An alternating direction method of multipliers for solving user equilibrium problem

Zhiyuan Liu, Xinyuan Chen, Jintao Hu, Shuaian Wang, Kai Zhang, Honggang Zhang. (2023).

European Journal of Operational Research, 310(3), 1072-1084

理論談話会#5 (2024/05/13) M1 Furuhashi Fumihito

Summary

Main Challenge

Applying **parallel computing** approach to solve the **UE problem**

Contribution

- 1. Origin-base formulation
- 2. The algorithm grouping links into **Blocks**

Validation

- 4 numerical experiments
- The performance of ADMM is superior to some existing algorithms

"This study presented an initial step on the aspect of using ADMM for parallel computing of UE."

Novelty, Utility, Reliability

Novelty

- 1. Applying **parallel** computing approach to solve the **UE** problem by adopting **ADMM**
- 2. Proposing a novel algorithm grouping network links into **block**

Utility

- 1. On a big size network, the ADMM algorithm can solve UE problems tremendously faster
- 2. The ADMM algorithms can be more **accelerate** and **extend** its use to other types of traffic assignment problems

Reliability

4 types of numerical tests

Contents

- 1. Introduction
- 2. Model Formulation
- 3. The alternation direction method of multipliers for UE
- 4. Solution algorithms for link blocking
- 5. Solution method for the link-based subproblem
- 6. Numerical examples
- 7. Conclusion

Key Words: Traffic assignment, User equilibrium, Parallel computing, Alternating direction method of multipliers, Edge-coloring problem

Contents

1. Introduction

- 2. Model Formulation
- 3. The alternation direction method of multipliers for UE
- 4. Solution algorithms for link blocking
- 5. Solution method for the link-based subproblem
- 6. Numerical examples
- 7. Conclusion

1.1 Literature review

利用者均衡(UE/FD)の定式化

Wardropの第1原則に従う,需要固定型利用者均衡配分モデル (UE/FD: User Equilibrium with Fixed Demand) を定式化する

■ Wardropの第1原則の定式化

$f_k^{rs} > 0$ のとき $c_k^{rs} = c_{min}^{rs} \forall k \in K_{rs}, \forall rs \in \Omega$	利用される経路の旅行時間は皆等しく
$f_k^{rs} = 0 \mathcal{O} \succeq \mathring{s} c_k^{rs} \ge c_{min}^{rs} \forall k \in K_{rs}, \forall rs \in \Omega$	利用されない経路の旅行時間よりも小 さいか,せいぜい等しい
s.t.	
$\sum_{k \in K_{rs}} f_k^{rs} - q_{rs} = 0$ $\forall rs \in \Omega$ 流量保存則	f ^{rs} : ODペアrs間のパスkの流量 c ^{rs} : ODペアrs間のパスkの流行時間
$f_k^{rs} \ge 0$ $\forall k \in K_{rs}, \forall rs \in \Omega$ 流量は非負	c _{min} : ODペアrs間の最短経路所要時間 q _{rs} : ODペアrs間の分布交通量

現実規模のネットワークでこの解を得るのは当初非常に困難だった

🔶 Beckmann et al.(1956)が数理最適化問題に変換!

最適化問題であれば解法が確立されているため効率よく解ける!

2.1 UEの定式化

28

UE/FDの定式化 – 等価最適化問題への変換

■ Wardropの利用者均衡の等価最適化問題

 $t_a(x_a): リンクaの旅行時間$ $x_a: リンクaの交通量$ $<math>f_*^{T^*}: ODペアrs間のパスkの流量$ $q_rs: ODペアrs間の分布交通量$ $<math>\delta_{a_k}^{T^*}: ODペアrs間のパスkがリンクaを$ 含むか否か (True=1, False=0)

- 十分性の証明(詳しい証明は教科書や昨年度資料参照)
 UE/FD-PrimalのKKT条件が元の問題と一致することにより証明できる
- 解の一意性の証明(詳しい証明は教科書や昨年度資料参照)
 変数の実行可能領域が凸(:・制約条件式が全て線形)
 目的関数が狭義の凸関数⇔ Hessianが正定値(:・リンクパフォーマンス関数が単調増加)

2.1 UEの定式(

29

増田さん Start-upゼミ#2資料 pp. 28-29

Solution

Algorithms

- Link-base: Frank-Wolfe algorithm, Gauss-Seidel iteration method
- Path-base
- Origin-base (This paper)

Contents

1. Introduction

2. Model Formulation

- 3. The alternation direction method of multipliers for UE
- 4. Solution algorithms for link blocking
- 5. Solution method for the link-based subproblem
- 6. Numerical examples
- 7. Conclusion

Definition

Transport Network	G	G = (N, A)
Set of nodes	Ν	$n \in N$
Set of links	A	$a \in A$
Set of OD pairs	W	$(o,d) \in W$
Travel demand for $(o, d) \in W$	q^{od}	
Set of path between OD pair (o, d)	K ^{od}	$k \in K^{od}$
Flow on path $k \in K^{od}$	f_k^{od}	
Flow on link $a \in A$	v_a	
Link-path incidence relationship	$\delta^{od}_{a,k}$	$\delta_{a,k}^{od} = \begin{cases} 1, path \ k \in K^{od} \ use \ link \ a \\ 0, otherwise \end{cases}$
Travel time function of link $a \in A$	$t_a(v_a)$	Strictly increasing and continuously differentiable
Lagrange multipliers	$arphi^{od}$	Shortest travel time between OD pair (<i>o</i> , <i>d</i>)
Travel cost of the path k betweenOD pair (o, d)	C_k^{od}	

