Cupid's Invisible Hand: Social Surplus and Identification in Matching Models

Alfred Galichon & Bernard Salanié, Cupid's Invisible Hand: Social Surplus and Identification in Matching Models, *The Review of Economic Studies*, Volume 89, Issue 5, October 2022, Pages 2600–2629

B4 村山拓未

Abstract

- **Research focus:** One-to-one matching model with transferable utility and general unobserved heterogeneity
- **Method:** Extended the separability assumption from Choo and Siow (2006)

• **Results:**

- Shows that equilibrium matching maximize a social gain function, balancing complementarities in observable characteristics and matching on unobserved traits
- Derives simple closed-form formulas to identify joint matching surplus and equilibrium utilities for all participants, given any known distribution of unobserved heterogeneity

• **Contributions:**

- Provides efficient algorithms for computing stable matching and estimating parametric models
- Revisits Choo and Siow's empirical application, demonstrating the potential of a more general approach

Novelty, Utility, Reliability

Novelty:

• Extends Choo and Siow's (2006) separability assumption to a more general framework

Utility:

- Provides practical solutions for identifying matching surplus and utilities.
- Offers efficient algorithms for stable matching and parametric model estimation.

Reliability:

• Conducts empirical approach

1. Introduction

Models of matching with transferable utilities

- Model the marriage problem as a matching problem (Becker, 1973)
- "Assignment game" (Shapley and Shubik, 1972)
	- Models of matching with transferable utilities
- Applications of the model
	- Competitive equilibrium in good markets with hedonic pricing
	- Trade
	- The labor market
	- Industrial organization

Becker's theory and its problem

Becker's theory:

- The type of the partners are one-dimensional and complementary in producing surplus (Special case)
- Social optimum shows *positive assortative matching*:
	- higher types pair up with higher types

The data:

• Matches are observed between partners with quite different characteristics

Choo and Siow's model

- Solution for Becker's problem:
	- Allow the matching surplus to incorporate latent characteristics **heterogeneity**

Choo and Siow's model

- Conditions:
	- The unobserved heterogeneities enter the marital surplus quasi-additively
	- These heterogeneities are independent and identically distributed as standard type I extreme value terms
- Examples:
	- Evaluate the effect of the legalization of abortion on gains to marriage
	- Use Canadian data to measure the impact of demographic changes
- The idea has been used in various later studies

Choo and Siow's model

3 assumptions of their model:

- 1. The unobserved heterogeneities on the two side of a match do not interact in producing matching surplus (Separability assumption)
- 2. They are distributed as iid type I extreme values (Distributional assumption)
- 3. Populations are large

Contributions of the paper

1. Extended idea of Choo and Siow's model

- Choo and Siow's distributional assumption is very special
	- Generate a MNL model
	- Specific restrictions on cross-elasticities
- The authors show:
	- Choo and Siow's distributional assumption can be completely dispensed with
	- Choo-Siow framework can be extended to encompass much less restrictive assumptions on the unobserved heterogeneity

2. Complete empirical approach

- Identification
- Parametric estimation
- computation

3. Revisit the original Choo and Siow (2006) dataset on marriage patterns by age

Other approaches

• **Market with transferable utilities**

- Fox (2010, 2018)
- Bajari and Fox (2013) spectrum auctions
- Fox *et al.* (2018) identify the complementarity between unobserved characteristics
- Gualdani and Sinha (2019) partial identification issues in nonparametric matching models

• **Market with non-transferable utilities**

- Menzel (2015) investigation of large non-transferable utilities markets
- School assignment, where preferences on one side of the market are highly constrained by regulation
- Agarwal (2015) matching in the US medical resident program

2. Framework and Roadmap

A bipartite matching market with transferable utility

- A bipartite, one-to-one matching market with transferable utility
- Maintains some of the basic assumptions of Choo and Siow (2006)
	- Utility transfers between partners are unconstrained
	- Matching is frictionless
	- No asymmetric information among potential partners
- An application to the heterosexual marriage market

- The analyst can observe groups are defined by the intersection of the characteristics
- The analyst cannot observe men and women of a given group differ along some dimensions

Setting 2

Separability

Assumption 1 (Separability)

- **Joint utility of a match:** $\widetilde{\Phi}_{ij} = \Phi_{xy} + \varepsilon_{iv} + \eta_{xi}$
	- $\widetilde{\Phi}_{ij}$: Joint utility for man *i* (group *x*) and woman *j* (group *y*)
	- Φ_{xy} : Base utility between group x and y
	- ε_{iv} : Random term specific to man i
	- η_{xj} : Random term specific to woman j

