
Modeling and optimization for
emerging mobility

KenanZhang
HOMES @ EPFL

September 12, 2024



Our lab

K
e
n

a
n

Z
h
a
n
g

2

Members

Head

Postdoc

PhD

Visiting

Lab for human-oriented

mobility eco-system
At HOMES, we develop human-centric solutions to

emerging mobility challenges.
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Topics

ride-hailing

& ride-pooling

ride-sharing

micro-mobility integration into

mass transit

Shared mobility

network

design

incentives

design

Traffic demand

management

Methodologies

network modeling

optimizationmin F(x)

game theory

data-driven & learning
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Modeling Optimization Application

Aggregate
▪ two-sided market

▪ platform competition

▪ fixed-point iteration

▪ MPEC with fixed point

▪ ride-hailing

▪ micromobility

▪ meal delivery

Network

▪ mixed traffic

▪ multi-modal travel

▪ traffic management

▪ traffic assignment

▪ MPEC with VI

▪ AV routing

▪ MaaS



What is a two-sided market?
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Two-sided markets in transport. systems
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DRIVERS RIDERS

Ride-hailing

Ride-sharing
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Two-sided markets in transp. systems
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RIDERS

Robotaxi

VEHICLES

Micromobility

K
e
n

a
n

Z
h
a
n
g



Two-sided markets in transp. systems
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SHIPPERSCOURIERS

On-demand

urban logistics
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▪ Ride-hailing as an example

Stakeholders
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DRIVERS

PLATFORM

RIDERS

min travel costmax earning

max profit

waiting time

occupied time



▪ Ride-hailing as an example
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PLATFORM

matching

equilibrium
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▪ Ride-hailing as an example

Stakeholders
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PLATFORM

matchingInput 1:

empty vehicles Λ
Input 2:

waiting riders Π

Output: waiting time

𝑤 = 𝑓(Π, Λ)
DRIVERS RIDERS



▪ Radio-dispatch: the simplest case

Matching
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𝑑

Λ

𝑟

Assume empty vehicles distributed uniformly over space
at density Λ

When rider arrives, # empty vehicles within a distance 𝑟
follows a spatial Poisson distribution1 𝑁(𝑟)

1 Larson and Odoni. Urban operations research. 1981.

Suppose rider is picked up by the closest empty vehicle
at distance 𝑑

Pr 𝑑 = 𝑟 = 1 − Pr 𝑁(𝑟) = 0 = 1 − exp −න
0

𝑟

2𝜋Λ𝑥 d𝑥

Given vehicle speed 𝑣 and network detour ratio 𝛿, the
rider waiting time is 𝑤 = 𝛿𝑑/𝑣 w.p.

Pr 𝑤 = 𝑡 = 1 − exp −𝜋Λ
𝑣𝑡

𝛿

2

,

and expectation

𝔼 𝑤 =
𝛿

2𝑣 Λ



▪ Street-hailing: limited matching radius
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𝑑

Λ

𝑟max

Street-hailing riders hail empty vehicles on streets, thus
the matching radius 𝑟max is constrained by visual range

and blockage

Only a small fraction 𝑝(𝑟) of empty vehicles would finally
enter the matching area defined by 𝑟max, thus the pickup

vehicle is at distance 𝑑 w.p.

Pr 𝑑 = 𝑟 = 1 − exp −න
0

𝑟

2𝜋Λ𝑝(𝑥)𝑥 d𝑥

With some approximations1, the distribution of rider
waiting time is derived as

Pr 𝑤 = 𝑡 = 1 − exp −𝜎𝑟maxΛ
𝑣𝑡

𝛿
,

with expectation

𝔼 𝑤 =
𝛿

𝜎𝑟max𝑣Λ
,

where 𝜎 is a parameter that describes search behaviors
1 Zhang et al. An efficiency paradox of uberization. 2019.



▪ E-hailing: potential passenger competition
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𝑑

Λ

E-hailing (e.g., Uber) often matches a large number of
riders and vehicles in real-time, which induces a

competition for empty vehicles among waiting riders

Suppose empty vehicles are evenly allocated to riders,
then the pickup distance 𝑑 follows

Pr 𝑑 = 𝑟 = 1 − exp −න
0

𝑟 2𝜋Λ

Π
𝑥 d𝑥

The distribution of rider waiting time is then derived as

Pr 𝑤 = 𝑡 = 1 − exp −
𝜋Λ

Π

𝑣𝑡

𝛿

2

,

with expectation

𝔼 𝑤 =
𝛿

2𝑣

Π

Λ

1 Zhang et al. An efficiency paradox of uberization. 2019.

Π



▪ Ride-pooling: share ride with another passenger
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𝑑