Widely used mathematical formulation of UE [MP-UE]

$$\min Z_1 = \sum_{a \in A} \int_0^{\nu_a} t_a(w) dw \tag{1}$$

s.t.
$$\sum_{k \in K^{od}} f_k^{od} = q^{od}, \quad \forall od \in W$$
 (2)

$$f_k^{od} \ge 0, \forall k \in K^{od}, od \in W$$
(3)

$$v_{a} = \sum_{od \in W} \sum_{k \in K^{od}} f_{k}^{od} \delta_{a,k}^{od}, \forall a \in A.$$
(4)

Widely used mathematical formulation of UE [MP-UE]

$$\min Z_1 = \sum_{a \in A} \int_0^{\nu_a} t_a(w) dw \tag{1}$$

Flow conservation

s.t.
$$\sum_{k \in K^{od}} f_k^{od} = q^{od}, \quad \forall od \in W$$
 (2)

$$f_k^{od} \ge 0, \forall k \in K^{od}, od \in W$$
(3)

Travel cost of link a

$$\nu_{a} = \sum_{od \in W} \sum_{k \in K^{od}} f_{k}^{od} \delta_{a,k}^{od}, \forall a \in A.$$
(4)

Widely used mathematical formulation of UE [MP-UE]

Origin-based model [OB-UE]

$$\min Z_2 = \sum_{a \in A} \int_0^{\sum_{o \in O} v_a^o} t_a(w) dw$$

s.t.
$$\sum_{\substack{a \in A \\ i(a)=n}} v_a^o - \sum_{\substack{a \in A \\ h(a)=n}} v_a^o = g_n^o, \quad \forall o \in O, n \in N$$
(8)

$$v_a \ge 0, \forall o \in O, a \in A \tag{9}$$

(7)

$$g_{n}^{o} = \begin{cases} \sum_{od \in W^{o}} q^{od}, n = o \\ -q^{od}, n = d \\ 0, \text{ otherwise} \end{cases}, \forall o \in O, n \in N$$

$$(10)$$

Traffic flow on link a originating from o	v _a ^o	$v_a = \sum_{o \in O} v_a^o$
Tail node of link a	i(a)	
Head node of link a	h(a)	

 $A' = \{1\}$ when i(a) = 2 $A' = \{3\}$ when h(a) = 2

Origin-based model [OB-UE]

$$\min Z_2 = \sum_{a \in A} \int_0^{\sum_{o \in O} v_a^o} t_a(w) dw \tag{7}$$
s. t.
$$\sum_{\substack{a \in A \\ i(a) = n}} v_a^o - \sum_{\substack{a \in A \\ h(a) = n}} v_a^o = g_n^o, \quad \forall o \in O, n \in N$$

$$v_a \ge 0, \forall o \in O, a \in A \tag{9}$$

$$g_{n}^{o} = \begin{cases} \sum_{od \in W^{o}} q^{od}, n = o \\ -q^{od}, n = d \\ 0, \text{ otherwise} \end{cases}, \forall o \in O, n \in N$$

$$(10)$$

$$\left(v_1^1 + v_5^1\right) - \left(v_3^1\right) = g_3^1$$

Origin-based model [OB-UE]

$$\min Z_2 = \sum_{a \in A} \int_0^{\sum_{o \in O} v_a^o} t_a(w) dw$$

s.t.
$$\sum_{\substack{a \in A \\ i(a)=n}} v_a^o - \sum_{\substack{a \in A \\ h(a)=n}} v_a^o = g_n^o, \quad \forall o \in O, n \in N$$
(8)

$$v_a \ge 0, \forall o \in O, a \in A \tag{9}$$

$$g_{n}^{o} = \begin{cases} \sum_{od \in W^{o}} q^{od}, n = o \\ -q^{od}, n = d \\ 0, \text{ otherwise} \end{cases}, \forall o \in O, n \in N$$

$$(10)$$

HOW TO SOLVE?

Conventional Approach (Nie, 2010)

- Decompose it into a series of restricted origin-based subproblems
- Solve them sequentially by the Gauss-Seidel iteration sheme

This paper

(7)

Employ Lagrange relaxation

https://www.bunkyo.ac.jp/~nemoto/lecture/opt-model/2008/duality1-2007.pdf

[P]

 $\max 6x_1 + 4x_2$ s. t. $2x_1 + x_2 \le 70$ $3x_1 + 4x_2 \le 180$ $x_1, x_2 \ge 0$

 $\max 6x_1 + 4x_2$ s.t. $2x_1 + x_2 \le 70$ $3x_1 + 4x_2 \le 180$ $x_1, x_2 \ge 0$

$$\leq \begin{bmatrix} [P1] \\ \max 6x_1 + 4x_2 + y_1 (70 - (2x_1 + x_2)) + y_2 (180 - (3x_1 + 4x_2)) \\ s.t. 2x_1 + x_2 \le 70 \\ 3x_1 + 4x_2 \le 180 \\ x_1, x_2, y_1, y_2 \ge 0 \end{bmatrix}$$

$$\leq | [P2-1] \\ \max 6x_1 + 4x_2 + y_1 (70 - (2x_1 + x_2)) + y_2 (180 - (3x_1 + 4x_2)) \\ \text{s.t.} x_1, x_2, y_1, y_2 \ge 0$$