• **Utility of single individuals:**

- Single man $i: \widetilde{\Phi}_{i0} = \varepsilon_{i0}$
- Single woman *j*: $\widetilde{\Phi}_{0j} = \eta_{0j}$

• **Distribution and finite expectations:**

- Conditional on $x_i = x$, $\varepsilon_i = (\varepsilon_{iy})_{y \in \mathcal{Y}_0}$ has distribution \mathbf{P}_x
- Conditional on $y_i = y$, $\boldsymbol{\eta}_j = (\eta_{xj})_{x \in \mathcal{X}_0}$ has distribution \boldsymbol{Q}_y
- $max_{y \in \mathcal{Y}_0} \left| \varepsilon_{iy} \right|$ and $max_{x \in \mathcal{X}_0} \left| \eta_{x_i} \right|$ have finite expectations under \mathbf{P}_x and \mathbf{Q}_y , respectively
- Allow for "matching on unobservables"
- Rule out sorting on unobserved characteristics on both sides of the market
	- E.g. some unobserved preference of man *i* for some unobserved characteristics of woman

 \boldsymbol{P}_x and \boldsymbol{Q}_y are not only limited to the extreme value class

2.3 Objectives and a roadmap

Final goal

Develop inference tools for matching problems with transferable utility and separable unobserved heterogeneity

Steps

- 1. Two-sided matching problem resolves into a collection of one-sided problems of lower complexity (given separability)
- 2. Provide new results on discrete choice (one-sided) models
- 3. Stable matching solves a convex optimization problem
- 4. Use convex duality to identify the matching surplus
- 5. New computational methods to solve for the stable matching and to estimate underlying parameters

3. Social Surplus and Identification in the One-Side Case: Discrete Choice Models

Splitting the surplus

Proposition 1: Splitting the surplus

• Under Assumption 1, there exist $\mathbf{U} = (U_{xy})$ and $\mathbf{V} = (V_{xy})$ for $(x, y) \in \mathcal{A}$, with $U_{x0} = V_{0y} = 0$, such that at any stable matching (μ_{xy})

1. Men's matching decision:

- A man *i* of group x marries a woman of group $y^* \in \mathcal{Y}$ if y^* maximizes $U_{xy} + \varepsilon_{iy}$ over $y \in \mathcal{Y}_0$
- If the maximum is achieved at $y = 0$, the man remains single
- Man *i's* utility \tilde{u}_i is the value of the maximum

2. Women's matching decision:

- A woman *j* of group *y* marries a woman of group $x^* \in \mathcal{X}$ if x^* maximizes $V_{xy} + \eta_{x}$ over $x \in \mathcal{X}_0$
- If the maximum is achieved at $x = 0$, the woman remains single
- Woman $j's$ utility \widetilde{v}_j is the value of the maximum

3. Surplus splitting condition:

• $U_{xy} + V_{xy} \ge \Phi_{xy}$ for all $(x, y) \in \mathcal{A}$, with equality if $\mu_{xy} > 0$

Social surplus in discrete choice models

One-sided discrete choice problems

- An individual chooses from a set of alternatives $y \in \mathcal{Y}_0$
	- Utilities are $U_v + \varepsilon_v$
	- Assume the vector $\epsilon = (\epsilon_y)_{y \in \mathcal{Y}_0}$ has a distribution \mathbb{P} ; without loss of generality
	- $U_0 = 0$, $U = (U_1, ..., U_{|Y|})$

The *ex ante* **indirect surplus**

= weighted sum of the mean utilities + generalized entropy of choice

Two characterizations of generalized entropy function

- 1. The convex conjugate of the *ex ante* indirect utility
- 2. The solution to an optimal transport problem (Galichon, 2016)

Generalized entropy of choice

The average utility of the agent

$$
G(\boldsymbol{U}) = \mathbb{E}_{P} max_{y \in \mathcal{Y}_{0}} (U_{y} + \varepsilon_{y}) \qquad (3.1)
$$

$$
= \mathbb{E}_P(U_{Y_i^*} + \varepsilon_{i,Y_i^*})
$$

= $\sum_{y \in \mathcal{Y}} \mu_y U_y + \mathbb{E}_P(\varepsilon_{i,Y_i^*})$ (3.2)

- The expectation is taken over the random vector $\boldsymbol{\varepsilon} = (\varepsilon_{0,\dots, \varepsilon_{|\mathcal{U}|}}) \sim P$
- The function G is known as the *Emax operator* in the discrete choice literature

