Cupid's Invisible Hand: Social Surplus and Identification in Matching Models

Alfred Galichon & Bernard Salanié, Cupid's Invisible Hand: Social Surplus and Identification in Matching Models, *The Review of Economic Studies*, Volume 89, Issue 5, October 2022, Pages 2600–2629

B4 村山拓未

Abstract

- **Research focus:** One-to-one matching model with transferable utility and general unobserved heterogeneity
- Method: Extended the separability assumption from Choo and Siow (2006)

• Results:

- Shows that equilibrium matching maximize a social gain function, balancing complementarities in observable characteristics and matching on unobserved traits
- Derives simple closed-form formulas to identify joint matching surplus and equilibrium utilities for all participants, given any known distribution of unobserved heterogeneity

Contributions:

- Provides efficient algorithms for computing stable matching and estimating parametric models
- Revisits Choo and Siow's empirical application, demonstrating the potential of a more general approach

Novelty, Utility, Reliability

Novelty:

• Extends Choo and Siow's (2006) separability assumption to a more general framework

Utility:

- Provides practical solutions for identifying matching surplus and utilities.
- Offers efficient algorithms for stable matching and parametric model estimation.

Reliability:

Conducts empirical approach

1. Introduction

Models of matching with transferable utilities

- Model the marriage problem as a matching problem (Becker, 1973)
- "Assignment game" (Shapley and Shubik, 1972)
 - Models of matching with transferable utilities
- Applications of the model
 - Competitive equilibrium in good markets with hedonic pricing
 - Trade
 - The labor market
 - Industrial organization

Becker's theory and its problem

Becker's theory:

- The type of the partners are one-dimensional and complementary in producing surplus (Special case)
- Social optimum shows *positive assortative matching*:
 - higher types pair up with higher types

The data:

Matches are observed between partners with quite different characteristics

Choo and Siow's model

- Solution for Becker's problem:
 - Allow the matching surplus to incorporate latent characteristics **heterogeneity**

Choo and Siow's model

- Conditions:
 - The unobserved heterogeneities enter the marital surplus quasi-additively
 - These heterogeneities are independent and identically distributed as standard type I extreme value terms
- Examples:
 - Evaluate the effect of the legalization of abortion on gains to marriage
 - Use Canadian data to measure the impact of demographic changes
- The idea has been used in various later studies

Choo and Siow's model

3 assumptions of their model:

- 1. The unobserved heterogeneities on the two side of a match do not interact in producing matching surplus (Separability assumption)
- 2. They are distributed as iid type I extreme values (Distributional assumption)
- 3. Populations are large

Contributions of the paper

1. Extended idea of Choo and Siow's model

- Choo and Siow's distributional assumption is very special
 - Generate a MNL model
 - Specific restrictions on cross-elasticities
- The authors show:
 - Choo and Siow's distributional assumption can be completely dispensed with
 - Choo-Siow framework can be extended to encompass much less restrictive assumptions on the unobserved heterogeneity

2. Complete empirical approach

- Identification
- Parametric estimation
- computation

3. Revisit the original Choo and Siow (2006) dataset on marriage patterns by age

Other approaches

Market with transferable utilities

- Fox (2010, 2018)
- Bajari and Fox (2013) spectrum auctions
- Fox et al. (2018) identify the complementarity between unobserved characteristics
- Gualdani and Sinha (2019) partial identification issues in nonparametric matching models

Market with non-transferable utilities

- Menzel (2015) investigation of large non-transferable utilities markets
- School assignment, where preferences on one side of the market are highly constrained by regulation
- Agarwal (2015) matching in the US medical resident program

2. Framework and Roadmap

A bipartite matching market with transferable utility

- A bipartite, one-to-one matching market with transferable utility
- Maintains some of the basic assumptions of Choo and Siow (2006)
 - Utility transfers between partners are unconstrained
 - Matching is frictionless
 - No asymmetric information among potential partners
- An application to the heterosexual marriage market

J	Set of men	$i \in \mathcal{I}$
J	Set of women	$j \in \mathcal{J}$
X	Set of groups of men	$x \in \mathcal{X}$
Y	Set of groups of women	$y \in \mathcal{Y}$
n_x	Mass of men in group <i>x</i>	$\sum_{x} n_x + \sum_{y} m_y = 1,$
m_y	Mass of women in group y	$\boldsymbol{r}=(\boldsymbol{n},\boldsymbol{m})$

- The analyst can observe groups are defined by the intersection of the characteristics
- The analyst cannot observe men and women of a given group differ along some dimensions