Lagrange Relaxation

[P]

 $\max 6x_1 + 4x_2$ s. t. $2x_1 + x_2 \le 70$ $3x_1 + 4x_2 \le 180$ $x_1, x_2 \ge 0$

	[P1]
_	$\max 6x_1 + 4x_2 + y_1 (70 - (2x_1 + x_2)) + y_2 (180 - (3x_1 + 4x_2))$
<	s. t. $2x_1 + x_2 \le 70$
_	$3x_1 + 4x_2 \le 180$
	$x_1, x_2, y_1, y_2 \ge 0$

$$\leq | [P2-1] \\ \max 6x_1 + 4x_2 + y_1 (70 - (2x_1 + x_2)) + y_2 (180 - (3x_1 + 4x_2)) \\ \text{s.t.} x_1, x_2, y_1, y_2 \ge 0$$

$$= \begin{bmatrix} [P2-2] & \text{Negative} & \text{Negative} \\ \max(6 - 2y_1 - 3y_2)x_1 + (4 - y_1 - 4y_2)x_2 + 70y_1 + 180y_2 \\ & \text{s.t.} x_1, x_2, y_1, y_2 \ge 0 \end{bmatrix}$$

$$\min Z_2 = \sum_{a \in A} \int_0^{\sum_{o \in O} \nu_a^o} t_a(w) dw \tag{7}$$

s.t.
$$\sum_{\substack{a \in A \\ i(a)=n}} v_a^o - \sum_{\substack{a \in A \\ h(a)=n}} v_a^o = g_n^o, \quad \forall o \in O, n \in N$$
(8)

$$v_a \ge 0, \forall o \in O, a \in A \tag{9}$$

$$g_{n}^{o} = \begin{cases} \sum_{od \in W^{o}} q^{od}, n = o \\ -q^{od}, n = d \\ 0, \text{ otherwise} \end{cases}, \forall o \in O, n \in N$$

$$(10)$$

$$L_0(\mathbf{v}, \boldsymbol{\lambda}) = \sum_{a \in A} \int_0^{\sum_{0 \in O} v_a^o} t_a(w) dw + \sum_{o \in O} \sum_{n \in N} \lambda_n^o H_n^o(v)$$
(12)

$$\max_{\lambda} \inf_{\mathbf{v} \ge 0} L_0(\mathbf{v}, \lambda) \tag{13}$$

$$\mathbf{v}^* = \underset{\mathbf{v} \ge 0}{\operatorname{arg\,min}} L_0(\mathbf{v}, \boldsymbol{\lambda}^*) \tag{14}$$

2024/5/13

$$\min Z_2 = \sum_{a \in A} \int_0^{\sum_{o \in O} \nu_a^o} t_a(w) dw \tag{7}$$

s.t.
$$\sum_{\substack{a \in A \\ i(a)=n}} v_a^o - \sum_{\substack{a \in A \\ h(a)=n}} v_a^o = g_n^o, \quad \forall o \in O, n \in N$$
(8)

Affine functions
$$v_a \ge 0, \forall o \in O, a \in A$$
 (9)

$$g_{n}^{o} = \begin{cases} \sum_{od \in W^{o}} q^{od}, n = o\\ -q^{od}, n = d\\ 0, \text{ otherwise} \end{cases}, \forall o \in O, n \in N$$
(10)

$$L_{0}(\mathbf{v}, \boldsymbol{\lambda}) = \sum_{a \in A} \int_{0}^{\sum_{0 \in O} v_{a}^{o}} t_{a}(w) dw + \sum_{o \in O} \sum_{n \in N} \lambda_{n}^{o} H_{n}^{o}(v)$$
(12)
Dual problem
$$\max_{\boldsymbol{\lambda}} \inf_{\mathbf{v} \ge 0} L_{0}(\mathbf{v}, \boldsymbol{\lambda})$$
(13)

$$\mathbf{v}^* = \underset{\mathbf{v} \ge 0}{\operatorname{arg\,min}} L_0(\mathbf{v}, \boldsymbol{\lambda}^*) \tag{14}$$

2024/5/13

(7)

$$\min Z_2 = \sum_{a \in A} \int_0^{\sum_{o \in O} v_a^o} t_a(w) dw$$

s.t.
$$\sum_{\substack{a \in A \\ i(a)=n}} v_a^o - \sum_{\substack{a \in A \\ h(a)=n}} v_a^o = g_n^o, \quad \forall o \in O, n \in N$$
(8)

$$v_a \ge 0, \forall o \in O, a \in A \tag{9}$$

$$g_n^o = \begin{cases} \sum_{od \in W^o} q^{od}, n = o\\ -q^{od}, n = d \end{cases}, \forall o \in O, n \in N \tag{10}$$

0, otherwise

$$L_0(\mathbf{v}, \boldsymbol{\lambda}) = \sum_{a \in A} \int_0^{\sum_{0 \in O} \nu_a^o} t_a(w) dw + \sum_{o \in O} \sum_{n \in N} \lambda_n^o H_n^o(\nu)$$
(12)

$$\max_{\lambda} \inf_{\mathbf{v} \ge 0} L_0(\mathbf{v}, \lambda) \tag{13}$$

$$\mathbf{v}^* = \underset{\mathbf{v} \ge 0}{\operatorname{arg\,min}} L_0(\mathbf{v}, \boldsymbol{\lambda}^*) \tag{14}$$

PROBLEM

NOT STRICT CONVEX w.r.t v

HOW TO SOLVE?