 $Y_i^* \in \mathcal{Y}_0$ is the optimal choice of individual i

 μ_{ν} is the proportion of individuals who choose alternative y

Legendre-Fenchel transform **of G** $\mu = (\mu_1, ..., \mu_{|U|})$ $G^*(\bm{\mu})=\begin{cases} sup_{\widetilde{U}}=(\widetilde{u}_1,...,\widetilde{u}_{|\mathcal{Y}|})\big(\Sigma_{\mathcal{Y}\in\mathcal{Y}}\,\mu_{\mathcal{Y}}\widetilde{U}_{\mathcal{Y}}-G\big(\widetilde{\bm{U}}\big)\big), when ever\ \sum_{\mathcal{Y}\in\mathcal{Y}}\mu_{\mathcal{Y}}\leq 1\end{cases}$ $+\infty$, otherwise (3.3) • The domain of G^* is the set of μ that can be interpreted as vectors of choice probabilities of alternatives in y

Generalized entropy of choice

Definition 1.

The function $-G^*$ is the generalized entropy of choice

$$
G(\boldsymbol{U}) = \sup_{\widetilde{\boldsymbol{\mu}} = (\widetilde{\mu}_1, ..., \widetilde{\mu}_{|\mathcal{Y}|})} \left(\sum_{y \in \mathcal{Y}} \widetilde{\mu}_y U_y - G^*(\widetilde{\boldsymbol{\mu}}) \right) \tag{3.4}
$$

$$
G(\boldsymbol{U}) + G^*(\boldsymbol{\mu}) = \sum_{y \in \mathcal{Y}} \mu_y U_y
$$

 $G^*(\mu) = -\mathbb{E}_P\big(\varepsilon_{iY_i^*}$

The theory of convex duality implies that since G is convex, it is reciprocally the Legendre-Fenchel transform of G^*

Assume that μ attains the supremum in (3.4)

•
$$
-G^*
$$
 is just the average heterogeneity that is required to rationalize the conditional choice probability vector μ

Characterization of the generalized entropy of choice

Theorem 1 (Characterization of the generalized entropy of choice)

Statement:

Let $\mu = (\mu_1, ..., \mu_{|\mathcal{Y}|})$ with $\sum_{y \in \mathcal{Y}} \mu_y \leq 1$, and define $\mu_0 = 1 - \sum_{y \in \mathcal{Y}} \mu_y$. Let $\mathcal{M}(\mu, P)$ denote the set of probability distributions π of the random joint vector (Y, ε), where $Y \sim (\mu_0, \mu)$ is a random element of y_0 , and $\epsilon \sim P$ is a random vector of $\mathbb{R}^{|\mathcal{Y}_0|}$.

Optimal transport interpretation:

$$
-G^*(\boldsymbol{\mu}) = sup_{\pi \in \mathcal{M}(\boldsymbol{\mu},\boldsymbol{P})} \mathbb{E}_{\pi}(\varepsilon_{\boldsymbol{Y}})
$$
(3.6)

- μ : Vector of choice probabilities for alternatives in Y.
- π : Joint distribution of (Y, ε) with $Y \sim (\mu_0, \mu)$ and $\varepsilon \sim P$.
- $\mathcal{M}(\mu, P)$: Set of feasible joint distributions.
- ε_Y : Surplus given by the chosen Y

Explanation:

 $-$ ^{*}(μ) represents the value of the optimal transport problem between the distribution (μ_0 , μ) of **Y** and the distribution of P of ε , where the objective is to maximize the expected surplus $\mathbb{E}_{\pi}(\varepsilon_{\gamma})$.

Identification of discrete choice models

Theorem 2 (Identifying the mean utilities)

Given:

- $\mu = (\mu_1, ..., \mu_{|\mathcal{Y}|})$ with $\sum_{y \in \mathcal{Y}} \mu_y \leq 1$
- $U_0 = 0$ and $U = (U_1, ..., U_{|Y|})$
- Distribution P with full support, absolutely continuous w.r.t. the Lebesque measure

Equivalent statements:

- 1. For every $y \in \mathcal{Y}$, $\mu_y = \frac{\partial G}{\partial U_u}$ (3.7)
- 2. For every $y \in \mathcal{Y}$, $U_y = \frac{\partial G^*}{\partial \mu_y}$ (3.8)
- 3. There exists a scalar function $u(\varepsilon)$, integrable w.r.t. **P**, such that (u, U) are the unique minimizers of the dual problem to (3.6):

$$
-G^*(\mu) = \min_{U, u} \int \bar{u}(\varepsilon) dP(\varepsilon) - \sum_{y \in \mathcal{Y}} \mu_y u_y
$$

s.t.
$$
\bar{u}(\varepsilon) - \bar{U}_y \ge \varepsilon_y \ \forall y \in \mathcal{Y}, \forall \varepsilon \in \mathbb{R}^{\mathcal{Y}_0}, \bar{U}_0 = 0.
$$