Setting 2

μ_{xy}	Mass of the couples where the man belongs to group x , and where the woman belongs to group y	$\mu \in \mathcal{M}(r)$
${\mathcal M}$	Set of μ	$\mathcal{M}(\mathbf{r}) = \{ \boldsymbol{\mu} \ge 0 \colon \forall x \in \mathcal{X} \}$
		, $\sum_{y \in \mathcal{Y}} \mu_{xy} \leq n_x$; $\forall y \in \mathcal{Y}$
		, $\sum_{x \in \mathcal{X}} \mu_{xy} \le m_y$ }
μ_{x0}	Mass of single men of group <i>x</i>	$\mu_{x0} = n_x - \sum_{y \in \mathcal{Y}} \mu_{xy}$
μ_{0y}	Mass of single women of group y	$\mu_{0y} = m_y - \sum_{x \in \mathcal{X}} \mu_{xy}$
${\mathcal X}_0$	Set of marital choices available to male agents	$\mathcal{X}_0 = \mathcal{X} \cup \{0\}$
y_0	Set of marital choices available to female agents	$\mathcal{Y}_0 = \mathcal{Y} \cup \{0\}$
\mathcal{A}	Set of marital arrangement	$\mathcal{A} = (\mathcal{X} \times \mathcal{Y}) \cup (\mathcal{X} \times \{0\}) \cup (\{0\} \times \mathcal{Y})$

Separability

Assumption 1 (Separability)

- Joint utility of a match: $\tilde{\Phi}_{ij} = \Phi_{xy} + \varepsilon_{iy} + \eta_{xj}$
 - $\widetilde{\Phi}_{ij}$: Joint utility for man *i* (group *x*) and woman *j* (group *y*)
 - Φ_{xy} : Base utility between group x and y
 - ε_{iy} : Random term specific to man i
 - η_{xj} : Random term specific to woman j

• Utility of single individuals:

- Single man *i*: $\tilde{\Phi}_{i0} = \varepsilon_{i0}$
- Single woman *j*: $\tilde{\Phi}_{0j} = \eta_{0j}$

• Distribution and finite expectations:

- Conditional on $x_i = x$, $\boldsymbol{\varepsilon}_i = (\varepsilon_{iy})_{y \in \mathcal{Y}_0}$ has distribution \boldsymbol{P}_x
- Conditional on $y_i = y$, $\boldsymbol{\eta}_j = (\eta_{xj})_{x \in \mathcal{X}_0}$ has distribution \boldsymbol{Q}_y
- $max_{y \in \mathcal{Y}_0} |\varepsilon_{iy}|$ and $max_{x \in \mathcal{X}_0} |\eta_{xj}|$ have finite expectations under P_x and Q_{y} , respectively

- Allow for "matching on unobservables"
- Rule out sorting on unobserved characteristics on both sides of the market
 - E.g. some unobserved preference of man *i* for some unobserved characteristics of woman *j*

 P_x and Q_y are not only limited to the extreme value class

2.3 Objectives and a roadmap

Final goal

Develop inference tools for matching problems with transferable utility and separable unobserved heterogeneity

Steps

- 1. Two-sided matching problem resolves into a collection of one-sided problems of lower complexity (given separability)
- 2. Provide new results on discrete choice (one-sided) models
- 3. Stable matching solves a convex optimization problem
- 4. Use convex duality to identify the matching surplus
- 5. New computational methods to solve for the stable matching and to estimate underlying parameters

3. Social Surplus and Identification in the One-Side Case:Discrete Choice Models

Splitting the surplus

Proposition 1: Splitting the surplus

• Under Assumption 1, there exist $U = (U_{xy})$ and $V = (V_{xy})$ for $(x, y) \in \mathcal{A}$, with $U_{x0} = V_{0y} = 0$, such that at any stable matching (μ_{xy})

1. Men's matching decision:

- A man *i* of group x marries a woman of group $y^* \in \mathcal{Y}$ if y^* maximizes $U_{xy} + \varepsilon_{iy}$ over $y \in \mathcal{Y}_0$
- If the maximum is achieved at y = 0, the man remains single
- Man i's utility $\widetilde{u_i}$ is the value of the maximum

2. Women's matching decision:

- A woman j of group y marries a woman of group $x^* \in \mathcal{X}$ if x^* maximizes $V_{xy} + \eta_{xj}$ over $x \in \mathcal{X}_0$
- If the maximum is achieved at x = 0, the woman remains single
- Woman j's utility \tilde{v}_j is the value of the maximum

3. Surplus splitting condition:

• $U_{xy} + V_{xy} \ge \Phi_{xy}$ for all $(x, y) \in \mathcal{A}$, with equality if $\mu_{xy} > 0$

Social surplus in discrete choice models

One-sided discrete choice problems

- An individual chooses from a set of alternatives $y \in \mathcal{Y}_0$
 - Utilities are $U_y + \varepsilon_y$
 - Assume the vector $\boldsymbol{\varepsilon} = (\varepsilon_y)_{y \in \mathcal{Y}_0}$ has a distribution \mathbb{P} ; without loss of generality
 - $U_0 = 0, \ U = (U_1, \dots, U_{|Y|})$

The *ex ante* indirect surplus

= weighted sum of the mean utilities + generalized entropy of choice

Two characterizations of generalized entropy function

- 1. The convex conjugate of the *ex ante* indirect utility
- 2. The solution to an optimal transport problem (Galichon, 2016)