Conventional Approach (Nie, 2010)

- Gradient-based algorithms, e.g., the dual ascent method
- Requiring strict convexity of the primal model (Boyed et al., 2011)

This paper

Adopt Augumented Lagrangian

 $\min Z_2 = \sum \int_{0 \in O}^{\sum_{o \in O} v_a^o} t_a(w) dw$

v≥0

It can be easily proven that the objective function (7) is convex but not strict convex w.r.t. the origin-based link flows **v**. Considering that the constraints (9) are affine functions, the strong duality holds (Boyd & Vandenberghe, 2004). Thus, the optimal value of the primal equals the optimal value of the dual problem. We can obtain a primal optimal point **v**^{*} from a dual optimal point λ^* (Boyd et al., 2011):

$$(14)$$

$$\max_{\lambda} \inf_{\mathbf{v} \ge 0} L_0\left(\mathbf{v}, \boldsymbol{\lambda}^*\right).$$

$$\max_{\lambda} \inf_{\mathbf{v} \ge 0} L_0(\mathbf{v}, \boldsymbol{\lambda})$$

$$(13)$$

$$\mathbf{v}^* = \arg\min L_0(\mathbf{v}, \boldsymbol{\lambda}^*)$$

$$(14)$$

s.t

PROBLEM

Augumented Lagransian

New model [ROB-UE]

 $\max_{\boldsymbol{\lambda}} \inf_{\mathbf{v} \geq 0} L_{\rho}(\mathbf{v}, \boldsymbol{\lambda})$

$$\mathbf{v}^{(i+1)} \coloneqq \underset{\mathbf{v} \ge 0}{\arg\min} L_{\rho}(\mathbf{v}, \boldsymbol{\lambda}^{(i)})$$
(17)

 $\boldsymbol{\lambda}^{(i+1)} \coloneqq \boldsymbol{\lambda}^{(i+1)} + \rho \big(\boldsymbol{C} \cdot \mathbf{v}^{(i+1)} - \mathbf{g} \big) \quad (18)$

$$L_{\rho}(\mathbf{v},\boldsymbol{\lambda}) = \sum_{a \in A} \int_{0}^{\sum_{o \in O} v_{a}^{o}} t_{a}(w) dw + \sum_{o \in O} \sum_{n \in N} \lambda_{n}^{o} H_{n}^{o}(v) + \frac{\rho}{2} \sum_{o \in O} \sum_{n \in N} \left(H_{n}^{o}(v)\right)^{2} \quad (15)$$
$$H_{n}^{o}(v) \coloneqq \sum_{\substack{a \in A \\ i(a)=n}} v_{a}^{o} - \sum_{\substack{a \in A \\ h(a)=n}} v_{a}^{o} - g_{n}^{o}, \forall o \in O, n \in N$$

New model [ROB-UE]

 $\max_{\boldsymbol{\lambda}} \inf_{\mathbf{v} \geq 0} L_{\rho}(\mathbf{v}, \boldsymbol{\lambda})$

$$\mathbf{v}^{(i+1)} \coloneqq \arg\min_{\mathbf{v}\geq 0} L_{\rho}(\mathbf{v}, \boldsymbol{\lambda}^{(i)}) \qquad (17)$$

$$\boldsymbol{\lambda}^{(i+1)} \coloneqq \boldsymbol{\lambda}^{(i+1)} \leftarrow \rho(C \cdot \mathbf{v}^{(i+1)} - \mathbf{g}) \qquad (18)$$

$$L_{\rho}(\mathbf{v}, \boldsymbol{\lambda}) = \sum_{a \in A} \int_{0}^{\sum_{o \in O} v_{a}^{o}} t_{a}(w) dw + \sum_{o \in O} \sum_{n \in N} \lambda_{n}^{\rho} H_{n}^{o}(v) + \frac{\rho}{2} \sum_{o \in O} \sum_{n \in N} (H_{n}^{o}(v))^{2} \qquad (15)$$

$$H_{n}^{o}(v) \coloneqq \sum_{a \in A} v_{a}^{o} - \sum_{a \in A} v_{a}^{o} - g_{n}^{o} \forall o \in O, n \in N$$

$$H_{n}^{o}(v) \coloneqq \sum_{i(a)=n} v_{a}^{o} - \sum_{h(a)=n} v_{a}^{o} - g_{n}^{o} \forall o \in O, n \in N$$

$$H_{2}^{1} = \left(v_{1}^{1} + v_{5}^{1}\right) - \left(v_{3}^{1}\right) - g_{3}^{1}$$

INDEPENDENT

New model [ROB-UE]