• These conditions provide a way to uniquely identify mean utilities U from observed choice probabilities μ under the given distribution P

Daly-Zachary-Williams theorem

Fenchel duality theorem: (3.7) and (3.8) are equivalent

- 1 is well-known in the discrete choice literature
- 2 and 3 provide a constructive method to identify U_v based on the conditional choice probabilities μ
	- As the solution to a convex optimization problem (2)
	- An optimal transport problem (3)

Examples

1. Logit and nested Logit

- Two-layer nested logit model
	- Alternative 0 is alone in a nest
	- each other nest $n \in \mathcal{N}$ contains alternatives $y \in \mathcal{Y}(n)$
	- Correlation of alternatives within nest *n* is $1 \lambda_n^2$ ($\lambda_0 = 1$ for the nest made of alternative 0)
- Multinomial logit model (MNL)
	- When $\lambda_n = 1$ for every nest n

2. Random coefficients multinomial logit and pure characteristics model

- Random coefficient logit model
	- Error term ε :

$$
\varepsilon=Ze+T\eta
$$

- *e* is a random vector on \mathbb{R}^d with distribution P_e
- \mathbb{Z} is a $|\mathcal{Y}_0| \times d$ matrix
- $T > 0$ is a scalar parameter
- $|y|$ extreme value type-I (Gumbel) random variables, independent of e
- Pure characteristics model
	- When $T = 0$
	- Solution to the power diagram problem (Galichon, 2016)

4. Social Surplus and Identification in the Two-Side Case: Matching Models

Matching models

• Define G_x to be corresponding Emax function, based on the results of one-sided discrete choice

 $G^*(\mu, n) = \sum_{x \in \mathcal{X}} n_x G_x^*(\frac{\mu_x}{n_x})$ n_{x} $) = -$ generalized entropy of choice of all men

- Define $H_{\nu}(\boldsymbol{V}_{\nu})$ as the Emax function on women's side
- Given group numbers $\mathbf{m} = (m_{v})$, the aggregate welfare of women is $H(\mathbf{V}, \mathbf{m})$
- Dual problems of these are the generalized entropy of choice

Social surplus, equilibrium, and entropy of matching

• Social Surplus W :

$$
\mathcal{W} = G(\mathbf{U}, \mathbf{n}) + H(\mathbf{V}, \mathbf{m}) = \sum_{x \in \mathcal{X}} n_x G_x(\mathbf{U}_x) + \sum_{y \in \mathcal{Y}} m_y H_y(\mathbf{V}_y)
$$

- Stable matching $\mu = (\mu_{xy})_{x \in \mathcal{X}, y \in \mathcal{Y}} (U + V = \Phi)$
	- $G(U, n) = \sum_{x \in \mathcal{X}, v \in \mathcal{U}} \mu_{xy} U_{xy} G^*(\mu, n)$: (3.4)
	- $H(V, m) = \sum_{x \in \mathcal{X}, v \in \mathcal{U}} \mu_{xy} V_{xy} H^*(\mu, m)$: (3.4)
- $W = \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \mu_{xy} \Phi_{xy} + \varepsilon(\mu, n, m)$
	- $\varepsilon(\mu, n, m) \coloneqq G^*(\mu, n) H^*(\mu, m)$
	- Generalized entropy of matching

Social surplus at equilibrium

Assumption 2

For all $x \in \mathcal{X}$ and $y \in \mathcal{Y}$, the distribution P_x and Q_y have full support and are absolutely continuous

Theorem 3 (Social surplus at equilibrium)

• Under assumptions 1 and 2, for any Φ and $r = (n, m)$ the stable matching μ maximizes the social surplus over all feasible matchings $\mu \in \mathcal{M}(r)$

$$
W(\boldsymbol{\Phi}, \boldsymbol{r}) = \max_{\boldsymbol{\mu} \in \mathbb{R}^{X \times Y}} (\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \mu_{xy} \Phi_{xy} + \varepsilon(\boldsymbol{\mu}, \boldsymbol{r})) \tag{4.5}
$$

