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1はじめに
経路選択モデルと選択肢集合

起点(O)から終点(D)に至るまでに利用するルートを選択
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経路選択肢は12：実ネットワークでは列挙不可能

道路

交差点

※n×nの格子経路数: 12 (n=2), 184 (n=3), 8,512 (n=4), 1,262,816 (n=5),…
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2はじめに
Pre-trip / En-route model

1．Pre-trip 型経路選択モデル

出発前にネットワーク情報を入手しているという仮定に
基づいてOD間経路の選択を行なう．
→経路集合を明示的に定める

2．En-route 型経路選択モデル
交差点に立つ度に，逐次的にリンクを選択していく．
→明示的な経路列挙を必要としない



3Pre-trip型経路選択モデル
選択肢集合の生成手法

確定的方法：
• K番目最短経路探索 (Eppstein, 1998)

K番目までの最短経路を選択肢集合とする
• Link elimination (Azevedo et al., 1993)

基準を満たさない経路を削除していく
• Branch-and-bound (Prato and Bekhor , 2006)

制約条件を満たす範囲でリンクツリーを網羅
的に列挙

• Labeling 法 (Ben-Akiva et al., 1984)
経路長以外でいろいろ最小コスト比較

確率的方法：
• 選択肢のサンプリング補正

: Frejinger et al. (2009)
• MCMCアプローチ

: Flotterod and Bierlaire (2013)



4Pre-trip型経路選択モデル
選択肢のサンプリング

2. Sampling of alternatives

The multinomial logit model can be consistently estimated on a subset of alternatives (McFadden, 1978) using classical
conditional maximum likelihood estimation. The probability that an individual n chooses an alternative i is then conditional
on the choice set Cn defined by the modeler. This conditional probability is

PðijCnÞ ¼
elVinþln qðCn jiÞ
P

j2Cn

elVjnþln qðCn jjÞ
ð1Þ

where l is a scale parameter and Vin is the deterministic utility. It also includes an alternative specific term, ln qðCnjjÞ that
corrects for sampling bias. This correction term is based on the probability qðCnjjÞ of sampling Cn given that j is the chosen
alternative. See for example Ben-Akiva and Lerman (1985) for a more detailed discussion on sampling of alternatives. Bier-
laire et al. (2008) have recently shown that multivariate extreme value (also known as generalized extreme value) models
can be consistently estimated as well and propose a new estimator.

Importance sampling of alternatives has been used in the literature. For example, Ben-Akiva and Watanatada (1981) use
samples of destinations for prediction and Train et al. (1987) sample alternatives for the estimation of local telephone service
choice models. A sampling of alternatives approach has however never been used for route choice modeling, to the best of
our knowledge.

If all alternatives have equal selection probabilities, the estimation on the subset is done in the same way as the estima-
tion on the full set of alternatives. Indeed, qðCnjiÞ is equal to qðCnjjÞ8j 2 Cn and the corrections for sampling bias cancel out in
(1). A simple random sampling protocol is however not efficient if the full set of alternatives is very large. The sample should
include attractive alternatives since comparing a chosen alternative to a set of highly unattractive alternatives would not
provide much information on the choice. In order to ensure that attractive alternatives are included, the sample would need
to be prohibitively large.

When using a sampling protocol selecting attractive alternatives with higher probability than unattractive alternatives
(importance sampling), the correction terms in (1) do not cancel out. Note however that if alternative specific constants
are estimated, all parameter estimates except the constants would be unbiased even if the correction is not included in
the utilities (Manski and Lerman, 1977). In a route choice context it is in general not possible to estimate alternative specific
constants due to the large number of alternatives and the correction for sampling is therefore essential. In the following sec-
tion we derive the sampling correction qðCnjjÞ8j 2 Cn in the context of route choice.

3. Sampling correction

We define a sampling protocol for path generation as follows: a set eCn is generated by drawing Rn paths with replacement
from the universal set of paths U, and then adding the chosen path to it (jeCnj ¼ Rn þ 1). We assume without loss of generality
that U is bounded with size J. Note that J is unknown in practice. Each path j 2 U has sampling probability qðjÞ. We assume
that any path in U can be generated with non-zero probability, and that the path selection probabilities can be computed in a
straightforward way.

The outcome of this protocol is ð~k1n; ~k2n; . . . ; ~kjnÞ where ~kjn is the number of times alternative j is drawn
P

j2U
~kjn ¼ Rn

! "
.

Following Ben-Akiva (1993) we derive qðCnjjÞ for this sampling protocol. The probability of an outcome is given by the multi-
nomial distribution

Pð~k1n; ~k2n; . . . ; ~kjnÞ ¼
Rn!

Q
j2U

~kjn!

Y
j2U

qðjÞ
~kjn ð2Þ

The number of times alternative j appears in eCn is kjn ¼ ~kjn þ djc , where c denotes the index of the chosen alternative and
djc equals one if j ¼ c and zero otherwise. Let Cn be the set containing all alternatives corresponding to the Rn draws
ðCn ¼ fj 2 Ujkjn > 0gÞ. The size of Cn ranges from one to Rn þ 1; jCnj ¼ 1 if only duplicates of the chosen alternative are drawn
and jCnj ¼ Rn þ 1 if the chosen alternative is not drawn nor are any duplicates.