Generalized entropy of choice

The average utility of the agent

$$G(\boldsymbol{U}) = \mathbb{E}_P max_{y \in \mathcal{Y}_0} (U_y + \varepsilon_y)$$
(3.1)

$$= \mathbb{E}_{P} \left(U_{Y_{i}^{*}} + \varepsilon_{i,Y_{i}^{*}} \right)$$
$$= \sum_{\gamma \in \mathcal{Y}} \mu_{\gamma} U_{\gamma} + \mathbb{E}_{P} (\varepsilon_{i,Y_{i}^{*}}) \qquad (3.2)$$

- The expectation is taken over the random vector $\boldsymbol{\varepsilon} = (\varepsilon_{0,...,} \varepsilon_{|\mathcal{Y}|}) \sim \boldsymbol{P}$
- The function G is known as the *Emax operator* in the discrete choice literature

 $Y_i^* \in \mathcal{Y}_0$ is the optimal choice of individual *i*

 μ_y is the proportion of individuals who choose alternative y

Legendre-Fenchel transform of G $\mu = (\mu_1, \dots, \mu_{|\mathcal{Y}|})$ $G^*(\mu) = \begin{cases} sup_{\widetilde{U} = (\widetilde{U}_1, \dots, \widetilde{U}_{|\mathcal{Y}|})} (\sum_{y \in \mathcal{Y}} \mu_y \widetilde{U}_y - G(\widetilde{U})), whenever \sum_{y \in \mathcal{Y}} \mu_y \leq 1 \\ +\infty, otherwise \end{cases}$ (3.3)

The domain of G* is the set of µ that can be interpreted as vectors of choice probabilities of alternatives in Y

Generalized entropy of choice

Definition 1.

The function $-G^*$ is the generalized entropy of choice

$$G(\boldsymbol{U}) = \sup_{\boldsymbol{\widetilde{\mu}} = (\boldsymbol{\widetilde{\mu}}_1, \dots, \boldsymbol{\widetilde{\mu}}_{|\mathcal{Y}|})} \left(\sum_{\boldsymbol{\mathcal{Y}} \in \mathcal{Y}} \boldsymbol{\widetilde{\mu}}_{\boldsymbol{\mathcal{Y}}} U_{\boldsymbol{\mathcal{Y}}} - G^*(\boldsymbol{\widetilde{\mu}}) \right) \quad (3.4)$$

$$G(\boldsymbol{U}) + G^*(\boldsymbol{\mu}) = \sum_{\boldsymbol{y} \in \mathcal{Y}} \mu_{\boldsymbol{y}} U_{\boldsymbol{y}}$$

 $G^*(\boldsymbol{\mu}) = -\mathbb{E}_P(\varepsilon_{iY_i^*})$

The theory of convex duality implies that since G is convex, it is reciprocally the Legendre-Fenchel transform of G^*

Assume that μ attains the supremum in (3.4)

• $-G^*$ is just the average heterogeneity that is required to rationalize the conditional choice probability vector μ

Characterization of the generalized entropy of choice

Theorem 1 (Characterization of the generalized entropy of choice)

Statement:

Let $\boldsymbol{\mu} = (\mu_1, ..., \mu_{|\mathcal{Y}|})$ with $\sum_{y \in \mathcal{Y}} \mu_y \leq 1$, and define $\mu_0 = 1 - \sum_{y \in \mathcal{Y}} \mu_y$. Let $\mathcal{M}(\boldsymbol{\mu}, \boldsymbol{P})$ denote the set of probability distributions π of the random joint vector $(\boldsymbol{Y}, \boldsymbol{\varepsilon})$, where $\boldsymbol{Y} \sim (\mu_0, \boldsymbol{\mu})$ is a random element of \mathcal{Y}_0 , and $\boldsymbol{\varepsilon} \sim \boldsymbol{P}$ is a random vector of $\mathbb{R}^{|\mathcal{Y}_0|}$.

Optimal transport interpretation:

$$-G^*(\boldsymbol{\mu}) = \sup_{\pi \in \mathcal{M}(\boldsymbol{\mu}, \boldsymbol{P})} \mathbb{E}_{\pi}(\varepsilon_{\boldsymbol{Y}})$$
(3.6)

- μ : Vector of choice probabilities for alternatives in **Y**.
- π : Joint distribution of $(\mathbf{Y}, \boldsymbol{\varepsilon})$ with $\mathbf{Y} \sim (\mu_0, \boldsymbol{\mu})$ and $\boldsymbol{\varepsilon} \sim \mathbf{P}$.
- $\mathcal{M}(\boldsymbol{\mu}, \boldsymbol{P})$: Set of feasible joint distributions.
- ε_Y : Surplus given by the chosen **Y**

Explanation:

 $-G^*(\mu)$ represents the value of the optimal transport problem between the distribution (μ_0, μ) of Y and the distribution of P of ε , where the objective is to maximize the expected surplus $\mathbb{E}_{\pi}(\varepsilon_Y)$.

