理論談話会#?

Capturing correlation with a mixed recursive logit model for activity-travel scheduling

Maëlle Zimmermann, Oskar Blom Västberg, Emma Frejinger, Anders Karlström, Transportation Research Part C: Emerging Technologies, Vol.93, August 2018, pp. 273-291

M1 飯塚卓哉

目次

- 1. Introduction
- 2. Literature review
- 3. Methodology
- 4. Application
- 5. In-sample fit and predictions
- 6. Conclusion

論文概要

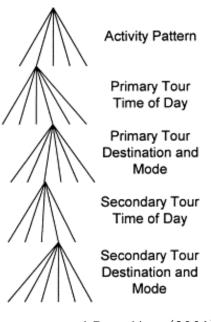
- 時空間NW上の経路選択としてactivity-travel schedulingを記述するモデルを改良
- activity, location, timing, transportation mode の選択を表現
- mixed recursive logitモデルを構築することでIIA特性を緩和
- 現実的な時間内で推定可能

1. Introduction

「移動は連続的な time interval 上での活動の派生需要」

= アクティビティベースのモデルとは、一日の時間(資源制約)を各活動と派 生的な移動に割り振るという考え方

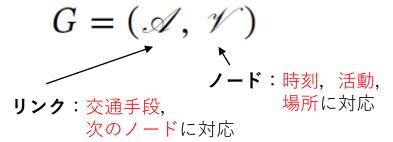
- **選択肢集合が膨大**という課題
 - 従来の解き方:各次元の選択をMNLやNLに分解 → 統一的でない
 - 統一的な表現: multi-state network = 活動, 交通手段などの状態のNW
 選択肢集合を必要としないモデル: RLモデル

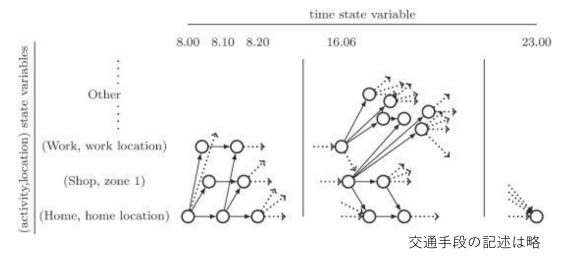

→この組み合わせで書ける

- RLモデルの課題
 - IIA特性
 - 膨大な推定時間

ヒエラルキー構造を持ったアクティビティモデル

- アクティビティへの参加,タイミング,場所,交通手段などの選択をネスト構造にし,NLモデルで推定
- ネストの組み方で様々なバリエーションがある


- 選択肢数が膨大になってしまうのを防ぐために単純化が 必要
- アクティビティ選択は複雑な相関構造を持っているので、 ネストの構造を実際の行動に即して定義することは困難
- 複雑な多層のネスト構造は、モデル推定が困難



Bowman and Ben-Akiva(2001)

RLによるアクティビティモデル

Activity network

- 1タイムステップ=1分
- アクティビティ=基本10分継続,水平リンク=さらに10分延長
- 移動時間は10分の倍数でなくても良い(1分の倍数)
- 個人ごとの時空間制約を考慮
- Home → ··· → Home の移動を扱う

RLによるアクティビティモデル

Modeling framework

time step t=1,...,T $x_{t} \qquad X_{t+1} \\ \bigcirc \qquad \qquad \\ a_{t} \in A(x_{t}) \rightarrow feasible \ action \ set}$ $Activity \ path \ \pmb{a} = (a_{0},...,a_{T-1})$

• 個人は直近の効用 $u_n(a_t|x_t)=v_n(a_t|x_t)+\mu\epsilon(a_t)$ と将来の<u>期待効用</u>の和を最大化

Bellman方程式の形で再帰的に記述可能

$$V_n(x_t) = E(\max_{a_t \in A(x_t)} \{v_n(a_t|x_t) + \mu \in (a_t) + V_n(x_{t+1})\}),$$
 将来の期待効用 = 価値関数

• 誤差項 $\epsilon(a_t)$ に平均値0のi.i.dガンベル分布を仮定すると

$$V_n(x_t) = \mu \log \left(\sum_{a_t \in A(x_t)} e^{\frac{1}{\mu}(v_n(a_t|x_t) + V_n(x_{t+1}))} \right)$$
. ガンベル分布における「最大値の期待値」=ログサム

■RLによるアクティビティモデル

Modeling framework

• 状態 x_t におけるリンク a_t の選択確率は MNL

$$P_n(a_t|x_t) = \frac{e^{\nu_n(a_t|x_t) + V_n(x_{t+1})}}{\sum_{k_t \in A(x_t)} e^{\nu_n(k_t|x_t) + V_n(x_{t+1})}}.$$

$$\rightarrow$$
 前ページの式を用いて変形して, $P_n(a_t|x_t) = e^{\nu_n(a_t|x_t) + V_n(x_{t+1}) - V_n(x_t)}$.

• アクティビティパス
$$\mathbf{a} = \{a_t\}_{t=0}^{T-1}$$
の選択確率は $P_n(\mathbf{a}|x_0) = \prod_{t=0}^{T-1} e^{\nu_n(a_t|x_t) + V_n(x_{t+1}) - V_n(x_t)}$

$$=\frac{e^{\nu_n(a|x_0)}}{e^{V_n(x_0)}}, \qquad \leftarrow \mathsf{MNL}$$
に帰着

time step t = 1, ..., T $x_{t} \qquad x_{t+1}$ $a_{t} \in A(x_{t}) \rightarrow feasible \ action \ set$

Activity path $\mathbf{a} = (a_0, ..., a_{T-1})$

■ RLによるアクティビティモデル

利点

- マルコフ配分をすればいいのでシミュレーションが容易
- 価値関数がログサムの形で表されるので 政策評価も容易

time step t = 1, ..., T $x_{t} \qquad x_{t+1}$ $a_{t} \in A(x_{t}) \rightarrow feasible \ action \ set$ $Activity \ path \ \boldsymbol{a} = (a_{0}, ..., a_{T-1})$

