedded Rgp 0.088 0.208 289,377 80.2 % 76.6 % 78.4 %
(Emb) Rap 0.060 0.140 334,569 82.3 % 74.1 % 78.0 %
Rgpn&Rap 0.050 0.116 318,731 82.0 % 75.4 % 78.6 %
WGAN - Vanilla 0.022 0.064 279,336 80.2 % 79.7 % 79.9 %
Discrete Rgp 0.036 0.094 155,586 74.7 % 89.0 % 81.2%
(Dis) Rap 0.016 0.048 273,622 81.2% 80.4 % 80.8 %
Rgn&Rap 0.043 0.106 152,031 74.1 % 89.2 % 81.0%
Embedded Rgp 0.023 0.076 225,408 77.7 % 84.6 % 81.0 %
(Emb) Rap 0.020 0.059 276,012 81.3 % 80.3 % 80.8 %
Rgp&Rap 0.024 0.072 236,238 78.1 % 83.0 % 80.5 %

Note: Bold font indicates the best and second-best models for each metric except the re-weighting. # of comb. indicates the number of unique
combinations of the generated data.

* : The number of combinations of population data is 264,005.
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4-1 Model evaluation results

Distributional similarity

« The BN shows the best performance for marginal

SRMSE among GMs (even close to re-weighting), Method Distributional Similarity
while the ‘WGAN-Dis-R,,’ is the best for bivariate Model Space Loss functions  Marg SKMSE  Bivar. SRMSE

. . . Prototypical agent approach 0.008 0.020

distribution. BN 0.009 0.084

. ] VAE - Vanilla 0.055 0.127

« All the WGAN variants outperform their VAE Discrete Rap 0.095 0.218

(Dis) Rap 0.057 0.132

counterparts. Paf bl P

. . . Embedded R 0.088 0.208

 The R,p loss function in discrete and embedded (Emb) Rao 0.060 0.140

spaces increases the distributional similarity of wean - ﬁﬁﬁw gg;‘z’ g;j

vanilla WGAN but decreases those of VAE. Discrete Rsp 0.036 0.094

(Dis) Rap 0.016 0.048

« The Rgp loss function increases the SRMSE for all e ;}BD&RAD 88;2 8(1)‘7’2

cases, indicating that the SRMSE cannot reflect (Emb) R 0.020 0.059

aspects related to the structural zero. Ren&Rap 0024 0074
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4-1 Model evaluation results

Diversity measured by recall

« As expected, the re-weighting exhibits poor diversity,

. . Method Diversi

but the proposed DGM significantly enhances the el

. . Model Space Loss functions # of comb* Recall
diversity.

Prototypical agent approach 30,837 56.4 %
« The VAE variants marginally outperform the WGAN BN , 303,723 784 %
_ _ ] ) VAE - Vanilla 355,277 81.0 %
variants in terms of diversity. Discrete Rsp 265,875 79.9 %
(Dis) Rap 312,506 82.1 %
« The R,p loss function consistently improves the ; z Run&Rap 329,097 82.0 %
. . . . Em R 289,377 80.2 %
diversity of WGAN and VAE in both embedding and (Emb) Pyt 334569 82.3 %
discrete spaces, but the improvements are marginal. Ryp&Rp 318,731 82.0 %
WGAN - Vanilla 279,336 80.2 %
« The improvements from embedding and discrete Digcretn Reo 155,566 747 %
_ _ (Dis) Rap 273,622 81.2 %
spaces are almost identical. Rep&Rap 152,031 74.1 %
Embedded Rgp 225,408 77.7 %
« The number of generated attribute combinations is (Emb) Rap 276,012 81.3 %
Rpp&Rap 236,238 78.1 %

partially related to the recall but is not proportional.
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4-1 Model evaluation results

Diversity measured by recall

0.85
0.823
0.8
By definition, the recall increases in proportion —
to the number of generated data points. =
(4°)
. . . O
« The superior diversity of VAE over WGAN & o7
becomes more prominent for small sampling
rates. 0.65
0.6 VanillaWGAN - WGAN-Emb-R,,
- Vanilla VAE - VAE-Emb-R,,
0.55
2 4 6 8 10 12 14 16 18 20

generated data size (X h-sample size)

Fig. 11. The changes in the diversity of DGMs according to the number of generated data.
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4-1 Model evaluation results

Feasibility measured by precision

. . . .y Method Feasibili
« The WGAN with strength in producing realistic data i casiiy
. . . Model Space Loss functions Precision
shows higher precision than other models.
Prototypical agent approach 100.0 %
« The proposed Rgp loss function enhances the BN ‘ 73.7 %