 $\max_{\boldsymbol{\lambda}} \inf_{\mathbf{v} \geq 0} L_{\rho}(\mathbf{v}, \boldsymbol{\lambda})$

$$\mathbf{v}^{(i+1)} \coloneqq \arg\min_{\mathbf{v} \ge 0} \overline{L_{\rho}(\mathbf{v}, \boldsymbol{\lambda}^{(i)})}$$
(17)
$$\boldsymbol{\lambda}^{(i+1)} \coloneqq \boldsymbol{\lambda}^{(i+1)} + \rho(C \cdot \mathbf{v}^{(i+1)} - \mathbf{g})$$
(18)
$$L_{\rho}(\mathbf{v}, \boldsymbol{\lambda}) = \sum_{a \in A} \int_{0}^{\sum_{o \in O} v_{a}^{o}} t_{a}(w) dw + \sum_{o \in O} \sum_{n \in N} \lambda_{n}^{\rho} H_{n}^{o}(v) + \frac{\rho}{2} \sum_{o \in O} \sum_{n \in N} (H_{n}^{o}(v))^{2}$$
(15)
$$\overline{H_{n}^{o}(v)} \coloneqq \sum_{a \in A} v_{a}^{o} - \sum_{a \in A} v_{a}^{o} - g_{n}^{o} \forall o \in O, n \in N$$

SOLUTION

The alternating direction method of multipliers (ADMM)

INDEPENDENT

Contents

- 1. Introduction
- 2. Model Formulation
- 3. The alternation direction method of multipliers for UE
- 4. Solution algorithms for link blocking
- 5. Solution method for the link-based subproblem
- 6. Numerical examples
- 7. Conclusion

The alternating direction method of multipliers (ADMM)

[P1]
$$\min_{x} f(x) + g(x)$$
$$\lim_{x,y} f(x) + g(y),$$
$$\sup_{x,y} f(x) + g(y),$$
$$s.t. x = y$$

https://en.wikipedia.org/wiki/Augmented_Lagrangian_method

The alternating direction method of multipliers (ADMM)

[P1]
$$\min_{x} f(x) + g(x)$$
$$\lim_{x,y} f(x) + g(y),$$
$$\sup_{x,y} f(x) + g(y),$$
$$s.t. x = y$$

Requiring solving a proximity function in *x* and *y* at **the same time**

[Augumented Lagransian]

$$L_{\lambda}(x, y, \lambda) = f(x) + g(y) + \langle \lambda, x - y \rangle + \frac{\rho}{2} ||x - y||^2$$

[Algorithms]

$$x^{(i+1)} \coloneqq \arg\min_{x} L_{\rho}(x, y^{(i)}, \lambda^{(i)}) \qquad \text{FIX } y \qquad \text{ADMM allows this problem to be solved} \\ y^{(i+1)} \coloneqq \arg\min_{y} L_{\rho}(x^{(i+1)}, y, \lambda^{(i)}) \qquad \text{FIX } x \qquad \text{step by step} \end{cases}$$

https://en.wikipedia.org/wiki/Augmented_Lagrangian_method

The alternating direction method of multipliers (ADMM)

Block

DEFINITION

- Links in each block are independent. No overlapped tail/head nodes into the same block/set.
- For each block, the augmented Lagrangian function can then be solved/updated in parallel.

$$C_1 \cdot \mathbf{v}_{B_1} - C_2 \cdot \mathbf{v}_{B_2} - \mathbf{g} = \mathbf{0} \tag{19}$$

$$\mathbf{v}_{B_1}^{(i+1)} \coloneqq \underset{\mathbf{v}_{B_1} \ge 0}{\operatorname{arg\,min}} L_{\rho}\left(\mathbf{v}_{B_1}, \mathbf{v}_{B_1}^{(i)}, \boldsymbol{\lambda}^{(i)}\right)$$
(20)

$$\mathbf{v}_{B_2}^{(i+1)} \coloneqq \underset{\mathbf{v}_{B_1} \ge 0}{\operatorname{arg\,min}} L_{\rho}\left(\mathbf{v}_{B_1}, \mathbf{v}_{B_1}^{(i)}, \boldsymbol{\lambda}^{(i)}\right)$$
(21)

$$\boldsymbol{\lambda}^{(i+1)} \coloneqq \boldsymbol{\lambda}^{(i)} + \rho \left(C_1 \cdot \mathbf{v}_{B_1}^{(i+1)} + C_2 \cdot \mathbf{v}_{B_2}^{(i+1)} - \mathbf{g} \right)$$
(22)

$$L_{\rho}^{B_{p}}\left(\mathbf{v}_{B_{1}}^{(i+1)}, \dots, \mathbf{v}_{B_{p-1}}^{(i+1)}, \mathbf{v}_{B_{p}}, \mathbf{v}_{B_{p+1}}^{(i)}, \dots, \mathbf{v}_{B_{p}}^{(i)}, \boldsymbol{\lambda}^{(i)}\right) = \sum_{a \in B_{p}} L_{\rho}^{B_{p}, a}\left(\mathbf{v}_{a}\right)$$

 $C \cdot \mathbf{v} - \mathbf{g} = \mathbf{0}$ (11) $\mathbf{v}^{(i+1)} \coloneqq \arg\min_{\mathbf{v} \ge 0} L_{\rho}(\mathbf{v}, \boldsymbol{\lambda}^{(i)})$ (17) $\boldsymbol{\lambda}^{(i+1)} \coloneqq \boldsymbol{\lambda}^{(i+1)} + \rho(C \cdot \mathbf{v}^{(i+1)} - \mathbf{g})$ (18)

Block

DEFINITION

- Links in each block are independent. No overlapped tail/head nodes into the same block/set.
- For each block, the augmented Lagrangian function can then be solved/updated in parallel.