- pre-trip型のモデルと異なり,予期しないイベントへのreschedulingがシミュレー ション可能
- 選択肢集合の限定が不要

欠点

- MNLモデルと等価であるため、IIA特性がある
- → これの緩和:**mixed RL モデル**

Challenges

Activity network

- → ノード数, リンク数, パラメータ数が多くなりがち
- → 個人ごとにNWの制約が異なる
 - → 計算量が課題
 - :RLの推定=NFXP法:現在のパラメータ試行値に対して価値関数とその微分を, 状態・個人ごとに計算する必要がある

例) 40,000リンク, 説明変数15個の自転車ネットワークにおけるNRLモデル推定
→ 2週間 Zimmermann et al. (2017)

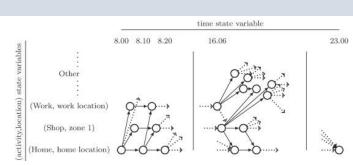
もし, 1000個の場所, 8つの活動, 4つの交通手段 → 最大32,000,000リンク 時間を60時点に離散化したとしたら → 1,920,000,000リンク

Challenges

- 経路選択モデルにおける相関 = physicalな経路の重なり
- アクテビティパス選択モデルにおける相関=さまざまな相関
 - 同じ交通手段を使うことの相関
 - (異なる時間に)同じ活動内容を行うことの相関
 - 交通手段と活動内容の相関

etc...

→ 単純なネスト構造では記述不可能


Mixed Recursive Logit (MRL) model

• リンクの選択=活動,場所,交通手段の選択 $a_t=(p,l,m)$

・ 直近の効用 $u(a_t|x_t)=v(a_t|x_t)+\zeta_m(a_t)$

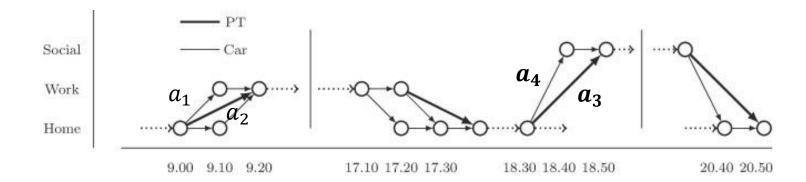
$$= \nu' z_m + \epsilon(a_t)$$

 $\epsilon(a_t)$:i.i.dガンベル分布に従う誤差項

 z_m : 交通手段 $m' \in \{1, ..., M\}$ についてm = m'のとき $z_{m'} = 1$ となるダミー変数

 ν :平均0,分散共分散行列 Σ の正規分布に従うM次元のランダムベクトル

他の次元の選択肢 $k \in \{1,...,K\}$ が加わった場合


- $\zeta_m(a_t) = \nu' z_m + \eta' y_k + \epsilon(a_t)$ M+K 次元ベクトル $[\nu;\eta]$ は分散共分散行列 Σ に従う
- 場所の選択など、選択肢数が多い時 → 隣接点を集約してランダムパラメータ数を制限する
- パラメータベクトル β_m が正規分布 $N(\bar{\beta}_m, \Sigma)$ に従うという解釈も可能 \rightarrow この時の v_n = 個人ごとの平均値からの偏差。 つまり, $\beta_{m,n} = \bar{\beta}_m + v_n$

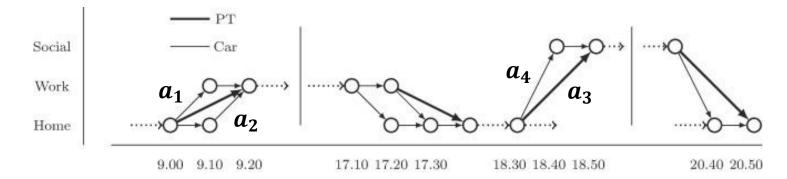
■MRLモデルの特性

- $oldsymbol{\sigma}_m^2$:同じ交通手段を使うことによる相関

- 経路の効用 $u(\boldsymbol{a}|x_0) = \sum_{t=0}^{T-1} \{v(a_t|x_t) + \zeta(a_t)\}$
 - $ightarrow \sum_{t=0}^{T-1} \zeta\left(a_{t}\right)$ の項は,一日の異なる時間帯での類似した行動に関する共分散 を生成
 - → アクティビティパス間の相関も記述可能

実例

- car, public transport(PT), social activityの3つの誤差項を定義
- = 3つの選択肢固有定数項 (ASC_{car} , ASC_{PT} , c_{social})を考え、これが平均値 ($ar{eta}_{car}$, $ar{eta}_{PT}$, $ar{eta}_{social}$),


分散共分散行列
$$\Sigma = \begin{pmatrix} \sigma_{car}^2 & 0 & 0 \\ 0 & \sigma_{PT}^2 & 0 \\ 0 & 0 & \sigma_{social}^2 \end{pmatrix}$$
 を持つことと同値

• x = 9:00に家にいる状態, $a_1 = car$ で仕事に行く活動, $a_2 = PT$ で仕事に行く活動とすると 効用確定項は

$$v_n(a_1|x) = \beta^T X_n(a_1|x) + ASC_{car,n} = \beta^T X_n(a_1|x) + \overline{\beta}_{car} + \nu_{car,n},$$

$$v_n(a_2|x) = \beta^T X_n(a_2|x) + ASC_{PT,n} = \beta^T X_n(a_1|x) + \overline{\beta}_{PT} + \nu_{PT,n},$$

 $X_n(a|x)$:説明変数ベクトル

実例

• 4つのアクティビティパスの効用

$$\begin{split} u_n(\boldsymbol{a}_1|x_0) &= \beta^T X_n(\boldsymbol{a}_1|x_0) + 2\overline{\beta}_{car} + 2\nu_{car,n} + \epsilon_n, \\ u_n(\boldsymbol{a}_2|x_0) &= \beta^T X_n(\boldsymbol{a}_2|x_0) + 2\overline{\beta}_{car} + 2\nu_{car,n} + \epsilon_n, \\ u_n(\boldsymbol{a}_3|x_0) &= \beta^T X_n(\boldsymbol{a}_3|x_0) + 4\overline{\beta}_{PT} + 4\nu_{PT,n} + \overline{\beta}_{social} + \nu_{social,n} + \epsilon_n, \\ u_n(\boldsymbol{a}_3|x_0) &= \beta^T X_n(\boldsymbol{a}_3|x_0) + 4\overline{\beta}_{car} + 4\nu_{car,n} + \overline{\beta}_{social} + \nu_{social,n} + \epsilon_n, \end{split}$$