Identification of discrete choice models

Theorem 2 (Identifying the mean utilities)

Given:

- $\boldsymbol{\mu} = (\mu_1, \dots, \mu_{|\mathcal{Y}|}) \text{ with } \sum_{\mathcal{Y} \in \mathcal{Y}} \mu_{\mathcal{Y}} \leq 1$
- $U_0 = 0$ and $U = (U_1, ..., U_{|Y|})$
- Distribution **P** with full support, absolutely continuous w.r.t. the Lebesgue measure

Equivalent statements:

- 1. For every $y \in \mathcal{Y}$, $\mu_y = \frac{\partial G}{\partial U_y}(U)$ (3.7)
- 2. For every $y \in \mathcal{Y}$, $U_y = \frac{\partial G^*}{\partial \mu_y}(\boldsymbol{\mu})$ (3.8)
- 3. There exists a scalar function $u(\varepsilon)$, integrable w.r.t. **P**, such that (u, U) are the unique minimizers of the dual problem to (3.6):

$$-G^{*}(\boldsymbol{\mu}) = \min_{U,u} \int \bar{u}(\boldsymbol{\varepsilon}) d\boldsymbol{P}(\boldsymbol{\varepsilon}) - \sum_{y \in \mathcal{Y}} \mu_{yU_{y}}$$

s.t.
$$\bar{u}(\boldsymbol{\varepsilon}) - \bar{U}_{y} \geq \varepsilon_{y} \ \forall y \in \mathcal{Y}, \ \forall \boldsymbol{\varepsilon} \in \mathbb{R}^{\mathcal{Y}_{0}}, \overline{U}_{0} = 0.$$

• These conditions provide a way to uniquely identify mean utilities U from observed choice probabilities μ under the given distribution P

Daly-Zachary-Williams theorem

Fenchel duality theorem: (3.7) and (3.8) are equivalent

- 1 is well-known in the discrete choice literature
- 2 and 3 provide a constructive method to identify U_y based on the conditional choice probabilities µ
 - As the solution to a convex optimization problem (2)
 - An optimal transport problem (3)

Examples

1. Logit and nested Logit

- Two-layer nested logit model
 - Alternative 0 is alone in a nest
 - each other nest $n \in \mathcal{N}$ contains alternatives $y \in \mathcal{Y}(n)$
 - Correlation of alternatives within nest n is $1 \lambda_n^2$ ($\lambda_0 = 1$ for the nest made of alternative 0)
- Multinomial logit model (MNL)
 - When $\lambda_n = 1$ for every nest n

2. Random coefficients multinomial logit and pure characteristics model

- Random coefficient logit model
 - Error term ε :

$$\varepsilon = Ze + T\eta$$

- e is a random vector on \mathbb{R}^d with distribution P_e
- **Z** is a $|\mathcal{Y}_0| \times d$ matrix
- T > 0 is a scalar parameter
- $|\mathcal{Y}|$ extreme value type-I (Gumbel) random variables, independent of e
- Pure characteristics model
 - When T = 0
 - Solution to the power diagram problem (Galichon, 2016)

4. Social Surplus and Identification in the Two-Side Case:Matching Models

Matching models

• Define G_x to be corresponding Emax function, based on the results of one-sided discrete choice

	Primary problem	Dual problem
Men's welfare	$G_x(\boldsymbol{U}_x) = E_{\boldsymbol{P}_x} max_{y \in \mathcal{Y}_0}(U_{xy} + \varepsilon_{iy})$	$G_x^*(\boldsymbol{v}) = max_{\boldsymbol{U}\in\mathbb{R}^{\mathcal{Y}}}\left(\sum_{y\in\mathcal{Y}}v_yU_y - G_x(\mathbf{U})\right)$
Aggregate welfare (Given group numbers $n = (n_x)$)	$G(\boldsymbol{U},\boldsymbol{n}) = \sum_{x \in \mathcal{X}} n_x G_x(\boldsymbol{U}_x)$	$G^{*}(\boldsymbol{\mu}, \boldsymbol{n}) = \sup_{\boldsymbol{U} \in \mathbb{R}^{\mathcal{X} \times \mathcal{Y}}} (\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \mu_{xy} U_{xy} - G(\boldsymbol{U}, \boldsymbol{n}))$

 $G^*(\mu, n) = \sum_{x \in \mathcal{X}} n_x G^*_x(\frac{\mu_x}{n_x}) = -$ generalized entropy of choice of all men

- Define $H_y(V_y)$ as the Emax function on women's side
- Given group numbers $m = (m_y)$, the aggregate welfare of women is H(V, m)
- Dual problems of these are the generalized entropy of choice