(11)

(17)

(18)

$$C_1 \cdot \mathbf{v}_{B_1} - C_2 \cdot \mathbf{v}_{B_2} - \mathbf{g} = \mathbf{0}$$
(19)

$$\mathbf{v}_{B_1}^{(i+1)} \coloneqq \underset{\mathbf{v}_{B_1} \ge 0}{\operatorname{arg\,min}} L_{\rho}\left(\mathbf{v}_{B_1}, \mathbf{v}_{B_1}^{(i)}, \boldsymbol{\lambda}^{(i)}\right)$$
(20)

$$\mathbf{v}_{B_2}^{(i+1)} \coloneqq \underset{\mathbf{v}_{B_1} \ge 0}{\operatorname{arg\,min}} L_{\rho}\left(\mathbf{v}_{B_1}, \mathbf{v}_{B_1}^{(i)}, \boldsymbol{\lambda}^{(i)}\right)$$
(21)

$$\boldsymbol{\lambda}^{(i+1)} \coloneqq \boldsymbol{\lambda}^{(i)} + \rho \left(C_1 \cdot \mathbf{v}_{B_1}^{(i+1)} + C_2 \cdot \mathbf{v}_{B_2}^{(i+1)} - \mathbf{g} \right)$$
(22)

$$L_{\rho}^{B_{p}}\left(\mathbf{v}_{B_{1}}^{(i+1)}, \dots, \mathbf{v}_{B_{p-1}}^{(i+1)}, \mathbf{v}_{B_{p}}, \mathbf{v}_{B_{p+1}}^{(i)}, \dots, \mathbf{v}_{B_{p}}^{(i)}, \boldsymbol{\lambda}^{(i)}\right) = \sum_{a \in B_{p}} L_{\rho}^{B_{p}, a}\left(\mathbf{v}_{a}\right)$$

After update Target Before update

 $C \cdot \mathbf{v} - \mathbf{g} = \mathbf{0}$

 $\mathbf{v}^{(i+1)} \coloneqq \operatorname*{arg\,min}_{\mathbf{v} \ge 0} L_{\rho}(\mathbf{v}, \boldsymbol{\lambda}^{(i)})$

 $\boldsymbol{\lambda}^{(i+1)} \coloneqq \boldsymbol{\lambda}^{(i+1)} + \rho \big(\boldsymbol{C} \cdot \mathbf{v}^{(i+1)} - \mathbf{g} \big)$

Independent link-based subproblems = Suitable for parallel computing!

What is "Block"

DEFINITION

- Links in each block are independent. No overlapped tail/head nodes into the same block/set.
- For each block, the augmented Lagrangian function can then be solved/updated in parallel.

Algorithm

Iteration *i*

$$\mathbf{v}_{B_1}^{(i+1)} \coloneqq \underset{\mathbf{v}_{B_1} \ge 0}{\operatorname{arg min}} L_{\rho} \left(\mathbf{v}_{B_1}, \mathbf{v}_{B_2}^{(i)}, \mathbf{v}_{B_3}^{(i)}, \boldsymbol{\lambda}^{(i)} \right)$$
$$\mathbf{v}_{B_1}^{(i+1)} \coloneqq \operatorname{arg min} L_{\rho} \left(\mathbf{v}_{B_1}^{(i+1)}, \mathbf{v}_{B_2}, \mathbf{v}_{B_3}^{(i)}, \boldsymbol{\lambda}^{(i)} \right)$$

$$\mathbf{v}_{B_2}^{(i+1)} \coloneqq \underset{\mathbf{v}_{B_2} \ge 0}{\operatorname{arg\,min}} L_{\rho}\left(\mathbf{v}_{B_1}^{(i+1)}, \mathbf{v}_{B_2}, \mathbf{v}_{B_3}^{(i)}, \boldsymbol{\lambda}^{(i)}\right)$$

$$\mathbf{v}_{B_3}^{(i+1)} \coloneqq \underset{\mathbf{v}_{B_3} \ge 0}{\operatorname{arg\,min}} L_{\rho}\left(\mathbf{v}_{B_1}^{(i+1)}, \mathbf{v}_{B_2}^{(i+1)}, \mathbf{v}_{B_3}, \boldsymbol{\lambda}^{(i)}\right)$$

$$\boldsymbol{\lambda}^{(i+1)} \coloneqq \boldsymbol{\lambda}^{(i)} + \rho \big(\boldsymbol{C} \cdot \mathbf{v}^{(i+1)} - \mathbf{g} \big)$$