4つのアクティビティパスの分散共分散行列M

$$M = \begin{pmatrix} 4\sigma_{car}^{2} & 4\sigma_{car}^{2} & 0 & 8\sigma_{car}^{2} \\ 4\sigma_{car}^{2} & 4\sigma_{car}^{2} & 0 & 8\sigma_{car}^{2} \\ 8\sigma_{car}^{2} & 0 & 16\sigma_{PT}^{2} + \sigma_{social}^{2} & \sigma_{social}^{2} \\ 8\sigma_{car}^{2} & 0 & \sigma_{social}^{2} & 16\sigma_{car}^{2} + \sigma_{social}^{2} \end{pmatrix}$$

MRLの最尤推定法

NFXP法:価値関数の計算とパラメータの更新を繰り返す → 今回は使わない 代替法 → **選択肢サンプリング**

- hetaを混合分布f(eta| heta)のパラメータとする = 今回は heta は eta の正規分布の平均値と標準偏差
- サンプル \tilde{C}_n の下でのアクティビティパスaの選択確率は

$$P_{n}(\boldsymbol{a}|\widetilde{C}_{n}, \theta) = \int \left(\frac{q(\widetilde{C}_{n}|\beta)}{q(\widetilde{C}_{n}|\theta)}\right) \frac{e^{u(\boldsymbol{a}|\beta) + \log(q_{n}(\widetilde{C}_{n}|a))}}{\sum_{j \in \widetilde{C}_{n}} e^{u(j|\beta) + \log(q_{n}(\widetilde{C}_{n}|j))}} f(\beta|\theta) d\beta.$$

$$= W_{n}$$

• アクティビティパスの観測数 $=N:\{a\}_{n=1,\dots,N}$ のとき対数尤度関数は

$$\mathcal{L} = \sum_{n=1}^{N} \log \int W_n \frac{e^{u(\alpha_n|\beta) + \log(q_n(\widetilde{C}_n|\alpha_n))}}{\sum_{\alpha \in \widetilde{C}_n} e^{u(\alpha|\beta) + \log(q_n(\widetilde{C}_n|\alpha))}} f(\beta|\theta) d\beta.$$

$$W_n = \frac{\sum_{a \in \widetilde{C}_n} P_n(a|\beta, C_n) q(\widetilde{C}_n|a)}{\sum_{a \in \widetilde{C}_n} P_n(a|\theta, C_n) q(\widetilde{C}_n|a)}$$
. が full choice set C_n に依存しているため、計算不可能

ightarrow Guevara and Ben-Akiva(2013)に基づき, $\mathit{W}_n=1$ と近似

https://www.sciencedirect.com/science/article/pii/S0191261513001471

MRLの最尤推定法

対数尤度関数

$$\mathcal{L} = \sum_{n=1}^{N} \log \int \frac{e^{u(\boldsymbol{a}_{n}|\boldsymbol{\beta}) + \log(q_{n}(\widetilde{C}_{n}|\boldsymbol{a}_{n}))}}{\sum_{\boldsymbol{a} \in \widetilde{C}_{n}} e^{u(\boldsymbol{a}|\boldsymbol{\beta}) + \log(q_{n}(\widetilde{C}_{n}|\boldsymbol{a}))}} f(\boldsymbol{\beta}|\boldsymbol{\theta}) d\boldsymbol{\beta}. \quad \to$$
真値はモンテカルロシミュレーションによる求解が必要

積分値を離散点 β_r の周りで平均することで近似可能

離散点 β_r の値は分布 $f(\beta|\theta)$ からランダムに選ぶか、 積分範囲上で等間隔に選ぶ

擬似対数尤度関数

$$\mathcal{SL} = \sum_{n=1}^{N} \log \left\{ \frac{1}{R} \sum_{r=1}^{R} \ \frac{e^{u(\alpha_{n} | \beta_{r}) + \log(q_{n}(\widetilde{C}_{n} | \alpha_{n}))}}{\sum_{\alpha \in \widetilde{C}_{n}} e^{u(\alpha | \beta_{r}) + \log(q_{n}(\widetilde{C}_{n} | \alpha))}} \right\}.$$

この手法によるパラメータ推定の妥当性については Guevara and Ben-Akiva(2013)を参照

- 今回は β_r はHalton数列から準ランダムに生成
- サンプル $\tilde{\mathcal{C}}_n$ は初期パラメータに対する RL モデルを用いたシミュレーションによって生成しても、任意の経路生成アルゴリズムによって生成してもいい

Data – Stockholm 2004

- 1日の6:00-23:00のアクティビティダイアリーを記録
- 仕事をしていて、6:00より後に出勤し、20:00より前に帰宅する人に限定
- 1日のすべてのトリップを車で行うか、車を一度も使わない人に限定
- 3.150個のアクティビティスケジュールを取得

各トリップの持つ情報

①出発時間,②到着時間,③交通手段,④到着地で行った活動,⑤到着地の場所,⑥継続時間

個人属性

Age (years)	[%]	Income (SEK)	[%]	Household	[%]	Working hours	[%]
12–18	1.9	0-15,000	1.8	Single	28.2	< 6	5.0
19-24	1.6	15,001-25,000	15.1	Couple	30.1	6-8	21.2
25-39	31.3	25,001-40,000	24.3	Single w. child	2.6	8-10	66.0
40-64	63.8	40,001-55,000	44.1	Couple w. child	39.2	> 10	7.8
> 64	1.3	> 55,000	14.7	-			
Gender	[%]	1	Owns car	[%]	Ow	ns PT card	[%]
Female	58.4	1	Yes	20.9	Yes		42
Male	42.6	5	No	79.1	No		58