The probability of drawing Cn given the chosen alternative i (randomly drawn kin % 1 times) can be derived from (2) to
obtain

qðCnjiÞ ¼ qðeCnjiÞ ¼
Rn!

ðkin % 1Þ!
Q

j2Cn
j–i

kjn!
qðiÞkin%1

Y
j2Cn
j–i

qðjÞkjn ð3Þ

where the products now are over all elements in Cn since the terms for alternatives that are not drawn ðkjn ¼ 0Þ equal one.
Eq. (3) can be reformulated as

qðCnjiÞ ¼
Rn!

1
kin

Q
j2Cn

kjn!

1
qðiÞ

Y
j2Cn

qðjÞkjn ¼ KCn

kin

qðiÞ
ð4Þ
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KCn ¼
Rn!Q

j2Cn
kjn!

Y
j2Cn

qðjÞkjn

Note that the positive conditioning property is trivially verified, that is

qðCnjiÞ > 0) qðCnjjÞ > 0 8j 2 Cn

We can now define the probability (1) that an individual chooses alternative i in Cn as

PðijCnÞ ¼
e
lVinþln

kin
qðiÞ

! "

P
j2Cn

e
lVjnþln

kjn
qðjÞ

! " ð5Þ

where KCn in Eq. (4) cancels out since it is constant for all alternatives in Cn.

4. A stochastic path generation approach

In the previous section we show that in order to correct path utilities for sampling we need to count the number of times
each path is generated as well as to compute its sampling probability. Hence, a stochastic path generation algorithm is
needed for which we can compute this probability in a straightforward way. We are unaware of how to compute sampling
probabilities for existing stochastic path generation algorithms (simulation approach by Ramming, 2001, and doubly sto-
chastic approach by Bovy and Fiorenzo-Catalano, 2006). Note that the mentioned algorithms make repeated shortest path
searches in a network where the generalized costs of paths are distributed Normal (according to the central limit theorem
if independent link cost distributions are assumed). The probability that a given path is the shortest is the probability that its
generalized cost is less than or equal to the generalized cost of all other paths. This is equivalent to a multinomial probit
model that involves a multifold integral which becomes intractable even for a low number of paths.

We therefore present a new approach. It is flexible and can be used in various algorithms including those presented in the
literature. We start by describing the general approach and then focus on a specific instance based on a biased random walk.

For a given origin–destination pair ðso; sdÞ, we associate a weight with each link ‘ ¼ ðv;wÞ based on its distance to the
shortest path according to a given generalized cost. We define x‘ 2 ½0; 1&, a measure of distance of ‘ to the shortest path, as

x‘ ¼
SPðso; sdÞ

SPðso; vÞ þ Cð‘Þ þ SPðw; sdÞ
ð6Þ

where Cð‘Þ is the generalized cost of link ‘, and SPðv1;v2Þ is the generalized cost of the shortest path between nodes v1 and
v2. Note that x‘ equals one if ‘ is part of the shortest path and x‘ ! 0 as Cð‘Þ! þ1. In order to define the weight of each ‘

from x‘, we use a parametrized function mapping the interval [0,1] into itself. The mapping, inspired from the double
bounded Kumaraswamy distribution (Kumaraswamy, 1980), defines a weight as

xð‘jb1; b2Þ ¼ 1' ð1' xb1
‘ Þ

b2 ð7Þ

where b1 and b2 are shape parameters. In Fig. 2 we show the function for different values of b1 when b2 ¼ 1. The weights
assigned to the links can be controlled by the definition of the parameters. High values of b1 when b2 ¼ 1 yield low weights
for links with high cost. Low values of b1 have the opposite effect.

Fig. 2. Kumaraswamy distribution: cumulative distribution function.
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• 無数ある経路から，サンプリングによって選択肢集合を
生成する（例：目的地サンプリング）

• サンプリングバイアス補正項 を入れたMNLに
よって選択確率を定式化
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• 補正項はどのように定式化すればいいのか？



5Pre-trip型経路選択モデル
選択肢のサンプリング

• サンプリングバイアス補正項
• 経路iを含む選択肢集合 のサンプリング確率は以下．
（R回で経路jがそれぞれkjn回取り出される確率）
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ðCn ¼ fj 2 Ujkjn > 0gÞ. The size of Cn ranges from one to Rn þ 1; jCnj ¼ 1 if only duplicates of the chosen alternative are drawn
and jCnj ¼ Rn þ 1 if the chosen alternative is not drawn nor are any duplicates.

The probability of drawing Cn given the chosen alternative i (randomly drawn kin % 1 times) can be derived from (2) to
obtain

qðCnjiÞ ¼ qðeCnjiÞ ¼
Rn!

ðkin % 1Þ!
Q

j2Cn
j–i

kjn!
qðiÞkin%1

Y
j2Cn
j–i

qðjÞkjn ð3Þ

where the products now are over all elements in Cn since the terms for alternatives that are not drawn ðkjn ¼ 0Þ equal one.
Eq. (3) can be reformulated as

qðCnjiÞ ¼
Rn!