Social surplus, equilibrium, and entropy of matching

• Social Surplus \mathcal{W} :

$$\mathcal{W} = G(\boldsymbol{U}, \boldsymbol{n}) + H(\boldsymbol{V}, \boldsymbol{m}) = \sum_{x \in \mathcal{X}} n_x G_x(\boldsymbol{U}_x) + \sum_{y \in \mathcal{Y}} m_y H_y(\boldsymbol{V}_y)$$

- Stable matching $\mu = (\mu_{xy})_{x \in \mathcal{X}, y \in \mathcal{Y}} (U + V = \Phi)$
 - $G(\boldsymbol{U},\boldsymbol{n}) = \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \mu_{xy} U_{xy} G^*(\boldsymbol{\mu},\boldsymbol{n})$:: (3.4)
 - $H(\mathbf{V}, \mathbf{m}) = \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \mu_{xy} V_{xy} H^*(\boldsymbol{\mu}, \boldsymbol{m}) \qquad \because (3.4)$
- $\mathcal{W} = \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \mu_{xy} \Phi_{xy} + \varepsilon(\boldsymbol{\mu}, \boldsymbol{n}, \boldsymbol{m})$
 - $\varepsilon(\boldsymbol{\mu}, \boldsymbol{n}, \boldsymbol{m}) \coloneqq G^*(\boldsymbol{\mu}, \boldsymbol{n}) H^*(\boldsymbol{\mu}, \boldsymbol{m})$
 - Generalized entropy of matching

Social surplus at equilibrium

Assumption 2

For all $x \in \mathcal{X}$ and $y \in \mathcal{Y}$, the distribution P_x and Q_y have full support and are absolutely continuous

Theorem 3 (Social surplus at equilibrium)

• Under assumptions 1 and 2, for any Φ and r = (n, m) the stable matching μ maximizes the social surplus over all feasible matchings $\mu \in \mathcal{M}(r)$

$$\mathcal{W}(\boldsymbol{\Phi}, \boldsymbol{r}) = \max_{\boldsymbol{\mu} \in \mathbb{R}^{\mathcal{X} \times \mathcal{Y}}} (\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \mu_{xy} \Phi_{xy} + \varepsilon(\boldsymbol{\mu}, \boldsymbol{r}))$$
(4.5)

• Dual expression

$$\mathcal{W}(\boldsymbol{\Phi}, \boldsymbol{r}) = \min_{\boldsymbol{U}, \boldsymbol{V} \in \mathbb{R}^{\mathcal{X} \times \mathcal{Y}}} \left(G(\boldsymbol{U}, \boldsymbol{n}) + H(\boldsymbol{V}, \boldsymbol{m}) \right)$$

$$s.t. \quad U_{xy} + V_{xy} \ge \Phi_{xy} \ \forall x \in \mathcal{X}, y \in \mathcal{Y}$$
(4.6)

Optimal solutions relationship

$$\mu_{xy} = \frac{\partial G}{\partial U_{xy}} (\boldsymbol{U}, \boldsymbol{n}) = \frac{\partial H}{\partial V_{xy}} (\boldsymbol{V}, \boldsymbol{m})$$
(4.7)

Remarks of Theorem 3

1. The components of social surplus and their meanings (4.5)

- The first term reflects "systematic preferences"
 - If it dominates, it is the linear programming problem of Shapley and Shubik (1972)
- The second term reflects "idiosyncratic preferences"
 - If it dominates ($\Phi \cong 0$), it looks like random matching

2. Dual problem (4.6)

- The dual problem (4.6): The destination of the surplus shared at equilibrium between men and women
 - $n_x G_x(U_x)$: the total amount of utility going to men of group x
 - $m_y H_y(V_y)$: the total amount of utility going to women of group y
- The primary problem (4.7): The origin of surplus
 - Φ_{xy} : The part of the surplus that comes from the interaction between observable characteristics in pair xy
 - $\varepsilon(\mu, r)$: unobservable heterogeneities in tastes

3. The first-order conditions and the equality between the demand (4.7)

- (4.7) is the first-order conditions of (4.6)
- The right-hand side is the demand of women of group *y* for men of group *x* and vice versa
- In equilibrium, these numbers must both equal μ_{xy}
- 4. A wealth of comparative statics results and testable predictions

理論談話会2024#7

Individual and group surplus

Proposition 2 (Individual and group surplus)

Let (U, V) solve (4.6), and $U_{x0} = V_{0y} = 0$. Under Assumptions 1 and 2,

- A man *i* of group *x* who marries a woman of group y^* obtains utility $U_{xy^*} + \varepsilon_{iy^*} = max_{y \in \mathcal{Y}_0} (U_{xy} + \varepsilon_{iy})$
- The average utility of men of group x is

$$u_{x} = G_{x}(\boldsymbol{U}_{x}) = \frac{\partial \mathcal{W}}{\partial n_{x}}(\boldsymbol{\Phi}, \boldsymbol{r})$$

• These can also be applied to women's side

Identification

• Focus on the case when the distributions of the error terms are known

Theorem 4.