加えて勤務時間は固定か どうかも訊いた

- ・ 個人の時空間制約の設定
- ・ 効用関数の説明変数

記述のルール

<u>状態x</u>,の要素

時刻 $t \in [5 \text{ am}, 11 \text{ pm}]: 1$ 分ごとのタイムステップに離散化

場所 $l \in L$: ストックホルムを1240ゾーンに分割し、そのうちの一つ

活動 $p \in P$: social, recreational, shop small, shop medium, shop large, home, work,

escort children

Errand indicator $e \in \{0,1,2,3\}$: 必須の用事をいくつ終了させたか

車の有無 $\delta_{car} \in \{0,1\}:0$ なら車は使えない.1で,かつ車で外出した場合帰るまで車

活動 a_t の要素

活動 $p \in P$:変えても変えなくてもいい

場所 $l \in L$:変えても変えなくてもいい

交通手段 $m \in M$: 車、公共交通、徒歩、自転車のいずれか

- 活動の継続時間は10分単位、移動にかかる時間は1分単位
- 時空間制約は、不可能な選択肢の効用を-∞にすることで表現する

効用関数

個人nの状態 $x_t = (t, l, p, e, \delta_{car})$ における行動 $a_t = (p', l', m)$ の効用確定項 $v_n(a_t|x_t)$ = 目的地 l',交通手段 m,活動 p' の効用の和と定義

```
交通手段 m の効用 v_{n,m}(l,l',t) 料金 待ち時間 v_{n,car}(l,l',t) = ASC_{car} + \theta_{t,car}T_{car}(l',l,t) + \theta_{c}C_{car}(l',l,t) v_{n,PT}(l,l',t) = ASC_{PT} + \theta_{t,PT}T_{PT}(l',l,t) + \theta_{wait,PT}T_{wait,PT}(l',l,t) + \theta_{c}C_{PT}(l',l,t) v_{n,bike}(l,l',t) = ASC_{bike} + \theta_{t,bike}T_{bike}(l',l,t) v_{n,walk}(l,l',t) = ASC_{walk} + \theta_{t,walk}T_{walk}(l',l,t) + \theta_{samezone}\delta_{samezone} 旅行時間 ゾーン内移動ダミー
```

他に個人属性を導入し、いくつかのパターンで推定を行った

交通手段選択 推定結果

		MNL		MNL bike	dummy	Mixed		Mixed bike	dummy	Mixed bike dummy	covariance
Parameter		Est.	t-test	Est.	t-test	Est.	t-test	Est.	t-test	Est.	<i>t</i> -test
Constants for cho	osing a sp	ecific mode o	f transport o	n a trip							
Car ASC	$\overline{\beta}$	-2.498	-22.897	-2.532	-24.588	-2.756	-19.745	-2.746	-23.832	-2.743	-23.564
	σ	0	_	0	_	1.228	13.523	0.869	15.305	0.873	15.165
PT ASC	$\overline{\beta}$	-3.691	-36.802	-3.502	-37.620	-4.231	-25.391	-3.568	-36.895	-3.637	-36.683
	σ	0	_	0	_	0.969	9.096	0.006	0.394	0.002	0.244
Walk ASC	$\overline{\beta}$	-1.708	-15.651	-1.648	-16.185	-2.142	-15.772	-2.009	-16.818	-2.013	-17.155
	σ	0	_	0	_	1.147	15.414	-0.898	-14.026	-0.901	-14.539
Bike ASC	$\overline{\mathcal{B}}$	-3.267	-14.968	-7.176	-21.820	-4.337	-19.126	-7.231	-21.348	-7.220	-21.348
σ _{Walk-PT}	,	0	-	0	-	0	-	0	-	0.257	5.781
Additional constar	nts for ch	oosing a speci	fic mode con	ditional on b	ike being the	first trip on	the tour				
Bike ASC δ _{bike}		0	_	5.120	17.521	0	_	4.364	13.924	4.362	13.949
PT ASC δ _{bike}		0	_	-2.031	-6.692	0	_	-2.593	-7.937	-2.581	-7.846
Walk ASC δ_{bike}		0	-	-0.975	-3.608	0	-	-1.500	-6.018	-1.635	-6.582
Additional constar	nts for ch	oosing a speci	fic mode con	ditional on s	ocio-demogra	phics or sam	e zone trips				
Walk ASC same	zone	-0.598	-4.517	-0.640	-5.162	-0.572	-4.865	-0.540	-4.854	-0.558	-4.949
Bike ASC Femal	e	0.143	0.574	0.455	2.922	0.326	1.263	0.415	2.414	0.431	2.513
Car ASC Female	:	-0.290	-6.173	-0.255	-5.955	-0.424	-5.473	-0.359	-6.235	-0.355	-6.134
Parameters for tro	wel time,	cost (car and	PT) and wa	it time (PT)							
Cost		-0.017	-6.207	-0.018	-6.954	-0.002	-0.262	-0.019	-5.553	-0.017	-5.417
Car time		-0.080	-18.688	-0.079	-19.730	-0.111	-14.281	-0.082	-17.711	-0.085	-17.226
PT time		-0.040	-5.485	-0.044	-6.613	-0.081	-7.906	-0.059	-7.386	-0.060	-7.495
PT wait time		0.008	0.853	0.010	1.178	0.048	3.836	0.023	2.375	0.025	2.504
Walk time		-0.050	-23.171	-0.049	-24.691	-0.055	-23.755	-0.051	-25.588	-0.052	-25.702
Bike time		- 0.050	-9.336	-0.035	-7.957	-0.057	-8.416	-0.041	-8.230	-0.042	-8.190
Bike time age ≥		-0.016	-1.499	-0.008	-2.072	-0.017	-1.562	-0.008	-1.556	-0.009	-1.835
Bike time Femal	le	-0.024	-3.067	-0.026	-3.867	-0.030	-3.186	-0.025	-3.532	-0.026	-3.634
Log-likelihood		-23,671		-22,091		-22,564		-21,865		-21,855	

効用関数

活動 p の効用

- 時刻 $t' = t + T_m(l, l', t)$ に活動 p を開始
- この時の効用は活動を始める時刻に依存する定数 $c_p(t')$ と、活動を始める時刻と継続時間に依存する効用 $v_{n,p}(t',\Delta_{tp})$ によって決まる
- いくつかの活動にタイムステップ T_k によって異なるパラメータ $\theta_{p,T_k}, c_{p,T_k}$ を考える例) c_{work,T_k} for $T_k \in \{6$ AM,7AM,8 AM,9 AM,10 AM $\}$
- それ以外の活動はパラメータ数を制限するため、時間非依存の定数 c_{v} とする
- 時刻 t に活動を開始する限界効用 v(p,t) はパラメータ θ_{p,T_k} の最近点 T_j, T_{j+1} $(t \in (T_j, T_{j+1}))$ の間での線形補間により与えられる
- ・ この時,継続時間 Δ_{tp} の活動の効用 $v_{n,p}(t,\Delta_{tp})=\int_t^{t+\Delta_{tp}}v(p,\tau)d au$