1
kin

Q
j2Cn

kjn!

1
qðiÞ

Y
j2Cn

qðjÞkjn ¼ KCn

kin

qðiÞ
ð4Þ
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where

KCn ¼
Rn!Q

j2Cn
kjn!

Y
j2Cn

qðjÞkjn

Note that the positive conditioning property is trivially verified, that is

qðCnjiÞ > 0) qðCnjjÞ > 0 8j 2 Cn

We can now define the probability (1) that an individual chooses alternative i in Cn as

PðijCnÞ ¼
e
lVinþln

kin
qðiÞ

! "

P
j2Cn

e
lVjnþln

kjn
qðjÞ

! " ð5Þ

where KCn in Eq. (4) cancels out since it is constant for all alternatives in Cn.

4. A stochastic path generation approach

In the previous section we show that in order to correct path utilities for sampling we need to count the number of times
each path is generated as well as to compute its sampling probability. Hence, a stochastic path generation algorithm is
needed for which we can compute this probability in a straightforward way. We are unaware of how to compute sampling
probabilities for existing stochastic path generation algorithms (simulation approach by Ramming, 2001, and doubly sto-
chastic approach by Bovy and Fiorenzo-Catalano, 2006). Note that the mentioned algorithms make repeated shortest path
searches in a network where the generalized costs of paths are distributed Normal (according to the central limit theorem
if independent link cost distributions are assumed). The probability that a given path is the shortest is the probability that its
generalized cost is less than or equal to the generalized cost of all other paths. This is equivalent to a multinomial probit
model that involves a multifold integral which becomes intractable even for a low number of paths.

We therefore present a new approach. It is flexible and can be used in various algorithms including those presented in the
literature. We start by describing the general approach and then focus on a specific instance based on a biased random walk.

For a given origin–destination pair ðso; sdÞ, we associate a weight with each link ‘ ¼ ðv;wÞ based on its distance to the
shortest path according to a given generalized cost. We define x‘ 2 ½0; 1&, a measure of distance of ‘ to the shortest path, as

x‘ ¼
SPðso; sdÞ

SPðso; vÞ þ Cð‘Þ þ SPðw; sdÞ
ð6Þ

where Cð‘Þ is the generalized cost of link ‘, and SPðv1;v2Þ is the generalized cost of the shortest path between nodes v1 and
v2. Note that x‘ equals one if ‘ is part of the shortest path and x‘ ! 0 as Cð‘Þ! þ1. In order to define the weight of each ‘

from x‘, we use a parametrized function mapping the interval [0,1] into itself. The mapping, inspired from the double
bounded Kumaraswamy distribution (Kumaraswamy, 1980), defines a weight as

xð‘jb1; b2Þ ¼ 1' ð1' xb1
‘ Þ

b2 ð7Þ

where b1 and b2 are shape parameters. In Fig. 2 we show the function for different values of b1 when b2 ¼ 1. The weights
assigned to the links can be controlled by the definition of the parameters. High values of b1 when b2 ¼ 1 yield low weights
for links with high cost. Low values of b1 have the opposite effect.

Fig. 2. Kumaraswamy distribution: cumulative distribution function.
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• 結局 q(i)に基づく→q(i)をどのように定式化するか？



6Pre-trip型経路選択モデル
選択肢のサンプリング

重み付きランダムウォーク
1. 初期化：起点ノードを定める
2. 接続リンク の迂回度による重み計算：

3. リンクのサンプリング確率

4. リンクサンプリング
5. 終点ノードまでステップを繰り返す．

Note that other mappings with suitable properties can be used. It is also worth mentioning that this idea presents sim-
ilarities in its nature with the approach proposed by Dial (1971).

Once a weight has been assigned to each link, various methods can be applied. Bierlaire and Frejinger (2007) propose a
gateway approach, used by Bierlaire and Frejinger (2008) for modeling long distance route choice behavior in Switzerland.
Note also that the method can be generalized to subpaths instead of links, in order to better reflect behavioral perceptions
(see Frejinger and Bierlaire, 2007; Frejinger, 2008).

In this paper, we use a biased random walk algorithm which is consistent with the conditions described in Section 3: any
path can be generated with non-zero probability, and the sampling probabilities can be computed in a straightforward way.

Given an origin so and a destination sd, an ordered set of links C is generated as follows:

Initialize v ¼ so; C ¼ ;
Loop While v – sd perform the following

Weights For each link ‘ ¼ ðv;wÞ 2 Ev , where Ev is the set of outgoing links from v, we compute the weights based on (7)
where x‘ is defined by

x‘ ¼
SPðv; sdÞ

Cð‘Þ þ SPðw; sdÞ
ð8Þ

Note that this is equivalent to (6) where so ¼ v .
Probability For each link ‘ ¼ ðv;wÞ 2 Ev , we compute

qð‘jEv ; b1; b2Þ ¼
xð‘jb1; b2ÞP

m2Ev

xðmjb1; b2Þ
ð9Þ

Draw Randomly select a link ðv ;w%Þ in Ev based on the above probability distribution.
Update path C ¼ C [ ðv ;w%Þ

Next node v ¼ w%.