Under Assumptions 1 and 2:

1. U and **V** are identified from
$$\mu$$
 by
 $U = \frac{\partial G^*}{\partial \mu}(\mu)$ and $V = \frac{\partial H^*}{\partial \mu}(\mu)$

2. $U_{xy} + V_{xy} = \Phi_{xy}$ for every $x \in \mathcal{X}$ and $y \in \mathcal{Y}$. The matching surplus $\boldsymbol{\Phi}$ is identified by $\Phi_{xy} = -\frac{\partial \varepsilon}{\partial \mu_{xy}} (\boldsymbol{\mu}, \boldsymbol{r}),$ (4.9) $\Phi_{xy} = \frac{\partial G_x^*}{\partial \mu_{y|x}} (\boldsymbol{\mu}_{.|x}) + \frac{\partial H_y^*}{\partial \mu_{x|y}} (\boldsymbol{\mu}_{.|y}),$

where $\mu_{xy} = \mu_{y|x}n_x = \mu_{x|y}m_y$

 Combining Theorem 2 and 4 shows that all of the quantities in Theorem 3 can be computed by solving simple convex optimization problems

Example 4.1 (The Choo and Siow specification)

- Assume that P_x and Q_y are the distributions of centred i.i.d standard type I extreme value random variables
- Generalized entropy: $\varepsilon = -\sum_{x \in \mathcal{X}, y \in \mathcal{Y}_0} \mu_{xy} \log \mu_{y|x} - \sum_{y \in \mathcal{Y}, x \in \mathcal{X}_0} \mu_{xy} \log \mu_{x|y}$
- Averaged utilities with matching patterns:

$$u_x = -\log \mu_{0|x}, \ v_y = -\log \mu_{0|y}$$

• Surplus with matching patterns: $\Phi_{xy} = 2 \log \mu_{xy} - \log \mu_{x0} - \log \mu_{0y}$

$$\mu_{xy} = \sqrt{\mu_{x0}\mu_{0y}} \exp(\frac{\Phi_{xy}}{2})$$

• Define:

 $F(\boldsymbol{u},\boldsymbol{v};\boldsymbol{\Phi},\boldsymbol{r}) \coloneqq \sum_{x \in \mathcal{X}} n_x(u_x + e^{-u_x} - 1) + \sum_{y \in \mathcal{Y}} m_y(v_y + e^{-v_y} - 1) + 2\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \sqrt{n_x m_y} e^{\frac{\Phi_{xy} - u_x - v_y}{2}}$

- Sum of exponentials and of linear functions
- Globally strictly convex function of (*u*, *v*)
- Social welfare $\mathcal{W}(\boldsymbol{\Phi}; \boldsymbol{r})$ equals *F*'s minimum value and at the minimum,

$$\mu_{x0} = n_x \exp(-u_x)$$

$$\mu_{0y} = m_y \exp(-v_y)$$

$$\mu_{xy} = \sqrt{n_x m_y} \exp(\frac{\Phi_{xy} - u_x - v_y}{2})$$

5. Computation

Min-Emax method (based on gradient descent)

- Two expressions for the social surplus (Theorem 3)
 - (4.5) solves for the matching patterns μ: The globally concave unconstrained maximization problem (4.5)
 - (4.6) solves for the *U* and *V* utility components: The globally convex unconstrained minimization problem (dual) *min_{U∈ℝ}xy*(G(U, n) + H(Φ – U, m)) (5.1)
- Min-Emax method based on (5.1)
 - (5.1) has dimension $|X| \times |Y|$, unconstrained, very sparse structure
 - The Hessian of the objective function contains many zeroes \rightarrow easy
 - Closed form \rightarrow only require evaluating the G_x and H_y
 - Not closed form \rightarrow use simulation and linear programming
- (5.1) is globally convex \rightarrow a descent algorithm converges nicely under weak conditions
- In the Choo and Siow specification, the sparse structure of the problem can be used very easily to reduce the dimensionality
 - Only $|\mathcal{X}| + |\mathcal{Y}|$ arguments

Iterative projection fitting procedure (IPFP)

- In some cases, the number of groups |X| and |Y| is too large and min-Emax method is not practical option
 - \rightarrow Extended the IPFP, if the generalized entropy ε is easy to evaluate

IPFP

- The average utilities (u_x) and (v_y) of the groups of men and women play the role of prices that equate demand and supply
- Adjust the prices alternatively on each side of the market
- 1. Fix the prices (v_y) and find the prices (u_x)

$$\sum_{y \in \mathcal{Y}} \mu_{xy} + \mu_{x0} = n_x \qquad \text{for each } x \in \mathcal{X}$$

2. Fix the prices (u_x) and find the prices (v_y)

$$\sum_{x \in \mathcal{X}} \mu_{xy} + \mu_{0y} = m_y \qquad \text{for each } y \in \mathcal{Y}$$

3. Iterate these procedures (coordinate descent procedure)

Theorem 5

Under Assumption 1 and 2, the IPFP algorithm converges to the solution of (4.5) and to the corresponding average utilities u and v