Criterion $|RG| = \left| 1 - \frac{\sum_{od \in W} \varphi^{od} q^{od}}{\sum_{a \in A} v_a t_a(v_a)} \right|$

lteration *i*

$$\mathbf{v}_{B_1}^{(i+1)} \coloneqq \underset{\mathbf{v}_{B_1} \ge 0}{\operatorname{arg min}} L_\rho \left(\mathbf{v}_{B_1}, \mathbf{v}_{B_2}^{(i)}, \mathbf{v}_{B_3}^{(i)}, \boldsymbol{\lambda}^{(i)} \right)$$
$$\mathbf{v}_{B_2}^{(i+1)} \coloneqq \underset{\mathbf{v}_{B_2} \ge 0}{\operatorname{arg min}} L_\rho \left(\mathbf{v}_{B_1}^{(i+1)}, \mathbf{v}_{B_2}, \mathbf{v}_{B_3}^{(i)}, \boldsymbol{\lambda}^{(i)} \right)$$
$$\mathbf{v}_{B_3}^{(i+1)} \coloneqq \underset{\mathbf{v}_{B_3} \ge 0}{\operatorname{arg min}} L_\rho \left(\mathbf{v}_{B_1}^{(i+1)}, \mathbf{v}_{B_2}^{(i+1)}, \mathbf{v}_{B_3}, \boldsymbol{\lambda}^{(i)} \right)$$
$$\boldsymbol{\lambda}^{(i+1)} \coloneqq \boldsymbol{\lambda}^{(i)} + \rho \left(C \cdot \mathbf{v}^{(i+1)} - \mathbf{g} \right)$$

Criterion $|RG| = \left| 1 - \frac{\sum_{od \in W} \varphi^{od} q^{od}}{\sum_{a \in A} v_a t_a(v_a)} \right|$

Algorithm

Iteration *i*

Criterion

$$|RG| = \left| 1 - \frac{\sum_{od \in W} \varphi^{od} q^{od}}{\sum_{a \in A} v_a t_a(v_a)} \right|$$

Q1. How to group links into Block?

Algorithm

Iteration *i*

Q1. How to group links into Block?

Q2. How to solve link-based subproblem?

$$L_{\rho}^{B_{p}}\left(\mathbf{v}_{B_{1}}^{(i+1)}, \dots, \mathbf{v}_{B_{p-1}}^{(i+1)}, \mathbf{v}_{B_{p}}, \mathbf{v}_{B_{p+1}}^{(i)}, \dots, \mathbf{v}_{B_{p}}^{(i)}, \boldsymbol{\lambda}^{(i)}\right) \\ = \sum_{a \in B_{p}} L_{\rho}^{B_{p,a}}\left(\mathbf{v}_{a}\right)$$

Criterion $\sum_{od \in W} \varphi^{od} q^{od}$

$$|RG| = \left| 1 - \frac{\sum_{od \in W} \varphi^{ou} q^{ou}}{\sum_{a \in A} v_a t_a(v_a)} \right|$$

Contents

- 1. Introduction
- 2. Model Formulation
- 3. The alternation direction method of multipliers for UE
- 4. Solution algorithms for link blocking
- 5. Solution method for the link-based subproblem
- 6. Numerical examples
- 7. Conclusion

Link blocking

Q1. How to group links into Block?

Edge coloring problem in graph theory (Bollobas, 2013)

Definition

Definition 1

(Degree): The degree (or valency) of a vertex/node of a graph is the number of edges that are incident to the vertex, denoted by deg(n), $\forall n \in N$. The maximum degree of a graph *G*, denoted by $\Delta(G)$, is the largest degree of the vertices in the graph.

Definition 2

(Chromatic index): Given a graph, the minimum required number of colors for the edges is named the chromatic index of the graph, denoted by $\chi(G)$.

Definition 3

(*Multiplicity*): The maximum number of edges in any bundle of parallel edges of a graph is called the multiplicity, denoted by u(G). For a transport network, due to the exist of bi-directional road links, usually u(G) = 2.

For any multigraph, $\chi(G) \leq \Delta(G) + u(G)$ (Bollobás, 2013).

Proposed method

Contents

- 1. Introduction
- 2. Model Formulation
- 3. The alternation direction method of multipliers for UE
- 4. Solution algorithms for link blocking
- 5. Solution method for the link-based subproblem
- 6. Numerical examples
- 7. Conclusion

5.1 The link-based subproblem

Q2. How to solve link-based subproblem?

"In this section, we proceed to solve the link-based minimization problem, which is the most *important*/timeconsuming subproblem of ADMM"

$$\min_{\substack{v_a \ge 0, \\ a \in B_p}} L_{\rho}^{B_{p,a}}(\mathbf{v}_a) = \int_0^{\sum_{0 \in O} v_a^0} t_a(w) dw + \sum_{o \in O} \left[\lambda_{i(a)}^o \left(H_{i(a)}^o(v) \right) + \lambda_{h(a)}^o \left(H_{h(a)}^o(v) \right) + \frac{\rho}{2} \left(H_{i(a)}^o(v) \right)^2 + \frac{\rho}{2} \left(H_{h(a)}^o(v) \right)^2 \right]$$

Gradient projection method

Iteration *j*

$$v_a^{o(j+1)} = \max\left[0, v_a^{o(j)} - \alpha \left(s_a^{o(j)}\right)^{-1} \left(d_a^{o(j)}\right)\right], \forall o \in O, a \in A$$

$$d_a^o = \frac{\partial}{\partial v_a^o} L_{\rho}^{B_{p,a}}(\mathbf{v}_a) = t_a \left(\sum_{o \in O} v_a^o \right) + 2\rho v_a^o + \left(\rho e_{i(a)}^o - \rho e_{h(a)}^o + \lambda_{i(a)}^o - \lambda_{h(a)}^o \right)$$

$$s_a^o = \frac{\partial^2}{\partial (v_a^o)^2} L_\rho^{B_{p,a}}(\mathbf{v}_a) = t_a' \left(\sum_{o \in O} v_a^o \right) + 2\rho$$