The algorithm biases the random walk towards the shortest path in a way controlled by the parameters of the mapping
(7). As a special case, the algorithm corresponds to a simple random walk if b2 ¼ 0, so that all weights equal 1, and the prob-
abilities for the next link defined by (9) are all equal. Note however that a simple random walk does not generate paths with
equal probability.

The probability qðjÞ of generating a path j is the probability of selecting the ordered sequence of links Cj

qðjÞ ¼
Y

‘2Cj
qð‘jEv ; b1; b2Þ ð10Þ

where qð‘jEv ; b1; b2Þ is defined by (9).
With this algorithm, it is easy to compute path selection probabilities and it is not computationally demanding since at

most jVj2 shortest path computations are needed for any number of observations, where V is the number of nodes in the
network.

5. Expanded path size

Since we assume that the true choice set is the universal one, we argue that the PS attribute should reflect the correlation
among all paths. The commonly used path size logit (PSL) model proposed by Ben-Akiva and Ramming (1998) and Ben-Akiva
and Bierlaire (1999) includes a path size (PS) attribute in the deterministic part of the utility that corrects the utilities in a
MNL model to account for the correlation. It is derived from the physical overlapping of paths in Cn and ignores correlation
with non-sampled paths:

PSC
in ¼

X

a2Ci

La

Li

1
Man

ð11Þ

where Ci is the set of links in path i; La is the length of link a and Li the length of path i. Man is the number of paths in Cn using
link a. That is Man ¼

P
j2Cn

daj where and daj equals one if path j contains link a and zero otherwise.
We propose a corrected version of the PS attribute, called Expanded PS (EPS), where the sum representing the number of

paths using a particular link involves an expansion factor that corrects for the sampling:

EPSin ¼
X

a2Ci

La

Li

1
MEPS

an

; ð12Þ
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Note that other mappings with suitable properties can be used. It is also worth mentioning that this idea presents sim-
ilarities in its nature with the approach proposed by Dial (1971).

Once a weight has been assigned to each link, various methods can be applied. Bierlaire and Frejinger (2007) propose a
gateway approach, used by Bierlaire and Frejinger (2008) for modeling long distance route choice behavior in Switzerland.
Note also that the method can be generalized to subpaths instead of links, in order to better reflect behavioral perceptions
(see Frejinger and Bierlaire, 2007; Frejinger, 2008).

In this paper, we use a biased random walk algorithm which is consistent with the conditions described in Section 3: any
path can be generated with non-zero probability, and the sampling probabilities can be computed in a straightforward way.

Given an origin so and a destination sd, an ordered set of links C is generated as follows:

Initialize v ¼ so; C ¼ ;
Loop While v – sd perform the following

Weights For each link ‘ ¼ ðv;wÞ 2 Ev , where Ev is the set of outgoing links from v, we compute the weights based on (7)
where x‘ is defined by

x‘ ¼
SPðv; sdÞ

Cð‘Þ þ SPðw; sdÞ
ð8Þ

Note that this is equivalent to (6) where so ¼ v .
Probability For each link ‘ ¼ ðv;wÞ 2 Ev , we compute

qð‘jEv ; b1; b2Þ ¼
xð‘jb1; b2ÞP

m2Ev

xðmjb1; b2Þ
ð9Þ

Draw Randomly select a link ðv ;w%Þ in Ev based on the above probability distribution.
Update path C ¼ C [ ðv ;w%Þ

Next node v ¼ w%.

The algorithm biases the random walk towards the shortest path in a way controlled by the parameters of the mapping
(7). As a special case, the algorithm corresponds to a simple random walk if b2 ¼ 0, so that all weights equal 1, and the prob-
abilities for the next link defined by (9) are all equal. Note however that a simple random walk does not generate paths with
equal probability.

The probability qðjÞ of generating a path j is the probability of selecting the ordered sequence of links Cj

qðjÞ ¼
Y

‘2Cj
qð‘jEv ; b1; b2Þ ð10Þ

where qð‘jEv ; b1; b2Þ is defined by (9).
With this algorithm, it is easy to compute path selection probabilities and it is not computationally demanding since at

most jVj2 shortest path computations are needed for any number of observations, where V is the number of nodes in the
network.

5. Expanded path size

Since we assume that the true choice set is the universal one, we argue that the PS attribute should reflect the correlation
among all paths. The commonly used path size logit (PSL) model proposed by Ben-Akiva and Ramming (1998) and Ben-Akiva
and Bierlaire (1999) includes a path size (PS) attribute in the deterministic part of the utility that corrects the utilities in a
MNL model to account for the correlation. It is derived from the physical overlapping of paths in Cn and ignores correlation
with non-sampled paths:

PSC
in ¼

X

a2Ci

La

Li

1
Man

ð11Þ

where Ci is the set of links in path i; La is the length of link a and Li the length of path i. Man is the number of paths in Cn using
link a. That is Man ¼

P
j2Cn

daj where and daj equals one if path j contains link a and zero otherwise.
We propose a corrected version of the PS attribute, called Expanded PS (EPS), where the sum representing the number of

paths using a particular link involves an expansion factor that corrects for the sampling:

EPSin ¼
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a2Ci
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where

KCn ¼
Rn!Q

j2Cn
kjn!