• Dual expression

$$
\mathcal{W}(\boldsymbol{\Phi}, \boldsymbol{r}) = \min_{\boldsymbol{U}, \boldsymbol{V} \in \mathbb{R}^{X \times Y}} (G(\boldsymbol{U}, \boldsymbol{n}) + H(\boldsymbol{V}, \boldsymbol{m}))
$$
\n
$$
\text{s.t.} \quad U_{xy} + V_{xy} \ge \Phi_{xy} \ \forall x \in \mathcal{X}, y \in \mathcal{Y}
$$
\n
$$
\tag{4.6}
$$

• Optimal solutions relationship

$$
\mu_{xy} = \frac{\partial G}{\partial U_{xy}}(\mathbf{U}, \mathbf{n}) = \frac{\partial H}{\partial V_{xy}}(\mathbf{V}, \mathbf{m})
$$
(4.7)

Remarks of Theorem 3

1. The components of social surplus and their meanings (4.5)

- The first term reflects "systematic preferences"
	- If it dominates, it is the linear programming problem of Shapley and Shubik (1972)
- The second term reflects "idiosyncratic preferences"
	- If it dominates ($\Phi \cong 0$), it looks like random matching

2. Dual problem (4.6)

- The dual problem (4.6): The destination of the surplus shared at equilibrium between men and women
	- $n_x G_x(U_x)$: the total amount of utility going to men of group x
	- $m_v H_v(V_v)$: the total amount of utility going to women of group y
- The primary problem (4.7): The origin of surplus
	- Φ_{xy} : The part of the surplus that comes from the interaction between observable characteristics in pair xy
	- $\varepsilon(\mu, r)$: unobservable heterogeneities in tastes

3. The first-order conditions and the equality between the demand (4.7)

- (4.7) is the first-order conditions of (4.6)
- The right-hand side is the demand of women of group y for men of group x and vice versa
- In equilibrium, these numbers must both equal μ_{xy}
- 4. A wealth of comparative statics results and testable predictions

2024/5/20 理論談話会2024#7 29

Individual and group surplus

Proposition 2 (Individual and group surplus)

Let (U, V) solve (4.6), and $U_{x0} = V_{0y} = 0$. Under Assumptions 1 and 2,

- A man *i* of group x who marries a woman of group y^* obtains utility $U_{xy^*} + \varepsilon_{iy^*} = max_{y \in \mathcal{Y}_0} (U_{xy} + \varepsilon_{iy})$
- The average utility of men of group x is

$$
u_x = G_x(\boldsymbol{U}_x) = \frac{\partial \mathcal{W}}{\partial n_x}(\boldsymbol{\Phi}, \boldsymbol{r})
$$

• These can also be applied to women's side

Identification

• Focus on the case when **the distributions of the error terms are known**

Theorem 4.

Under Assumptions 1 and 2:

1. *U* and *V* are identified from *µ* by

$$
U = \frac{\partial G^*}{\partial \mu}(\mu) \text{ and } V = \frac{\partial H^*}{\partial \mu}(\mu)
$$

2. $U_{xy} + V_{xy} = \Phi_{xy}$ for every $x \in \mathcal{X}$ and $y \in \mathcal{Y}$. The matching surplus Φ is identified by

$$
\Phi_{xy} = -\frac{\partial \varepsilon}{\partial \mu_{xy}} (\boldsymbol{\mu}, \boldsymbol{r}), \qquad (4.9)
$$
\n
$$
\Phi_{xy} = \frac{\partial G_x^*}{\partial \mu_{y|x}} (\boldsymbol{\mu}_{\cdot|x}) + \frac{\partial H_y^*}{\partial \mu_{x|y}} (\boldsymbol{\mu}_{\cdot|y}),
$$

where $\mu_{xy} = \mu_{y|x} n_x = \mu_{x|y} m_y$

• Combining Theorem 2 and 4 shows that all of the quantities in Theorem 3 can be computed by solving **simple convex optimization problems**

Example 4.1 (The Choo and Siow specification)

- Assume that P_x and Q_y are the distributions of centred i.i.d standard type I extreme value random variables
- Generalized entropy: $\varepsilon = -\sum_{x \in \mathcal{X}, y \in \mathcal{Y}_0} \mu_{xy} \log \mu_{y|x} - \sum_{y \in \mathcal{Y}, x \in \mathcal{X}_0} \mu_{xy} \log \mu_{x|y}$
- Averaged utilities with matching patterns:

$$
u_x = -\log \mu_{0|x}, \ v_y = -\log \mu_{0|y}
$$

• Surplus with matching patterns: $\Phi_{xy} = 2 \log \mu_{xy} - \log \mu_{x0} - \log \mu_{0y}$

$$
\mu_{xy} = \sqrt{\mu_{x0}\mu_{0y}} \exp(\frac{\Phi_{xy}}{2})
$$

• Define:

 $F(\mathbf{u}, \mathbf{v}; \mathbf{\Phi}, \mathbf{r}) \coloneqq \sum_{x \in \mathcal{X}} n_x (u_x + e^{-u_x} - 1) + \sum_{y \in \mathcal{Y}} m_y (v_y + e^{-v_y} - 1) + 2 \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \sqrt{n_x m_y} e^{\frac{\Phi_{xy} - u_x - v_y}{2}}$ $\overline{\mathbf{c}}$

- Sum of exponentials and of linear functions
- Globally strictly convex function of (u, v)
- Social welfare $W(\Phi; r)$ equals F's minimum value and at the minimum,

$$
\mu_{x0} = n_x \exp(-u_x)
$$

\n
$$
\mu_{0y} = m_y \exp(-v_y)
$$

\n
$$
\mu_{xy} = \sqrt{n_x m_y} \exp(\frac{\Phi_{xy} - u_x - v_y}{2})
$$

2024/5/20 理論談話会2024#7 32

5. Computation

Min-Emax method (based on gradient descent)

- Two expressions for the social surplus (Theorem 3)
	- (4.5) solves for the matching patterns μ : The globally concave unconstrained maximization problem (4.5)
	- (4.6) solves for the U and V utility components: The globally convex unconstrained minimization problem (dual) $min_{U \in \mathbb{R}} xy(G(U, n) + H(\Phi - U, m))$ (5.1)
- Min-Emax method based on (5.1)
	- (5.1) has dimension $|X| \times |Y|$, unconstrained, very sparse structure
	- The Hessian of the objective function contains many zeroes \rightarrow easy
	- Closed form \rightarrow only require evaluating the G_x and H_y
	- Not closed form \rightarrow use simulation and linear programming
- (5.1) is globally convex \rightarrow a descent algorithm converges nicely under weak conditions
- In the Choo and Siow specification, the sparse structure of the problem can be used very easily to reduce the dimensionality
	- Only $|\mathcal{X}| + |\mathcal{Y}|$ arguments

Iterative projection fitting procedure (IPFP)

- In some cases, the number of groups $|\mathcal{X}|$ and $|\mathcal{Y}|$ is too large and min-Emax method is not practical option
	- \rightarrow Extended the IPFP, if the generalized entropy ε is easy to evaluate

IPFP

- The average utilities (u_x) and (v_y) of the groups of men and women play the role of prices that equate demand and supply
- Adjust the prices alternatively on each side of the market
- 1. Fix the prices (v_y) and find the prices (u_x)

$$
\sum_{y \in \mathcal{Y}} \mu_{xy} + \mu_{x0} = n_x \qquad \text{for each } x \in \mathcal{X}
$$

2. Fix the prices (u_x) and find the prices (v_y)

$$
\sum_{x \in \mathcal{X}} \mu_{xy} + \mu_{0y} = m_y \qquad \text{for each } y \in \mathcal{Y}
$$

Iterate these procedures (coordinate descent procedure)

Theorem 5

Under Assumption 1 and 2, the IPFP algorithm converges to the solution of (4.5) and to the corresponding average utilities u and v

The performance of the proposed algorithms

- Test on the Choo and Siow model
- The IPFP algorithm
	- Extremely fast compared to standard optimization or equation-solving methods
- The min-Emax method of (5.1)
	- Slower but it still works very well for medium-size problems
	- Applicable to all separable models

6. Parametric Inference

Parametric model

Single matching market assumption

• Focus on observations from a single matching market

Need for parametric model

• Joint surplus functions Φ_{xy}^{λ} and distributions \bm{P}_x^{λ} and \bm{Q}_y^{λ} with parameters $\bm{\lambda}$

Sampling Assumption

- At household level
- Consist of H households, including couples and singles
- Number of individuals $\hat{S} = \sum_x \hat{N}_x + \sum_y \hat{M}_y$, where \hat{N}_x and \hat{M}_y are the number of men and women in the sample

• Empirical frequencies
$$
\hat{n}_x = \hat{N}_x / \hat{S}
$$
 and $\hat{m}_y = \hat{M}_y / \hat{S}$