ℓ

Ride-pooling (e.g., UberPool) pairs riders and matches
them with empty vehicles in real-time

Suppose rider is paired with the closest unmatched rider
at distance ℓ and then matched to the closest empty

vehicle at distance 𝑑

The matched vehicle first picks up the closer rider with
time 𝑤 and then the other with time Δ

The matching area of pooling is expanded thanks to a
larger ℓ, whereas a large ℓ leads to a larger Δ1

𝔼 𝑤 =
𝛿

2𝜎

Π

Λ

𝑚 + 4Π

2𝑚 + 4Π

𝔼 Δ =
𝛿

2𝑣 Π

where 𝑚 is a parameter for approximation

1 Zhang and Nie. To pool or not to pool: Equilibrium, pricing and regulation. 2021.



▪ Bike-sharing: access to idle bikes
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𝑑

Λ

𝑟

Access time in dockless micromobility (e.g., bike-sharing)
can be estimated in a similar way as ride-hailing

Let 𝐴 be the service region, then the expected access
time 𝑎 is given by

𝔼 𝑎 =
𝛿

2𝑣

ത𝑛

𝐴

where 𝑣 is the walking speed

unique bike loc

1 Zheng et al. How many are too many? Analyzing dockless bikesharing systems with a parsimonious model. 2024.

The key difference is that idle bike density Λ is computed
by unique bike parking locations ത𝑛 instead of idle bikes 𝑛,

due to clustering effect1

ത𝑛 = 𝐿 𝑛 ≤ 𝑛



▪ Meal delivery: bundle multiple orders
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When demand is high, meal delivery platforms (e.g., Meituan) often
group multiple orders with close pickup and delivery locations into

bundles and dispatch bundles to idle couriers

The bundling and pickup process is similar to ride-pooling with
multiple riders, thus the same matching model can be applied1

𝔼 𝑡1 =
𝛿

2𝑣

𝜅(Π)

Λ
,

where 𝜅(Π) captures the competition effect of bundled orders,

𝔼 𝑡𝑛 =
𝛿

2𝑣 𝜑 Π
1 −

1

𝑃
1 −

1

2𝑟max 𝜑 Π

where 𝜑 Π describes orders that can be grouped into bundles and
𝑃 is the probability of adding a new order into the current bundle

𝑃 = 1 − exp −𝜋𝜑 Π 𝑟max
2 ,

𝑡1

𝑡2

𝑡3
𝑟max

1 Ye et al. Modeling and managing an on-demand meal delivery system with order bundling. 2024.
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Summary
▪ Omit detailed matching but capture key

relationship between inputs and outputs

▪ Describe the physical interactions in various

two-sided markets

▪ Lay a foundation for market equilibrium and

operations management

Questions?
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PLATFORM

matching

equilibrium

DRIVERS RIDERS



▪ Incentives of demand and supply

Equilibrium
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RIDERS min travel cost

𝑢 =෍

𝑚

𝑃𝑚[ 𝑓𝑚 + 𝑣(𝑤𝑚 + 𝜏𝑚)]

• 𝑚 travel mode
• 𝑃𝑚 choice probability

• 𝑓𝑚 trip fare
• 𝑣 value of time

• 𝑤𝑚 waiting/access time
• 𝜏𝑚 in-vehicle time

Demand function

𝑄 = 𝐷(𝑓,𝑤)

DRIVERS max earning

𝑒 =෍

𝑘

𝑃𝑘 𝑒𝑘

• 𝑘 job opportunity
• 𝑃𝑘 choice probability

• 𝑒𝑘 earning rate

Supply function

𝑁 = 𝑆(𝑒)



▪ Market equilibrium as a fixed point

Equilibrium
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RIDERS

DRIVERS

higher demand

>> higher vehicle occupation

>> higher earning rate

higher supply

>> more empty vehicles

>> shorter waits

competition among riders

higher LOS to enter market

competition among drivers

higher cost to enter market



▪ Market equilibrium as a fixed point

Equilibrium
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Demand function: 𝑄 = 𝐷(𝑓,𝑤)

Level of service： 𝑤 = 𝑊 Π,Λ

Rider matching queue: Π = 𝑄𝑤

Supply function: 𝑁 = 𝑆(𝑒)

Earning rate: 𝑒 =
𝜂𝑄𝜏

𝑁

Fleet conservation: 𝑁 = Λ+𝑄(𝑤 + 𝜏)