Y
j2Cn

qðjÞkjn

Note that the positive conditioning property is trivially verified, that is

qðCnjiÞ > 0) qðCnjjÞ > 0 8j 2 Cn

We can now define the probability (1) that an individual chooses alternative i in Cn as

PðijCnÞ ¼
e
lVinþln

kin
qðiÞ

! "

P
j2Cn

e
lVjnþln

kjn
qðjÞ

! " ð5Þ

where KCn in Eq. (4) cancels out since it is constant for all alternatives in Cn.

4. A stochastic path generation approach

In the previous section we show that in order to correct path utilities for sampling we need to count the number of times
each path is generated as well as to compute its sampling probability. Hence, a stochastic path generation algorithm is
needed for which we can compute this probability in a straightforward way. We are unaware of how to compute sampling
probabilities for existing stochastic path generation algorithms (simulation approach by Ramming, 2001, and doubly sto-
chastic approach by Bovy and Fiorenzo-Catalano, 2006). Note that the mentioned algorithms make repeated shortest path
searches in a network where the generalized costs of paths are distributed Normal (according to the central limit theorem
if independent link cost distributions are assumed). The probability that a given path is the shortest is the probability that its
generalized cost is less than or equal to the generalized cost of all other paths. This is equivalent to a multinomial probit
model that involves a multifold integral which becomes intractable even for a low number of paths.

We therefore present a new approach. It is flexible and can be used in various algorithms including those presented in the
literature. We start by describing the general approach and then focus on a specific instance based on a biased random walk.

For a given origin–destination pair ðso; sdÞ, we associate a weight with each link ‘ ¼ ðv;wÞ based on its distance to the
shortest path according to a given generalized cost. We define x‘ 2 ½0; 1&, a measure of distance of ‘ to the shortest path, as

x‘ ¼
SPðso; sdÞ

SPðso; vÞ þ Cð‘Þ þ SPðw; sdÞ
ð6Þ

where Cð‘Þ is the generalized cost of link ‘, and SPðv1;v2Þ is the generalized cost of the shortest path between nodes v1 and
v2. Note that x‘ equals one if ‘ is part of the shortest path and x‘ ! 0 as Cð‘Þ! þ1. In order to define the weight of each ‘

from x‘, we use a parametrized function mapping the interval [0,1] into itself. The mapping, inspired from the double
bounded Kumaraswamy distribution (Kumaraswamy, 1980), defines a weight as

xð‘jb1; b2Þ ¼ 1' ð1' xb1
‘ Þ

b2 ð7Þ

where b1 and b2 are shape parameters. In Fig. 2 we show the function for different values of b1 when b2 ¼ 1. The weights
assigned to the links can be controlled by the definition of the parameters. High values of b1 when b2 ¼ 1 yield low weights
for links with high cost. Low values of b1 have the opposite effect.

Fig. 2. Kumaraswamy distribution: cumulative distribution function.
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Note that other mappings with suitable properties can be used. It is also worth mentioning that this idea presents sim-
ilarities in its nature with the approach proposed by Dial (1971).

Once a weight has been assigned to each link, various methods can be applied. Bierlaire and Frejinger (2007) propose a
gateway approach, used by Bierlaire and Frejinger (2008) for modeling long distance route choice behavior in Switzerland.
Note also that the method can be generalized to subpaths instead of links, in order to better reflect behavioral perceptions
(see Frejinger and Bierlaire, 2007; Frejinger, 2008).

In this paper, we use a biased random walk algorithm which is consistent with the conditions described in Section 3: any
path can be generated with non-zero probability, and the sampling probabilities can be computed in a straightforward way.

Given an origin so and a destination sd, an ordered set of links C is generated as follows:

Initialize v ¼ so; C ¼ ;
Loop While v – sd perform the following

Weights For each link ‘ ¼ ðv;wÞ 2 Ev , where Ev is the set of outgoing links from v, we compute the weights based on (7)
where x‘ is defined by

x‘ ¼
SPðv; sdÞ

Cð‘Þ þ SPðw; sdÞ
ð8Þ

Note that this is equivalent to (6) where so ¼ v .
Probability For each link ‘ ¼ ðv;wÞ 2 Ev , we compute

qð‘jEv ; b1; b2Þ ¼
xð‘jb1; b2ÞP

m2Ev

xðmjb1; b2Þ
ð9Þ

Draw Randomly select a link ðv ;w%Þ in Ev based on the above probability distribution.
Update path C ¼ C [ ðv ;w%Þ

Next node v ¼ w%.

The algorithm biases the random walk towards the shortest path in a way controlled by the parameters of the mapping
(7). As a special case, the algorithm corresponds to a simple random walk if b2 ¼ 0, so that all weights equal 1, and the prob-
abilities for the next link defined by (9) are all equal. Note however that a simple random walk does not generate paths with
equal probability.