The performance of the proposed algorithms

- Test on the Choo and Siow model
- The IPFP algorithm
 - Extremely fast compared to standard optimization or equation-solving methods
- The min-Emax method of (5.1)
 - Slower but it still works very well for medium-size problems
 - Applicable to all separable models

6. Parametric Inference

Parametric model

Single matching market assumption

• Focus on observations from a single matching market

Need for parametric model

• Joint surplus functions Φ_{xy}^{λ} and distributions P_x^{λ} and Q_y^{λ} with parameters λ

Sampling Assumption

- At household level
- Consist of *H* households, including couples and singles
- Number of individuals $\hat{S} = \sum_x \hat{N}_x + \sum_y \hat{M}_y$, where \hat{N}_x and \hat{M}_y are the number of men and women in the sample

• Empirical frequencies
$$\hat{n}_x = \hat{N}_x/\hat{S}$$
 and $\hat{m}_y = \hat{M}_y/\hat{S}$

Estimation method

Matching patterns and Margins

• Observed matches $\hat{\mu}_{xy}$ satisfy:

$$\sum_{y \in \mathcal{Y}} \mu_{xy}^{\lambda} + \mu_{x0}^{\lambda} = \hat{n}_{x} \qquad \forall x \in \mathcal{X}$$

$$\sum_{x \in \mathcal{X}} \mu_{xy}^{\lambda} + \mu_{0y}^{\lambda} = \hat{m}_{y} \qquad \forall y \in \mathcal{Y} \qquad (6.1)$$

• Data assumed from a population with true parameter λ_0

Social Surplus and stable matching

• Social surplus:

$$\mathcal{W}(\boldsymbol{\Phi}^{\lambda}, \hat{\boldsymbol{r}}) = max_{\boldsymbol{\mu} \in \mathcal{M}(\hat{\boldsymbol{r}})} (\sum_{x,y} \mu_{xy} \Phi_{xy}^{\lambda} + \varepsilon^{\lambda}(\boldsymbol{\mu}, \hat{\boldsymbol{r}}))$$

• Stable matching $\mu^{\lambda}(\hat{r})$ computed efficiently

Estimation methods for λ

- 1. Maximum likelihood estimation
- 2. Moment matching method
- 3. Minimum distance estimator

Maximum likelihood estimation (MLE)

- 1. Compute the optimal matching with parameters λ for given populations of men and women
 - Fix \hat{n}_x and \hat{m}_{y} , impose constraints (6.1)
- 2. Simulated number of households:

 $H^{\lambda} \equiv \sum_{(x,y)\in\mathcal{X}\times\mathcal{Y}}\mu_{xy}^{\lambda} + \sum_{x\in\mathcal{X}}\mu_{x0}^{\lambda} + \sum_{y\in\mathcal{Y}}\mu_{0y}^{\lambda} = \sum_{x\in\mathcal{X}}\widehat{n}_{x} + \sum_{y\in\mathcal{Y}}\widehat{m}_{y} - \sum_{(x,y)\in\mathcal{X}\times\mathcal{Y}}\mu_{xy}^{\lambda}$

3. Observed matches:

- μ_{x0}^{λ} : Number of single men with characteristic x
- μ_{0y}^{λ} : Number of single women with characteristic y
- μ_{xy}^{λ} : Number of (x, y) couples

4. Log-likelihood function:

$$\log L(\lambda) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \hat{\mu}_{xy} \log \frac{\mu_{xy}^{\lambda}}{H^{\lambda}} + \sum_{x \in \mathcal{X}} \hat{\mu}_{x0} \log \frac{\mu_{x0}^{\lambda}}{H^{\lambda}} + \sum_{y \in \mathcal{Y}} \hat{\mu}_{0y} \log \frac{\mu_{0y}^{\lambda}}{H^{\lambda}}$$

- Maximum likelihood estimator $\hat{\lambda}^{MLE}$:
 - · Consistent, asymptotically normal, and asymptotically efficient under the usual set of assumptions

理論談話会2024#7

Moment-based estimation in semi-linear models

Alternative to MLE:

• MLE is powerful but often difficult to maximize due to several local extrema

Conditions for moment-based method:

- 1. Distribution of the unobserved heterogeneities must be parameter-free (e.g. Choo and Siow, 2006)
- 2. Parametrization of the $\boldsymbol{\Phi}$ matrix must be linear in the parameter vector
 - $\Phi_{xy}^{\lambda} = \sum_{k=1}^{K} \lambda_k \phi_{xy}^k$
 - $\lambda \in \mathbb{R}^{K}$ and $\tilde{\phi} \coloneqq (\phi^{1}, ..., \phi^{K})$ are K known linearly independent basis surplus vectors

Moment-matching estimator:

• Matches predicted moments with empirical moments:

$$\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \hat{\mu}_{xy} \phi_{xy}^k = \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \mu_{xy}^{\lambda} \phi_{xy}^k \quad \forall k$$