Platform’s decision:
• 𝑓: fare per trip

• 𝜂: payment per unit
occupied time



▪ Market equilibrium as a fixed point

Equilibrium
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Demand function: 𝑄 = 𝐷(𝑓,𝑤)

Level of service： 𝑤 = 𝑊 Π,Λ

Rider matching queue: Π = 𝐷(𝑓,𝑤)𝑤

Supply function: 𝑁 = 𝑆(𝑒)

Earning rate: 𝑒 =
𝜂𝜏

𝑁
𝐷(𝑓,𝑤)

Fleet conservation: 𝑁 = Λ+𝐷 𝑓,𝑤 (𝑤 + 𝜏)



▪ Market equilibrium as a fixed point
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Demand function: 𝑄 = 𝐷(𝑓,𝑤)

Level of service： 𝑤 = 𝑊 𝐷(𝑓,𝑤)𝑤, Λ

Rider matching queue: Π = 𝐷(𝑓,𝑤)𝑤

Supply function: 𝑁 = 𝑆(
𝜂𝜏

𝑁
𝐷 𝑓,𝑤 )

Earning rate: 𝑒 =
𝜂𝜏

𝑁
𝐷(𝑓,𝑤)

Fleet conservation: 𝑁 = Λ+𝐷(𝑓,𝑤)(𝑤 + 𝜏)



▪ Market equilibrium as a fixed point

Let 𝐱 = 𝑤,𝑁 and 𝐹 = (𝑊, 𝑆), then the market equilibrium is expressed by a fixed point
𝐱∗ = 𝐹(𝐱∗)

Equilibrium
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Demand function: 𝑄 = 𝐷(𝑓,𝑤)

Level of service： 𝑤 = 𝑊 𝐷(𝑓,𝑤)𝑤,𝑁 − 𝐷(𝑓,𝑤)(𝑤 + 𝜏)

Rider matching queue: Π = 𝐷(𝑓,𝑤)𝑤

Supply function: 𝑁 = 𝑆(
𝜂𝜏

𝑁
𝐷 𝑓,𝑤 )

Earning rate: 𝑒 =
𝜂𝜏

𝑁
𝐷(𝑓,𝑤)

Fleet conservation: 𝑁 = Λ+𝐷(𝑓,𝑤)(𝑤 + 𝜏)



▪ Existence of equilibrium due to fixed-point theorem

Equilibrium
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Brouwer’s fixed point theorem

If a continuous function 𝐹:Ω ⊂ ℝ𝑛 → Ω maps a compact and convex set Ω to itself, then

there exists 𝐱∗ ∈ Ω such that 𝐱∗ = 𝐹(𝐱∗)

Recall the market equilibrium defined before
▪ 𝐹 = 𝑊, 𝑆 is a continuous mapping on ℝ2

▪ Functions 𝑊,𝑆 can be designed such that both waiting time 𝑤 and fleet size 𝑁 are

bounded, i.e., Ω ≔ 𝑤,𝑤 × [𝑁,𝑁].

▪ The feasible set Ω is then compact and convex

* The uniqueness is however not guaranteed without additional property of 𝐹, but usually there
exists one stable equilibrium



▪ Solve equilibrium by fixed-point iterations

• Initialize with a feasible solution 𝐱0

• At each iteration 𝑛, update solution by

• Terminate when 𝐱𝑛+1 − 𝐱𝑛 ≤ 𝜀 for some gap threshold 𝜀

Equilibrium
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𝐱𝑛+1 = 𝐹(𝐱𝑛)



▪ Solve equilibrium by fixed-point iterations

• Initialize with a feasible solution 𝐱0

• At each iteration 𝑛, update solution by

• Terminate when 𝐱𝑛+1 − 𝐱𝑛 ≤ 𝜀 for some gap threshold 𝜀

Equilibrium
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𝐱𝑛+1 = 1 − 𝛼 𝐱𝑛 + 𝛼𝐹(𝐱𝑛) with 𝛼 ∈ 0,0.5 for better convergence
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Summary
▪ Aggregate equilibrium in most two-sided

markets can be reduced to a fixed point

▪ It is then proved to exist by fixed-point theorem

and solved via fixed-point iterations

Questions?
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▪ Optimal pricing problem

• determine trip fare 𝑓 and payment rate 𝜂 to maximize platform profit

Pricing
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max
𝑓,𝜂

𝑅 𝑓, 𝜂 = (𝑓 − 𝜂𝜏)𝑄(𝐱∗)

𝑠. 𝑡. 𝐱∗ = 𝐹(𝐱∗; 𝑓, 𝜂)