The probability qðjÞ of generating a path j is the probability of selecting the ordered sequence of links Cj

qðjÞ ¼
Y

‘2Cj
qð‘jEv ; b1; b2Þ ð10Þ

where qð‘jEv ; b1; b2Þ is defined by (9).
With this algorithm, it is easy to compute path selection probabilities and it is not computationally demanding since at

most jVj2 shortest path computations are needed for any number of observations, where V is the number of nodes in the
network.

5. Expanded path size

Since we assume that the true choice set is the universal one, we argue that the PS attribute should reflect the correlation
among all paths. The commonly used path size logit (PSL) model proposed by Ben-Akiva and Ramming (1998) and Ben-Akiva
and Bierlaire (1999) includes a path size (PS) attribute in the deterministic part of the utility that corrects the utilities in a
MNL model to account for the correlation. It is derived from the physical overlapping of paths in Cn and ignores correlation
with non-sampled paths:
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where Ci is the set of links in path i; La is the length of link a and Li the length of path i. Man is the number of paths in Cn using
link a. That is Man ¼

P
j2Cn

daj where and daj equals one if path j contains link a and zero otherwise.
We propose a corrected version of the PS attribute, called Expanded PS (EPS), where the sum representing the number of

paths using a particular link involves an expansion factor that corrects for the sampling:
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経路jのサンプリング確率：

Note that other mappings with suitable properties can be used. It is also worth mentioning that this idea presents sim-
ilarities in its nature with the approach proposed by Dial (1971).

Once a weight has been assigned to each link, various methods can be applied. Bierlaire and Frejinger (2007) propose a
gateway approach, used by Bierlaire and Frejinger (2008) for modeling long distance route choice behavior in Switzerland.
Note also that the method can be generalized to subpaths instead of links, in order to better reflect behavioral perceptions
(see Frejinger and Bierlaire, 2007; Frejinger, 2008).

In this paper, we use a biased random walk algorithm which is consistent with the conditions described in Section 3: any
path can be generated with non-zero probability, and the sampling probabilities can be computed in a straightforward way.

Given an origin so and a destination sd, an ordered set of links C is generated as follows:

Initialize v ¼ so; C ¼ ;
Loop While v – sd perform the following

Weights For each link ‘ ¼ ðv;wÞ 2 Ev , where Ev is the set of outgoing links from v, we compute the weights based on (7)
where x‘ is defined by

x‘ ¼
SPðv; sdÞ

Cð‘Þ þ SPðw; sdÞ
ð8Þ

Note that this is equivalent to (6) where so ¼ v .
Probability For each link ‘ ¼ ðv;wÞ 2 Ev , we compute

qð‘jEv ; b1; b2Þ ¼
xð‘jb1; b2ÞP

m2Ev

xðmjb1; b2Þ
ð9Þ

Draw Randomly select a link ðv ;w%Þ in Ev based on the above probability distribution.
Update path C ¼ C [ ðv ;w%Þ

Next node v ¼ w%.

The algorithm biases the random walk towards the shortest path in a way controlled by the parameters of the mapping
(7). As a special case, the algorithm corresponds to a simple random walk if b2 ¼ 0, so that all weights equal 1, and the prob-
abilities for the next link defined by (9) are all equal. Note however that a simple random walk does not generate paths with
equal probability.

The probability qðjÞ of generating a path j is the probability of selecting the ordered sequence of links Cj

qðjÞ ¼
Y

‘2Cj
qð‘jEv ; b1; b2Þ ð10Þ

where qð‘jEv ; b1; b2Þ is defined by (9).
With this algorithm, it is easy to compute path selection probabilities and it is not computationally demanding since at

most jVj2 shortest path computations are needed for any number of observations, where V is the number of nodes in the
network.

5. Expanded path size

Since we assume that the true choice set is the universal one, we argue that the PS attribute should reflect the correlation
among all paths. The commonly used path size logit (PSL) model proposed by Ben-Akiva and Ramming (1998) and Ben-Akiva
and Bierlaire (1999) includes a path size (PS) attribute in the deterministic part of the utility that corrects the utilities in a
MNL model to account for the correlation. It is derived from the physical overlapping of paths in Cn and ignores correlation
with non-sampled paths:
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where Ci is the set of links in path i; La is the length of link a and Li the length of path i. Man is the number of paths in Cn using
link a. That is Man ¼

P
j2Cn

daj where and daj equals one if path j contains link a and zero otherwise.
We propose a corrected version of the PS attribute, called Expanded PS (EPS), where the sum representing the number of

paths using a particular link involves an expansion factor that corrects for the sampling:
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Kumaraswamy分布



6Pre-trip型経路選択モデル
Metropolis-Hasting Algorithm

In the context of route choice modeling, the potentially huge number of paths between an origin and a destination pre-
cludes their enumeration, which would be necessary to build the choice set. A method based on sampling of paths has been
proposed by Frejinger et al. (2009). As discussed in details by Frejinger and Bierlaire (2010), importance sampling of paths is
a powerful method for route choice models but requires to have access to the sampling probabilities in order to obtain a
consistent estimator. This paper proposes the first algorithm that is able to sample paths from an arbitrary distribution
for general networks.