• The moment-matching estimator:

$$\hat{\lambda}^{MM} \coloneqq \arg \max_{\lambda \in \mathbb{R}^{K}} \left(\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \hat{\mu}_{xy} \Phi_{xy}^{\lambda} - \mathcal{W}(\Phi^{\lambda}, \hat{r}) \right)$$

理論談話会2024#7

Minimum distance estimation

Mixed hypothesis:

$$\exists \lambda, D^{\lambda} \equiv \Phi^{\lambda} + \frac{\partial \varepsilon^{\lambda}}{\partial \mu}$$

Estimation process:

- Choose $\hat{\lambda}$ to minimize $\|D^{\lambda}\|_{\Omega}^{2}$ for some positive definite matrix Ω
- Particularly appealing when distributions P_x and Q_y are parameter-free and surplus matrix Φ^{λ} is linear in the parameters

7. Empirical Application

Testing methods on Choo and Siow's dataset

Objective:

• Testing Choo and Siow's specification against alternative models

Selected sub-sample:

- Time period: 1970s wave (younger marriage age)
- Age range: 16-40 years
- Sub-sample: "non-reform states"
 - 75,265 observations representing 13.3m individuals

Analysis approach:

- Non-parametric surplus models fit all separable models so it's hard to choose between models
- Two steps process
 - 1. Fit parametric surplus models:
 - Use semi-linear model and select basis functions (ϕ_{xy}^k) using Bayesian Information Criterion (BIC)
 - 2. Fit alternative specifications
 - Utilize chosen basis functions and test different error term distributions

Heteroskedastic logit models

Method:

- Add heteroskedasticity to benchmark model while maintaining scale normalization
- To determine the best fit, use BIC

Findings:

- Gender heteroskedasticity: minimal improvement in fit, worsens BIC
- Gender and age heteroskedasticity: significant improvement in both fit and BIC
 - Preferred model: replace $\varepsilon_{iy} + \eta_{xj}$ with $\sigma_x \varepsilon_{iy} + \tau_y \eta_{xj}$
 - $\sigma_x = \exp(\sigma_1 x + \sigma_2 x^2)$, $\tau_y = \exp(\tau_0)$
 - Results:
 - +29.4 points of log-likelihood and +25.1 points on BIC
 - Estimated parameters: $\tau_y = 0.16$, σ_x from 0.40 at age 16 to 2.49 at age 40

Impact on surplus share

• Heteroskedasticity affects surplus share in matches:

 $\frac{u_x}{u_x + v_y} = \frac{\sigma_x \log \mu_{0|x}}{\sigma_x \log \mu_{0|x} + \tau_y \log \mu_{0|y}}$

- Figure 1: Surplus share ratio for sameage couples in 3 models (homoscedastic, genderheteroskedastic, and gender- and ageheteroskedastic)
- Men's surplus share increases with age in gender- and age-heteroskedastic model

REVIEW OF ECONOMIC STUDIES

Flexible MNL models

Background:

- Nested logit model limitation:
 - Equal correlation between all alternatives in a nest
 - Not suit for capturing age-local correlations

Model choice:

• Flexible coefficient multinomial logit (FC-MNL) model (Davis and Schiraldi, 2014)

Method:

- Reformulate as an MPEC
- Maximize log-likelihood for parameters and U under constraint $\nabla G(U) = \nabla H(\Phi U)$

Model specification:

• Substitution patterns matrix:

$$b_{y,y'}^{x} = \begin{cases} \frac{b_{m}(x)}{|y - y'|} & \text{if } y \neq y' \\ 1 & \text{if } y = y' \end{cases}$$

• Similar for women's side with $b_w(y)$ divided by |x - x'|

8. Concluding Remarks

Concluding remarks

Validation of assumptions:

• Separability and large market assumptions are tested and supported by the simulations (Chiappori et al., 2019b)

Potential extensions:

- Continuous characteristics
 - Dupuy and Galichon (2014) address this issue for the Choo and Siow model using the theory of extreme value processes and propose testing the number of relevant dimensions

Broader applications:

- Beyond bipartite matching
 - "Roommate" problem (Chiappori et al., 2019a)
 - Trade on networks with transfers (Hatfield and Kominers, 2012) & (Hatfield et al., 2013)

Relaxing utility assumptions:

- Imperfectly transferable utility and separable logit heterogeneity
- Non-transferable utility and a similar form of heterogeneity

- 数学的なテクニカルな手法(双対性等)が何回も用いられていたので、その展開を追うのが難しかった
- -つ一つの話題に関しては理解することができた気がするが、論文自体の 長さ(おそらく書かれ方が丁寧?)もあり、全体の流れを掴むのが大変 だった
- 初めてまともに読む論文ということもあり、読み進めるときに命題や定理 などについて、どこまでそう言うものだと想定して(なぜそうなるのかわ からなくても)読み進めていけるのかの判断が難しかった

理論談話会2024#7