. . o o VAE - Vanilla 71.8 %
precision of WGAN and VAE by 9.3 % and 7.4 % Discrete e 79.2 %
compared to their vanilla counterparts. \Dis) Rap 76.1 %

Rgp&Rap 73.6 %

. . . Embedded R 76.6 %

« The precision enhancement from Rpp loss function (mb) Reo 74,1 %
is more prominent in the discrete space than in the Rup&Rap 75.4 %
b d d WGAN ~ Vanilla 79.7 %
empe |ng SpaCe. Discrete Rgp 89.0 %
(Dis) Rap 80.4 %

Rgp&Rap 89.2 %

Embedded Rgp 84.6 %

(Emb) Rap 80.3 %

Rpp&Rap 83.0 %
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4-1 Model evaluation results

Overall quality
* |In terms of overall quality, WGAN outperforms VAE. Method Overall Quality
But the authors suggest that the choice between them Model  Space Loss functions  F1 score
depends on the ultimate goal due to their different Prototypical agent approach 72.1 %
BN 76.0 %
Strengths' VAE - Vanilla 76.1 %
. . Di t R 79.5 %
« When both Ry, and R, are incorporated into the loss i R 700 %
functions, the performance is inferior to other patterns. Rep&Rap 77.6 %
Embedded Rgp 78.4 %
Based on the trade-off between feasibility and (b Rab 78.0%
. . .. . . Rpp&Rap 78.6 %
— | diversity, it is better to find the optimal weight for WGAN - Vanilla 79.9 %
. Discrete Rgp 81.2 %
each loss function. Dis) i 20,8 %
Rgp&Rap 81.0 %
Embedded Rgp 81.0%
(Emb) Rap 80.8 %
Rpp&Rap 80.5 %
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4-2 Sensitivity analysis of loss functions for regularization

« The higher the ygzp, the higher the precision, and it monotonically increases while sacrificing the recall.

« Ifyap is too large, the generated data will deviate beyond the scope of improving diversity, leading to
decreases in both recall and precision.

The users can fine-tune the VAE or WGAN using the proposed two loss functions
for regularization, according to their objectives.

Precision/ Precision/

Recall/F1 WGAN-Dis-Rgp Recall/F1 WGAN-Dis-R,p
] 082
09 E E 0.815 pome,
: 0.8

0.8
0.805

0.7 L4
i 0.8 o
ptima |
0.6 y Optimal
F1 point 0.795 ‘
o F1 point
0.5 0.79
01 02 03 04 05 06 0.7 08 09 1 11 12 0.003 0.004 0.005 0.006 0.007 0.008
= LGAN z GAN
—o— Recall Precision —e— F1 Weight (yg5™) —e— Recall Precision == F1 Weight (y53")

Fig. 12. Sensitivity analysis of the weights of loss functions on WGAN performance.
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5.Conclusion
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S5 Conclusion

Objective

DGM® b L —=> 7 ZFH W Tsampling zeroD Az & L 22, strucral zeroZz &x/INRICHIZ 27T L LWEZK
% & 22 / This study proposes novel loss functions for regularization in the training of DGMs to
encourage generating sampling zeros while maintaining the structural zeros at a minimum.

Novel insigths and achievement

o PDHWFALUETS T TDGME IS 5 2 & 1Z o Tld7 Ly / Evaluating DGMs based solely on distributional
similarity is not sufficient.

« DGMIiZre-weighting & ¥ overall qualityna =Ly / DGMs achieve higher overall quality compared to re-
weighting methods.

« VAElZdiversityZz @\ Ex+, WGAN(Zfeasibilityzm Xt % / VAEs improve diversity, while WGANs
enhance feasibility.

o HL WIBKE# L feasibility & diversityd bL— FAF 7% FfHlT5 Z & TDGMD /X7 + —< Vv X% [ £ X
%% / New loss functions enhance DGM performance by controlling the trade-off between feasibility
and diversity.
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S5 Conclusion

Future work

e ERAOLYHEMART /T AETANRX—=DERMRCAOSRKICHERNEYEZHEAAAL Z &I, hE
HY 73 IERIME D B 3
s THOAODENICHLTH Y T7A FEETHZ LT, DGMHAFRDEGHRALICH T Bdiversityz &
H5HTENTZED
Fr 2%

« BRAOEWVWHELHA LD >T-DO TERIIFEHIENMERE ZADLLIFERIEI AR Y ER LT
. HEE (FICDGM) R WA - /-

o TTHEMEEAEBRICA ST ENBVDT, BHABHIAINBEREAIZA X —2 LI W

« FEBEDEBEAE WD UTINBHFETIT I HOMELHSDIEEA WL
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