Other existing Monte Carlo methods for path sampling do not give the analyst control over the sampling distribution; that
is, they provide samples but not their probabilities. The arguably most representative example of these methods is the com-
putation of shortest paths based on randomized link costs (e.g., Bekhor et al., 2006). Such methods may be computationally
more efficient than the approach presented here, but they are limited to applications where the sampling probabilities need
not be known.

Other choice models with large choice sets may also exploit the same ideas. For instance, the choice of activity sequence is
of similar combinatorial complexity as the route choice problem (Bowman and Ben-Akiva, 1998). Actually, it can be shown
that the activity sequencing problem can be phrased as the problem of choosing a path through a decision network, extend-
ing the relevance of the proposed sampling algorithm to this context.

The ability to sample paths from arbitrary distributions enables a new solution to the map matching problem with coarse
GPS data. Bierlaire et al. (2013) propose a method that assigns to each path in the network the probability that a given GPS
trace has been generated by a traveler following this path. The method proposed in the present article allows to exploit the
likelihood function of Bierlaire et al. (2013) in a sampling context.

The proposed method also fits naturally into iterated simulation approaches to the dynamic traffic assignment (DTA)
problem. Although it is often not stated explicitly, these simulations typically run a Markov chain of network states until
stationarity is reached, where in every iteration a demand simulator and a supply simulator are evaluated (Flötteröd
et al., 2011).

The consistent anticipatory route guidance (CARG) problem is to recommend routes to travelers such that the network
conditions that were assumed when computing the routes actually occur. The generation of such a guidance requires solving
a stochastic fixed point of route recommendations (Bottom, 2000; Bottom et al., 1999). In order to iteratively approach this
fixed point in a microsimulation setting, one has to sample from this distribution. The flexibility of the proposed method
does not only lend itself to this task; the fact that the stationary path distribution attained by the method constitutes itself
a stochastic fixed point again suggests to solve the CARG problem and the path sampling problem jointly in one Markov
chain.

The remainder of this article is organized as follows. The method is described in Section 2, and illustrated and validated in
Section 3. Finally, Section 4 concludes the article.

2. Framework

Starting with a brief repetition of the generic Metropolis–Hastings algorithm in Section 2.1, a family of concrete instances
of this algorithm for path generation is developed. Sections 2.2 and 2.3 define its state space and target weights. A general
class of irreducible proposal distributions is introduced in Section 2.4. A concrete instance of this framework is then specified
in Section 2.5. Finally, some implementation notes are given in Section 2.6.

2.1. Generic Metropolis–Hastings algorithm

The Metropolis–Hastings (MH) algorithm creates a Markov chain (MC) with a predefined stationary distribution. This dis-
tribution can be defined in unnormalized form through positive weights fbðiÞgi2S where S is the MC’s finite state space and
b(i) is proportional to the stationary probability of state i 2 S. The MH algorithm further requires to define an irreducible
proposal distribution Q = (q(i, j)) that defines the probability of proposing a transition from state i to state j. (Irreducibility
is given if every state j can be reached from every state i through one or more transitions.) In every iteration of the algorithm,
a proposal transition i ? j is drawn according to Q, and then this proposal is accepted with a certain probability a(i, j) that is
specified such that the desired stationary distribution is attained. Algorithm 1 specifies the generic MH algorithm.

Fig. 1. ‘‘Rubber band’’-like variation of a path.

54 G. Flötteröd, M. Bierlaire / Transportation Research Part B 48 (2013) 53–66

• 二箇所の固定点(fix)を選定
• 一箇所の移動点を選定し，新しいポジションに移動(drag)
• すなわち，輪ゴム(rubber band)のように経路を変位させるが，その変位が
ネットワーク上に制限される



7Pre-trip型経路選択モデル
経路の重複・相関

• Link-Nested logit (CNL): Vovsha and Bekhor (1998)
• Paired Combinatorial logit (PCL): Chu (1989)
• Error Component model (EC): Bekhor et al. (2002)
• Multinomial probit (MNP): Daganzo and Sheffi (1977)

経路の相関構造を記述

経路の重複による魅力度低下を考慮
• C-logit: Cascetta et al. (1996)
• Path-Size logit: Ben-Akiva and Bierlaire (1999)



8En-route型経路選択モデル
逐次リンク選択モデル

O i

D

k

j

v( j | i)

V d ( j)

u( j | i) = v( j | i)+V d ( j)+ε( j)
ノードiからjに遷移する効用：

：リンク(i,j)の効用の確定項v( j | i)

V d ( j) ：ノードjからDまでの期待効用

入れ子（再帰的）構造を利用
Dial(1971), Bell(1995), Akamatsu(1996)

選択肢集合列挙の必要性を回避
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Recursive Logit model by Fosgerau et al. (2013)

€ 

(2)