• 定数 c_p に個人属性(年齢,子どもがいるダミー)を導入し,いくつかのパターンで推定を行った

活動選択 推定結果

	MNL		MNL bike	dummy	Mixed		Mixed bike	dummy	Mixed bike dumn	nycovariance
Parameter	Est.	t-test	Est.	<i>t</i> -test	Est.	t-test	Est.	t-test	Est.	<i>t</i> -test
Utility to arrive at work at	specific time	, linear betwe	en paramete	rs						
Work ASC 6 AM	0.946	2.512	1.045	2.772	1.575	3.850	1.457	3.711	1.491	3.778
Work ASC 7 AM	0.506	2.751	0.507	2.796	0.674	3.372	0.648	3.377	0.677	3.517
Work ASC 8 AM	0	_	0	_	0	_	0	_	0	_
Work ASC 9 AM	-1.310	-8.144	-1.273	-8.099	-1.494	-8.344	-1.422	-8.383	-1.450	-8.464
Work ASC 10 AM	-5.092	-13.627	-5.008	-13.637	-5.573	-12.854	-5.344	- 13.364	-5.416	-13.273
Constants for starting activi	ities									
Home ASC	0	_	0	_	0	_	0	_	0	_
Shop ASC	-6.767	-41.591	-6.769	-42.708	-6.658	-37.692	-6.643	-39.807	-6.595	-39.251
Social ASC	-9.046	-46.112	-9.091	-48.419	-8.935	-45.025	-8.946	-47.059	-8.901	-46.557
Recreative ASC	-7.723	-51.624	-7.737	-53.690	-7.645	-47.022	-7.652	-50.457	-7.608	-49.783
Other ASC	-7.191	-48.493	-7.191	-50.119	-7.121	-47.839	-7.107	- 49.839	-7.056	-49.248
Additional constants for sta	rting activit	ies dependent	on socio-den	nographics						
Shop ASC children	-0.171	-1.786	-0.197	-2.206	-0.229	-2.199	-0.240	-2.504	-0.243	-2.535
Freetime ASC age ≤30	0.211	1.649	0.235	1.895	0.161	1.190	0.162	1.324	0.170	1.387
Freetime ASC age ≥60	-0.471	-3.308	-0.444	-3.243	-0.438	-2.814	-0.412	-2.861	-0.407	-2.863
Trip ASC Own Car	0.081	1.348	0.085	1.552	-0.198	-2.675	-0.104	-1.679	-0.115	-1.861
Utility per minute of activit	y participati	on								
Shop time	-0.021	-14.137	-0.021	-14.131	-0.021	-13.299	-0.021	-13.919	-0.021	-13.932
Social time	-0.000	-0.066	-0.000	-0.133	-0.000	-0.089	-0.000	-0.213	-0.000	-0.198
Recreative time	0	_	0	_	0	_	0	_	0	_
Other time	-0.009	-6.108	-0.009	-6.436	-0.008	-5.919	-0.008	-6.424	-0.008	-6.393
Freetime time children	-0.003	-3.511	-0.003	-3.488	-0.004	-3.989	-0.003	-3.963	-0.003	-3.971
Utility per minute of time sp	pent at home	e, marginal ut	ility is linear	between the t	ime periods	specified				
Home time 6 AM	0.042	8.397	0.044	8.971	0.047	8.173	0.047	8.850	0.048	8.812
Home time 7 AM	0.040	11.688	0.039	11.864	0.043	11.607	0.041	11.781	0.042	11.952
Home time 8 AM	0.019	6.006	0.018	5.977	0.020	5.783	0.020	6.092	0.021	6.202
Home time 9 AM	0.016	3.260	0.015	3.080	0.019	3.450	0.017	3.323	0.018	3.409
Home time 1 PM	-0.012	-10.839	-0.012	-11.317	-0.013	-11.721	-0.012	-11.776	-0.012	-11.632
Home time 5 PM	0.003	3.503	0.003	3.326	0.002	2.065	0.002	2.696	0.003	2.878
Home time 7 PM	0.002	2.529	0.002	2.352	0.001	1.427	0.001	1.614	0.002	1.660
Home time 9 PM	0.018	12.858	0.018	13.482	0.019	12.761	0.019	13.298	0.018	13.248

効用関数

場所しの効用

- サイズパラメータ $heta_{p,LSM}$,その場所で可能なアクティビティの数 $au_{p,s}$ によって決定
- 効用関数

$$v_{n,p}(l) = \theta_{p,LSM} \log \left(\sum_{s=1}^{S_p} x_{p,l,s} e^{\gamma_{p,s}} \right)$$

• S_p はアクティビティp のサイズ変数の数,サイズ変数 $x_{p,l,s}$ は例えば場所l のあるセクター内の従業員数など

場所選択 推定結果

Parameter		MNL		MNL bike d	MNL bike dummy			Mixed bike	dummy	Mixed bike dummy covariance	
		Est.	t-test	Est.	t-test	Est.	t-test	Est.	t-test	Est.	<i>t</i> -test
Log-sum p	arameters for size attribut	tes. Enters	utility as 6	θ _{LSM Size} in θ _{LS}	SM Size·log ∑	$e^{\gamma_S} \cdot N_{s,loc}$	ation				
Social LSM size		0.017	1.964	0.017	2.001	0.020	1.528	0.020	1.619	0.020	1.611
Recreative LSM size		0.057	1.766	0.060	1.871	0.081	2.158	0.078	2.160	0.080	2.178
Other LSM size		0.318	5.663	0.309	5.828	0.357	6.240	0.343	6.375	0.348	6.449
Shop ISM	I size	0.485	33.491	0.484	33.392	0.487	14.299	0.486	17.289	0.487	17.227
Parameter	s for size attributes. Enter	s utility a	s γ_i in θ_{LSM}	$_{\text{Size}} \cdot \log \sum_{s} e^{\gamma_{s}}$	·N _{s,location}						
Rec.	Population	-100	_	-100	_	-100	_	-100	_	-100	_
	No employed rec.	5.907	9.819	5.809	9.154	6.154	11.715	6.028	10.881	6.030	10.999
Other	No employed OE	-100	_	-100	_	-100	_	-100	_	-100	_
Shop	Population	-100	_	-100	_	-100	_	-100	_	-100	_
	No employed shop	3.585	13.587	3.611	13.798	3.685	12.754	3.663	13.259	3.682	13.279
Social	Population	-100	_	-100	_	-100	_	-100	_	-100	_