Estimation method

Matching patterns and Margins

• Observed matches $\hat{\mu}_{xy}$ satisfy:

$$
\sum_{y \in \mathcal{Y}} \mu_{xy}^{\lambda} + \mu_{x0}^{\lambda} = \hat{n}_x \qquad \forall x \in \mathcal{X}
$$

$$
\sum_{x \in \mathcal{X}} \mu_{xy}^{\lambda} + \mu_{0y}^{\lambda} = \hat{m}_y \qquad \forall y \in \mathcal{Y}
$$
 (6.1)

• Data assumed from a population with true parameter λ_0

Social Surplus and stable matching

• Social surplus:

$$
W(\boldsymbol{\Phi}^{\lambda},\hat{\boldsymbol{r}})=max_{\boldsymbol{\mu}\in\mathcal{M}(\hat{\boldsymbol{r}})}(\sum_{x,y}\mu_{xy}\Phi_{xy}^{\lambda}+\varepsilon^{\lambda}(\boldsymbol{\mu},\hat{\boldsymbol{r}}))
$$

• Stable matching $\mu^{\lambda}(\hat{r})$ computed efficiently

Estimation methods for

- 1. Maximum likelihood estimation
- 2. Moment matching method
- 3. Minimum distance estimator

Maximum likelihood estimation (MLE)

- **1. Compute the optimal matching with parameters for given populations of men and women**
	- Fix \hat{n}_x and \hat{m}_y , impose constraints (6.1)
- **2. Simulated number of households:**

 $H^{\lambda} \equiv \sum_{(x,y)\in\mathcal{X}\times\mathcal{Y}} \mu^{\lambda}_{xy} + \sum_{x\in\mathcal{X}} \mu^{\lambda}_{x0} + \sum_{y\in\mathcal{Y}} \mu^{\lambda}_{0y} = \sum_{x\in\mathcal{X}} \hat{n}_x + \sum_{y\in\mathcal{Y}} \hat{m}_y - \sum_{(x,y)\in\mathcal{X}\times\mathcal{Y}} \mu^{\lambda}_{xy}$

3. Observed matches:

- μ_{x0}^{λ} : Number of single men with characteristic x
- μ_{0y}^{λ} : Number of single women with characteristic y
- μ_{xy}^{λ} : Number of (x, y) couples

4. Log-likelihood function:

$$
\log L(\lambda) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \hat{\mu}_{xy} \log \frac{\mu_{xy}^{\lambda}}{H^{\lambda}} + \sum_{x \in \mathcal{X}} \hat{\mu}_{x0} \log \frac{\mu_{x0}^{\lambda}}{H^{\lambda}} + \sum_{y \in \mathcal{Y}} \hat{\mu}_{0y} \log \frac{\mu_{0y}^{\lambda}}{H^{\lambda}}
$$

- Maximum likelihood estimator $\hat{\lambda}^{MLE}$:
	- Consistent, asymptotically normal, and asymptotically efficient under the usual set of assumptions

Moment-based estimation in semi-linear models

Alternative to MLE:

• MLE is powerful but often difficult to maximize due to several local extrema

Conditions for moment-based method:

- 1. Distribution of the unobserved heterogeneities must be parameter-free (e.g. Choo and Siow, 2006)
- 2. Parametrization of the Φ matrix must be linear in the parameter vector
	- $\Phi_{xy}^{\lambda} = \sum_{k=1}^{K} \lambda_k \phi_{xy}^k$
	- $\lambda \in \mathbb{R}^K$ and $\widetilde{\boldsymbol{\phi}} \coloneqq (\boldsymbol{\phi}^1, ..., \boldsymbol{\phi}^K)$ are *K* known linearly independent basis surplus vectors

Moment-matching estimator:

• Matches predicted moments with empirical moments:

$$
\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \hat{\mu}_{xy} \phi_{xy}^k = \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \mu_{xy}^{\lambda} \phi_{xy}^k \quad \forall k
$$

• The moment-matching estimator:

$$
\hat{\lambda}^{MM} := \arg max_{\lambda \in \mathbb{R}^K} (\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \hat{\mu}_{xy} \Phi_{xy}^{\lambda} - \mathcal{W}(\Phi^{\lambda}, \hat{r}))
$$

Minimum distance estimation

Mixed hypothesis:

$$
\exists \lambda, D^{\lambda} \equiv \boldsymbol{\Phi}^{\lambda} + \frac{\partial \varepsilon^{\lambda}}{\partial \mu}
$$

Estimation process:

- Choose $\hat{\lambda}$ to minimize $\|D^{\lambda}\|$ Ω $\sum_{n=0}^{2}$ for some positive definite matrix Ω
- Particularly appealing when distributions P_x and Q_y are parameter-free and surplus matrix $\boldsymbol{\Phi}^{\lambda}$ is linear in the parameters

7. Empirical Application

Testing methods on Choo and Siow's dataset

Objective:

• Testing Choo and Siow's specification against alternative models

Selected sub-sample:

- Time period: 1970s wave (younger marriage age)
- Age range: 16-40 years
- Sub-sample: "non-reform states"
	- 75,265 observations representing 13.3m individuals

Analysis approach:

- Non-parametric surplus models fit all separable models so it's hard to choose between models
- Two steps process
	- 1. Fit parametric surplus models:
		- Use semi-linear model and select basis functions (ϕ_{xy}^k) using Bayesian Information Criterion (BIC)
	- 2. Fit alternative specifications
		- Utilize chosen basis functions and test different error term distributions

Heteroskedastic logit models

Method:

- Add heteroskedasticity to benchmark model while maintaining scale normalization
- To determine the best fit, use BIC

Findings:

- Gender heteroskedasticity: minimal improvement in fit, worsens BIC
- Gender and age heteroskedasticity: significant improvement in both fit and BIC
	- Preferred model: replace $\varepsilon_{i\gamma} + \eta_{\chi j}$ with $\sigma_x \varepsilon_{i\gamma} + \tau_{\gamma} \eta_{\chi j}$
		- $\sigma_x = \exp(\sigma_1 x + \sigma_2 x^2)$, $\tau_y = \exp(\tau_0)$
	- Results:
		- +29.4 points of log-likelihood and +25.1 points on BIC
		- Estimated parameters: $\tau_y = 0.16$, σ_x from 0.40 at age 16 to 2.49 at age 40

Impact on surplus share

• Heteroskedasticity affects surplus share in matches:

 u_x $\frac{d^{2}x}{u_{x} + v_{y}} = \frac{x - 8r^{2}v_{x}}{\sigma_{x} \log \mu_{0|x} + \tau_{y} \log \mu_{0|y}}$ $\sigma_x \log \mu_{0|x}$

- Figure 1: Surplus share ratio for same age couples in 3 models (homoscedastic, gender heteroskedastic, and gender - and age heteroskedastic)
- Men's surplus share increases with age in gender - and age -heteroskedastic model

REVIEW OF ECONOMIC STUDIES

FIGURE 1 Men's share of the marriage surplus in the logit models

Flexible MNL models

Background:

- Nested logit model limitation:
	- Equal correlation between all alternatives in a nest
	- Not suit for capturing age-local correlations

Model choice:

• Flexible coefficient multinomial logit (FC-MNL) model (Davis and Schiraldi, 2014)

Method:

- Reformulate as an MPEC
- Maximize log-likelihood for parameters and **U** under constraint $\nabla G(\mathbf{U}) = \nabla H(\mathbf{\Phi} \mathbf{U})$

Model specification:

• Substitution patterns matrix:

$$
b_{y,y'}^x = \begin{cases} \frac{b_m(x)}{|y - y'|} & \text{if } y \neq y' \\ 1 & \text{if } y = y' \end{cases}
$$

• Similar for women's side with $b_w(y)$ divided by $|x - x'|$

8. Concluding Remarks

Concluding remarks

Validation of assumptions:

• Separability and large market assumptions are tested and supported by the simulations (Chiappori et al., 2019b)

Potential extensions:

- Continuous characteristics
	- Dupuy and Galichon (2014) address this issue for the Choo and Siow model using the theory of extreme value processes and propose testing the number of relevant dimensions

Broader applications:

- Beyond bipartite matching
	- "Roommate" problem (Chiappori et al., 2019a)
	- Trade on networks with transfers (Hatfield and Kominers, 2012) & (Hatfield et al., 2013)

Relaxing utility assumptions:

- Imperfectly transferable utility and separable logit heterogeneity
- Non-transferable utility and a similar form of heterogeneity

- •数学的なテクニカルな手法(双対性等)が何回も用いられていたので、そ の展開を追うのが難しかった
- 一つ一つの話題に関しては理解することができた気がするが、論文自体の 長さ(おそらく書かれ方が丁寧?)もあり、全体の流れを掴むのが大変 だった
- 初めてまともに読む論⽂ということもあり、読み進めるときに命題や定理 などについて、どこまでそう⾔うものだと想定して(なぜそうなるのかわ からなくても)読み進めていけるのかの判断が難しかった

2024/5/20 理論談話会2024#7 50