€ 

n

€ 

µ: 意思決定者 : スケールパラメータ

価値関数

リンクの説明変数

Bellman 方程式 (Rust,1987)
€ 

(1)
誤差項：ガンベル分布
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道路ネットワーク構造

O

D12

2

1

1

3

2

1 1

2 2 2

12 2

12 2

22

11

22

Dial ネットワーク

O

D
1

12

3 3

4

34

4

5

5

6

7

78

0

O

D

選択肢の誤差構造を表す
GEVネットワーク

数字はリンクコスト 数字は終点からのコスト

図–1 GEVネットワークの作成例

性を満たす．⎧
⎨

⎩
Ūi =

1
θi
(log

∑
j∈Si

αji exp[θiŪj ] + γ) ∀i ∈ N

Ūk = 0 ∀k ∈ C
(6)

(2) 道路ネットワーク構造のGEVネットワーク化
本研究では道路ネットワークの幾何構造を直接的に

用いて経路間の相関構造を表現する．現実のネットワー
クは双方向リンクであり，cyclicな構造も含まれている
ため，そのままではGEVネットワークの性質を満たさ
ない．そこで，実ネットワーク構造に下記の処理を行
い，実ネットワーク構造を用いたGEVネットワークの
生成する．
一般的な道路ネットワークのノード集合を N，有向

リンク集合を Lとする．N の各要素は整数の連番 iで
区別され，L の各要素は上流ノード i と下流ノード j

の組 ij で区別される．リンク ij はそれぞれリンクコ
スト tij をもつ．このネットワーク上の任意の 2点を起
点 r ∈ N，終点 s ∈ N とする単一 ODペアを考えよ
う．終点 sから他のすべてのノード iに対して最小交
通費用 c(i)(たとえば最短経路長)を計算し，起点まで
の最小交通費用 c(r)よりも大きな最小交通費用をもつ
ノードをまず除去する．次にすべてのリンクに対して
c(i)− c(j) > 0 を満たすリンク ij のみを残して，それ
以外のリンクを除去する．これらの処理により残るリ
ンク集合は終点 sから遠ざかるリンクの集合であり，こ
れを Dialネットワークと名付ける (図–1 )．この Dial

ネットワークはGEVネットワークが満たすべき性質を
満たしている．
この Dialネットワークから生成される経路選択肢集

合は Efficient Pathを仮定している．しかし，この処理
によって，道路ネットワークの幾何構造を選択肢相関
構造を表す GEVネットワークに直接的に変換できる．

(3) Network GEV型経路選択モデル
(2)で定義した GEVネットワークに対応する Net-

work GEV型経路選択モデルを考える．このとき，ノー
ド ij間に関する効用関数の確定項 Vij はリンク ij間の
リンクコスト cij を用いて，Vij = −cij とする．Net-

work GEVモデルは式 (4)の条件付き確率に分解でき

るため，道路ネットワーク上のノード i,j間の条件付き
確率は

P (j|i) = αji exp[−θi(cij + µj)]∑
j∈Si

αji exp[−θi(cij + µj)]
(7)

で表される．ここで，µi, µj は終点ノード sからのノー
ド i, jまでの期待最小費用である．ノード間の条件付き
選択確率が式 (7)で表されるため，起点 rと終点 sを結
ぶ経路 kの選択確率は

P (k) = P (a|r) · P (b|a) · · ·P (s|z) (8)

である．ここで，経路 kを構成するノードを起点から順
に r, a, b, · · · , z, sとする．この経路選択確率は式 (1),(2)

に示された Network GEVモデルの選択確率の定義式
と等価である．
各ノードの期待最小費用µi, µjの間には以下の関係式

µi ≡ −
1

θi
log(

∑

j∈Si

αji exp[−θi(cij + µj)]) ∀i (9)

が成り立つ．この式に対して，θi = θ ∀i ∈ N，αij =

1 ∀ij ∈ Lと設定すると，起点ノード rから終点ノード
sまでの期待最小費用 µrs は以下の式となる．

µrs = −
1

θ
log(

∑

k

exp[−θck]) (10)

ここで，ck は経路 kの経路費用である．この µrs はよ
く知られた Logitモデルの期待最小費用と一致する．以
上より，Network GEV型経路選択モデルが Logit型経
路選択モデルの一般化であることが確認される．

3. Network GEV型確率的交通量配分
(1) Network GEV型確率的交通量配分のモデル化
本章では，Network GEV 型経路選択行動下におけ
る flow independentな確率的交通量配分を定式化する．
Network GEV型確率的交通量配分は以下の 4つの条件
を満たす交通量配分パターンとしてモデル化される．
a) 経路選択行動
利用者が Network GEV型経路選択行動を行うとき，
リンクフローの関係式は式 (7)で表される．
b) リンク交通量の関係式
終点別リンク交通量 xs

ij の総和は各リンク交通量で
ある．

xij =
∑

s

xs
ij ∀ij ∈ L, ∀s ∈ S (11)

ここで，S は終点ノード集合である．
c) 各ノードのフロー保存則
終点別リンク交通量 xs

ij を用いて，フロー保存則と
OD交通量は以下の式で表される．
∑

i

xs
ik −

∑

j

xs
uj + qus −

∑

r

qru = 0 ∀u ∈ N, ∀s ∈ S

(12)

3

原・赤松 (2014)，Papola and Marzano (2013)

p( j | i) =
αijG

j (y)
µ j
µi

ηijG
j (y)

µ j
µi

j∈N∑