相関構造

交通手段選択における相関構造を記述するために

選択肢固有定数項 (ASC_{car} , ASC_{PT} , ASC_{walk} , ASC_{bike}) を

平均値ベクトル ($\bar{\beta}_{car}$, $\bar{\beta}_{PT}$, $\bar{\beta}_{walk}$, $\bar{\beta}_{bike}$),

分散共分散行列
$$\Sigma = \begin{pmatrix} \sigma_{car}^2 & 0 & 0 & 0 \\ 0 & \sigma_{PT}^2 & \sigma_{walk,PT} & 0 \\ 0 & \sigma_{walk,PT} & \sigma_{walk}^2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
.

を持つ分布に従ってランダムに分布させる.

パラメータ ASC_{car} , ASC_{PT} , ASC_{walk} が

それぞれ独立な分布 $N(\bar{\beta}_{car}, \sigma_{car}^2)$, $N(\bar{\beta}_{PT}, \sigma_{PT}^2)$, $N(\bar{\beta}_{walk}, \sigma_{walk}^2)$ に従って分布するとした場合と比較.

状態空間の拡張

→ 連続的な活動・移動の選択の間の一貫性,相互依存を捉える

bike tour dummy $\delta_{bike} \in \{0,1\}$: 自転車で家を出たとき1を取るダミー変数 \rightarrow 自転車で家に帰る確率が高いはず

 ASC_{bike} | δ_{bike} :自転車で家を出たときの自転車の選択肢固有定数

 $ASC_{PT} | \delta_{bike}$:自転車で家を出たときの公共交通の選択肢固有定数

 $ASC_{walk} | \delta_{bike}$: 自転車で家を出たときの徒歩の選択肢固有定数

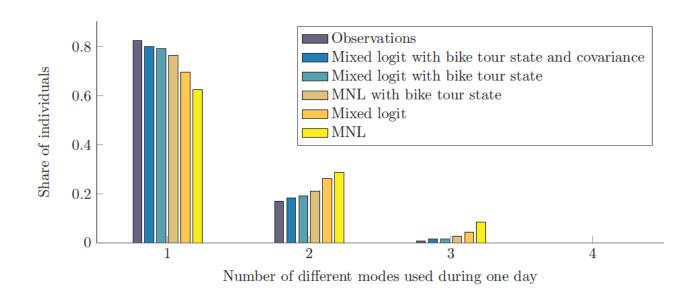
ightarrow 交通機関選択の選択肢固有定数項を $ASC_m + ASC_m | \delta_{bike} \cdot \delta_{bike}$ で置き換える

= 一日のツアー内の交通機関選択の一貫性を捉えることが可能

推定結果

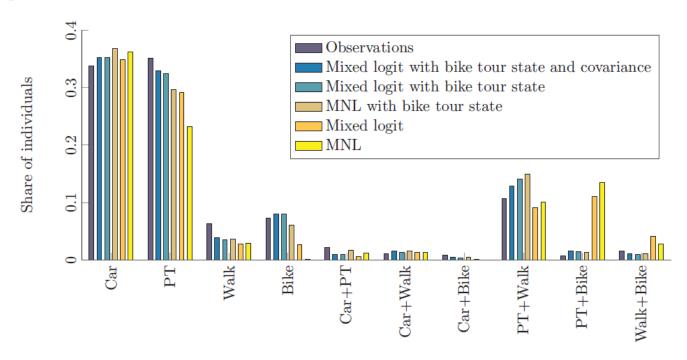
- 1. MNLモデル
- 2. MNLモデル(状態空間の拡張あり)
- 3. MXLモデル
- 4. MXLモデル(状態空間の拡張あり)
- 5. $MXLモデル(共分散<math>\sigma_{walk.PT}$ 、状態空間の拡張あり) の5パターンで推定
- Halton数列から500個の数字を取り出し,擬似対数尤度関数を計算
- 経路の選択肢集合はBlom Västberg et al. (2016)で推定されたパラメータ値を初期値として 抽出
- 各選択肢集合につき,観測された経路選択肢以外に600個の代替選択肢を抽出

推定結果の解釈(交通手段選択)