Criterion $AG^{(j)} = \sum_{o \in O} \left| d_a^{o(j)} \cdot v_a^{o(j)} \right|$ $EAG^{(j)} = \left| AG^{(j)} - AG^{(j-1)} \right|$ $e_1^1 = \left(\sum_{\substack{a \in B_2, \ i(a) = 1}} (v')_a^1 + \sum_{\substack{a \in B_3, \ i(a) = 1}} (v')_a^1
ight) - \left(\sum_{\substack{a \in B_2, \ h(a) = 1}} (v')_a^1 + \sum_{\substack{a \in B_3, \ h(a) = 1}} (v')_a^1
ight) - g_1^1$

Contents

- 1. Introduction
- 2. Model Formulation
- 3. The alternation direction method of multipliers for UE
- 4. Solution algorithms for link blocking
- 5. Solution method for the link-based subproblem
- 6. Numerical examples
- 7. Conclusion

Numerical examples

Criterion

$$|RG| = \left| 1 - \frac{\sum_{od \in W} \varphi^{od} q^{od}}{\sum_{a \in A} v_a t_a(v_a)} \right|$$

$$AG^{(j)} = \sum_{o \in O} \left| d_a^{o(j)} \cdot v_a^{o(j)} \right|$$

$$EAG^{(j)} = \left| AG^{(j)} - AG^{(j-1)} \right|$$

BPR function

$$t_a = t_a^0 \left(1 + \alpha \left(\frac{v_a}{C_a} \right)^\beta \right)$$

Environment Windows10 64 bit AMD 4800 H 2.9GHz CPU 16G RAM C++ How many cores?

	AMD Ryzen 7 4800H	Apple M3 Pro 12 Core	Apple M1 8 Core 3200 MHz
Price	Search Online 🧪	Search Online 🧪	Search Online 🧪
Socket Type	FP6	NA ²	NA ²
CPU Class	Laptop	Laptop	Desktop, Laptop, Mobile/Embedded
Clockspeed	2.9 GHz	4.0 GHz	3.2 GHz
Turbo Speed	Up to 4.2 GHz	NA ²	NA ²
# of Physical Cores	8 (Threads: 16)	12 (Threads: 12)	8 (Threads: 8)
Cache	L1: 512KB, L2: 4.0MB, L3: 8MB	NA ²	NA ²
TDP	45W	NA ²	15.1W
Yearly Running Cost	\$8.21	NA	\$2.74
Other	with Radeon Graphics	18 Core GPU	
First Seen on Chart	Q1 2020	Q4 2023	Q1 2021
# of Samples	3366	137	7675
CPU Value	0.0	0.0	0.0
Single Thread Rating	2616	4818	3703
(% diff. to max in group)	(-45.7%)	(0.0%)	(-23.2%)
CPU Mark	18576	27592	14185
(% diff. to max in group)	(-32.7%)	(0.0%)	(-48.6%)

https://www.cpubenchmark.net/

Numerical examples

Targets	Small	Sioux-Falls	Anaheim	Chicago-Sketch
nodes	4	24	416	933
links	5	76	914	2950
Block	3	10~	12~	20~
OD-pair			1406	93,513
Purpose of the experiment	Convergence	Comparing Algorithms & number of blocks	Comparing Algorithms & number of blocks	Comparing Algorithms

https://github.com/bstabler/TransportationNetworks

A Small Network

Table 1. Link attributes of the illustrative network.

Link ID	Tail	Head	Free flow travel time	Capacity	Block ID
1	1	2	3	10	1
2	1	3	2	10	2
3	2	4	4	10	2
4	3	2	1	10	3
5	3	4	5	10	1

Convergence!

Sioux-Falls Network

Table 5. Link blocking pattern.

Block ID	Index of Member Links
1	5,9,14,20,28,33,42,52,64,74
2	1,10,12,18,22,25,35,39,44,58,62,72
3	2,4,11,21,27,38,41,49,54,61,69,76
4	3,6,15,24,36,48,53,56,66,67,71
5	8,19,23,32,37,45,55,70,75
6	7,13,16,31,46,50,51,59,73
7	30,34,47,57,60,65
8	17,40,43,68
9	29,63
10	26

ADMM is better than FW, OBA

Fewer blocks, Faster convergence.

Anaheim Network / Chicago-Sketch Network

2024/5/13

Conclusions

Main Challenge

Applying **parallel computing** approach to solve the **UE problem**

Contribution

- 1. Origin-base formulation
- 2. The algorithm grouping links into **Blocks**

Validation

- 4 numerical experiments
- The performance of ADMM is superior to some existing algorithms

"This study presented an initial step on the aspect of using ADMM for parallel computing of UE."

所感

- ・並列化が主目的ではないADMMが並列化手法と扱われるのは面白い
 - ADMMの分割という特性が並列化とマッチした?
 - ・とはいえ、大規模ネットワークならマルチスケールでいい気も…
 - ・そして、ブロック内リンク数=並列数なので、スパコンレベルではない?
 - •新たなUE計算のスタンダードとなるかは観察が必要
- ・計算効率は大事
 - ・変数同士の依存関係の解消が鍵
 - ・計算環境にコア数が入っていない……
- ・他の人の論文と比べると手法自体は簡単だった(気がする)