		MNL		MNL bike	dummy	Mixed		Mixed bike	dummy	Mixed bike dummy	covariance
Parameter		Est.	t-test	Est.	<i>t</i> -test	Est.	t-test	Est.	t-test	Est.	t-tes
Constants for choo	osing a sp	ecific mode o	f transport o	ı a trip							
Car ASC	$\overline{\beta}$	-2.498	-22.897	-2.532	-24.588	-2.756	-19.745	-2.746	-23.832	-2.743	-23.564
	σ	0	_	0	_	1.228	13.523	0.869	15.305	0.873	15.165
PT ASC	$\overline{\beta}$	-3.691	-36.802	-3.502	-37.620	-4.231	-25.391	-3.568	-36.895	-3.637	-36.683
	σ	0	_	0	_	0.969	9.096	0.006	0.394	0.002	0.24
Walk ASC	$\overline{\beta}$	-1.708	-15.651	-1.648	-16.185	-2.142	-15.772	-2.009	-16.818	-2.013	-17.15
	σ	0	_	0	_	1.147	15.414	-0.898	-14.026	-0.901	-14.539
Bike ASC	B	-3.267	-14.968	-7.176	-21.820	-4.337	-19.126	-7.231	-21.348	-7.220	-21.34
σ _{Walk-PT}	P	0	-	0	_	0	-	0	-	0.257	5.78
Additional constar	nts for ch	oosing a speci	fic mode con	ditional on h	ike heing the	first trip on	the tour				
Bike ASC δ _{bike}	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0	_	5.120	17.521	0	_	4.364	13.924	4.362	13.94
PT ASC δ _{bike}		0	_	-2.031	-6.692	0	_	-2.593	-7.937	-2.581	-7.84
Walk ASC δ _{bike}		0	-	-0.975	-3.608	0	-	-1.500	-6.018	-1.635	-6.58
Additional constar	nts for ch	oosing a speci	fic mode con	ditional on s	ocio-demogra	phics or sam	e zone trips				
Walk ASC same	zone	-0.598	-4.517	-0.640	-5.162	-0.572	- 4.865	-0.540	-4.854	-0.558	-4.94
Bike ASC Femal	le	0.143	0.574	0.455	2.922	0.326	1.263	0.415	2.414	0.431	2.51
Car ASC Female	•	-0.290	-6.173	-0.255	-5.955	-0.424	-5.473	-0.359	-6.235	-0.355	-6.13
Parameters for tro	zvel time,	cost (car and	PT) and wa	it time (PT)							
Cost		-0.017	-6.207	-0.018	-6.954	-0.002	-0.262	-0.019	-5.553	-0.017	-5.41
Car time		-0.080	-18.688	-0.079	-19.730	-0.111	-14.281	-0.082	-17.711	-0.085	-17.22
PT time		-0.040	-5.485	-0.044	-6.613	-0.081	-7.906	-0.059	-7.386	-0.060	-7.49
PT wait time		0.008	0.853	0.010	1.178	0.048	3.836	0.023	2.375	0.025	2.50
Walk time		-0.050	-23.171	-0.049	-24.691	-0.055	-23.755	-0.051	-25.588	-0.052	-25.70
Bike time		- 0.050	-9.336	-0.035	-7.957	-0.057	-8.416	-0.041	-8.230	-0.042	-8.19
Bike time∣age ≽		-0.016	-1.499	-0.008	-2.072	-0.017	-1.562	-0.008	-1.556	-0.009	-1.83
Bike time Femal	le	-0.024	-3.067	-0.026	-3.867	-0.030	-3.186	-0.025	-3.532	-0.026	-3.63
Log-likelihood		-23,671		-22,091		-22,564		-21,865		-21,855	

▮推定結果の解釈(交通手段選択)

- 選択肢固有定数項は有意に0とは異なる → 選好の異質性
- MXLモデル(状態空間の拡張あり)では、PTの標準偏差は0とほぼ同じ
 - = 係数 $ASC_{PT} | \delta_{hike}$ がPTの選好の誤差を良く吸収している
- 5番目のモデルでは共分散 $\sigma_{walk,PT}$ は負
 - = walkとPTのどちらかを好めば、もう片方は好まない傾向
 - = 個人は単一の交通手段を選好する傾向があるので他の2つの組み合わせでも同様の傾向があると予想される
- 状態空間の拡張を行ったときの結果は予想通り
- 女性は車を選択しずらく、自転車を選択する傾向があるということなども分かる
- モデルの適合度はMNLよりMXLの方が高い
- 推定時間はMNLで30分, MXLで3時間


In-sample fit (交通手段選択に着目して)

- RLの選択確率式に基づいて,一人につき1000個のスケジュールを生成する
- mixed RLの場合,個人ごとに,推定された平均 $ar{eta}$ と標準偏差 $oldsymbol{\sigma}$ で決まる分布から 一つ値を抽出し,パラメータ値とする

▸ 標準的なMNLやMXLは実際の観測よりも多種の交通手段を一日に利用してしまう

In-sample fit (交通手段選択に着目して)

- 特にPT+Bike, Walk+Bikeの選択確率はMNLやMXLで不当に高い
 - → 状態空間の拡張がモデルの当てはまりを大きく改善している

• 実際はモデルのoverspesificationにつながる可能性がある→のちに議論

| 代替パターン

- 17:00~19:00のPTの課金を考える
- ある7パターンのスケジュールの選択確率の変化をwith/withoutで比較

	Alt	ernatives			Change in choice probal	bility (%)	
				MNL	MNL with δ_{bike}	Mixed logit with δ_{bike}	
Alternative 1				-100.00	- 100.0G	-100.00	- ←課金時間にPTを使うスケジュ-
5:00	8:30	Home	PT				かがいりにしてメンバンノエ
8:44 17:33	17:10 23:00	Work Home	PT				ルは選択されなくなる
							ルは医扒されなくなる
Alternative 2				+35.05	+ 27.65	+ 39.03	
5:00	7:40	Home	PT				
7:54	16:20	Work	PT				
16:43	23:00	Home					
Alternative 3				+35.00	+ 27.51	+ 36.73	
5:00	8:30	Home	PT				
8:44	17:10	Work	Bike				
17:33	23:00	Home					←全ての選択肢の選択確率が同じ
				. 05.00	. 07.51	. 00.07	
Alternative 4 5:00	8:30	Home	PT	+35.00	+ 27.51	+ 28.87	割合で変化する
8:44	17:10	Work	Walk				司口 (久 し り る
18:18	23:00	Home	Walk				
10.10	20.00						=IIA特性の問題点
Alternative 5				+34.92	+ 27.44	+21.46	
5:00	7:40	Home	Walk				
8:40	16:20	Work	Walk				
18:15	23:00	Home					
Alternative 6				+34.79	+ 27.29	+ 18.83	
5:00	7:50	Home	PT	101.75	1 27.25	10.00	
8:04	16:30	Work	Walk				
17:38	18:28	Home	Walk				
18:50	19:20	Shop Small	Walk				
19:42	23:00	Home					
Alternative 7				+35.04	+ 27.61	+ 41.18	
5:00	7:00	Home	PT				
7:14	15:40	Work	PT				
16:10	16:30	Other	PT				
16:44	23:00	Home					
Alternative 8				+34.79	+ 27.30	+ 34.24	
5:00	8:10	Home	Bike				
8:26	16:50	Work	Bike				
17.00	00.00	***					

| 代替パターン

- 17:00~19:00のPTの課金を考える
- ある7パターンのスケジュールの選択確率の変化をwith/withoutで比較

	Alte	ernatives		Change in choice probability (%)					
				MNL	MNL with δ_{bike}	Mixed logit with δ_{bij}			
Alternative 1				-100.00	-100.00	-100.00			
5:00	8:30	Home	PT						
8:44	17:10	Work	PT						
17:33	23:00	Home							
Alternative 2				+35.05	+ 27.65	+ 39.03			
5:00	7:40	Home	PT						
7:54	16:20	Work	PT						
16:43	23:00	Home							
Alternative 3				+35.00	+ 27.51	+ 36.73			
5:00	8:30	Home	PT						
8:44	17:10	Work	Bike						
17:33	23:00	Home							
Alternative 4				+35.00	+ 27.51	+ 28.87			
5:00	8:30	Home	PT						
8:44	17:10	Work	Walk						
18:18	23:00	Home							
Alternative 5				+34.92	+ 27.44	+ 21.46			
5:00	7:40	Home	Walk						
8:40	16:20	Work	Walk						
18:15	23:00	Home							
Alternative 6				+34.79	+ 27.29	+ 18.83			
5:00	7:50	Home	PT		,,_,				
8:04	16:30	Work	Walk						
17:38	18:28	Home	Walk						
18:50	19:20	Shop Small	Walk						
19:42	23:00	Home							
Alternative 7				+35.04	+ 27.61	+ 41.18			
5:00	7:00	Home	PT						
7:14	15:40	Work	PT						
16:10	16:30	Other	PT						
16:44	23:00	Home							
Alternative 8				+34.79	+ 27.30	+ 34.24			
5:00	8:10	Home	Bike						
8:26	16:50	Work	Bike						
17:20	23:00	Home							

←PTを使用するのは変わらず、帰宅時間をずらす選択肢は選択確率が大きく上がる

←PTを使用しない選択肢はあまり 上がらない

【代替パターン

- 17:00~19:00のPTの課金を考える
- ある7パターンのスケジュールの選択確率の変化をwith/withoutで比較

	Alte	ernatives			Change in choice probab	ility (%)
				MNL	MNL with δ_{bike}	Mixed logit with δ_{bij}
Alternative 1				-100.00	-100.00	-100.00
5:00	8:30	Home	PT			
8:44	17:10	Work	PT			
17:33	23:00	Home				
Alternative 2				+35.05	+ 27.65	+ 39.03
5:00	7:40	Home	PT			
7:54	16:20	Work	PT			
16:43	23:00	Home				
Alternative 3				+35.00	+ 27.51	+ 36.73
5:00	8:30	Home	PT		. =	
8:44	17:10	Work	Bike			
17:33	23:00	Home				
Alternative 4				+35.00	+ 27.51	+ 28.87
5:00	8:30	Home	PT	+ 33.00	1 27.31	1 20.07
8:44	17:10	Work	Walk			
18:18	23:00	Home	Walk			
Alternative 5				+34.92	+ 27.44	+ 21.46
5:00	7:40	Home	Walk	1 04.52	1 27.44	1 21,40
8:40	16:20	Work	Walk			
18:15	23:00	Home				
Alternative 6				+34.79	+ 27.29	+ 18.83
5:00	7:50	Home	PT	1 34.7 9	1 27.29	1 10.05
8:04	16:30	Work	Walk			
17:38	18:28	Home	Walk			
18:50	19:20	Shop Small	Walk			
19:42	23:00	Home				
Alternative 7				+35.04	+ 27.61	+ 41.18
5:00	7:00	Home	PT		. =	
7:14	15:40	Work	PT			
16:10	16:30	Other	PT			
16:44	23:00	Home				
Alternative 8				+34.79	+ 27.30	+ 34.24
5:00	8:10	Home	Bike	10477	1 2/100	1 01.21
8:26	16:50	Work	Bike			
17:20	23:00	Home	Dinc			

←PTとwalkの共分散は負 =walkを使う選択肢は特に選択確 率が上がりにくい

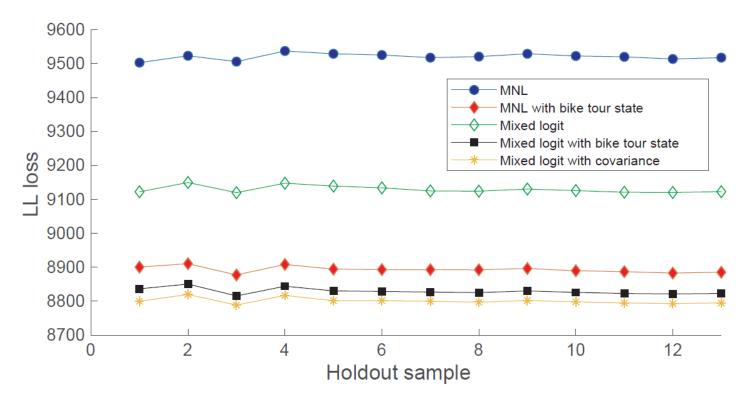
文差検証(out-of-sample fit)

ランダムに2つのsetに分けたものを 13パターン用意

→ training setで推定したパラメータのvalidation setへの当てはまりを検証

対数尤度損失

$$err_i = -\frac{1}{|T_i|} \sum_{\sigma \in T_i} \ln P(\sigma, \, \hat{\beta}_i)$$


 T_i : validation set i

 \hat{eta}_i :training set i から推定したパラメータ

13回の平均

$$\overline{err_p} = \frac{1}{p} \sum_{i=1}^{p} err_i \quad \forall \ 1 \le p \le 13.$$

交差検証

状態空間の拡張をすることで、サンプル外への当てはまりもよくなる

6. Conclusion

成果

- 相関構造を扱うモデルで、現実的な時間内での推定を可能にした
- 従来のモデルよりもIIA特性を緩和し、モデルの予測精度を向上させた
- 選択肢サンプリングという手法を用いても、サンプル外へのモデルの適合度も従来のモデルより高く、柔軟な選択肢の代替パターンを再現できた

今後の展望

- 現実には、毎日行う必要のない活動が多く存在
 - → モデルのタイムスパンを数日間に拡張することが妥当
- 移動時間を外生的に与えるのではなく, リンクフローの関数とするのが妥当
 - → Dynamic Traffic Equilibrium (DTA) modelと組み合わせたモデルが検討可能