Mathematical Program with Equilibrium Constraints (MPEC)1

• mostly non-linear and non-convex
• often solved by sensitivity-based algorithm

1 Dempe. Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints. 2003.

• 𝑄 𝐱∗ = 𝐷(𝑓, 𝑤∗): demand

at equilibrium 𝐱∗ = (𝑤∗, 𝑁∗)



▪ Solve MPEC problem using gradient-based method

• applicable when equilibrium is expressed by a fixed point and locates in the
interior of the feasible set

Pricing
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max
𝑓,𝜂

𝑅 𝑓, 𝜂 = 𝑓 − 𝜂𝜏 𝑄 𝐱∗

𝑠. 𝑡. 𝐱∗ = 𝐹(𝐱∗; 𝑓, 𝜂)

Let 𝐲 = 𝑓, 𝜂 , then the gradient ascent iteration is

𝐲𝑛+1 = 𝐲𝑛 + 𝛼∇𝑅 𝐲𝑛 • 𝛼: constant step size

• 𝑄 𝐱∗ = 𝐷(𝑓, 𝑤∗): demand

at equilibrium 𝐱∗ = (𝑤∗, 𝑁∗)

R(y)

y
y0

∇R(y0)

y1

∇R(y1)

y*

∇R(y*)



▪ Solve MPEC problem using gradient-based method

• applicable when equilibrium is expressed by a fixed point and locates in the
interior of the feasible set
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max
𝑓,𝜂

𝑅 𝑓, 𝜂 = 𝑓 − 𝜂𝜏 𝑄 𝐱∗

𝑠. 𝑡. 𝐱∗ = 𝐹(𝐱∗; 𝑓, 𝜂)

Gradient ∇𝑅 =
𝜕𝑅

𝜕𝑓
,
𝜕𝑅

𝜕𝜂

𝑇
is evaluated as

𝜕𝑅

𝜕𝑓
= 𝑄 x∗ + 𝑓 − 𝜂𝜏 ∇𝑓𝑄 x∗ + ∇𝑤𝑄 x∗

𝜕𝑤∗

𝜕𝑓

𝜕𝑅

𝜕𝜂
= −𝜏𝑄 x∗ + 𝑓 − 𝜂𝜏 ∇𝑤𝑄 x∗

𝜕𝑤∗

𝜕𝜂

Let 𝐲 = 𝑓, 𝜂 , then the gradient ascent iteration is

𝐲𝑛+1 = 𝐲𝑛 + 𝛼∇𝑅 𝐲𝑛 • 𝛼: constant step size

• 𝑄 𝐱∗ = 𝐷(𝑓, 𝑤∗): demand

at equilibrium 𝐱∗ = (𝑤∗, 𝑁∗)

* Evaluate using current equilibrium



▪ Solve MPEC problem using gradient-based meth

• applicable when equilibrium is expressed by a fixed point and locates in the
interior of the feasible set
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max
𝑓,𝜂

𝑅 𝑓, 𝜂 = 𝑓 − 𝜂𝜏 𝑄 𝐱∗

𝑠. 𝑡. 𝐱∗ = 𝐹(𝐱∗; 𝑓, 𝜂)

Let 𝐲 = 𝑓, 𝜂 , then the gradient ascent iteration is

𝐲𝑛+1 = 𝐲𝑛 + 𝛼∇𝑅 𝐲𝑛 • 𝛼: constant step size

• 𝑄 𝐱∗ = 𝐷(𝑓, 𝑤∗): demand

at equilibrium 𝐱∗ = (𝑤∗, 𝑁∗)

Gradient ∇𝑅 =
𝜕𝑅

𝜕𝑓
,
𝜕𝑅

𝜕𝜂

𝑇
is evaluated as

𝜕𝑅

𝜕𝑓
= 𝑄 x∗ + 𝑓 − 𝜂𝜏 ∇𝑓𝑄 x∗ + ∇𝑤𝑄 x∗

𝜕𝑤∗

𝜕𝑓

𝜕𝑅

𝜕𝜂
= −𝜏𝑄 x∗ + 𝑓 − 𝜂𝜏 ∇𝑤𝑄 x∗

𝜕𝑤∗

𝜕𝜂

* Sensitivities of current equilibrium
𝜕𝐱∗

𝜕𝐲
∈ ℝ2×2



▪ Solve equilibrium sensitivity from a linear system

Pricing
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Rewrite the equilibrium as
𝑤∗

𝑁∗ =
𝑊(𝑤∗, 𝑁∗; 𝑓, 𝜂)

𝑆(𝑤∗, 𝑁∗; 𝑓, 𝜂)

Differentiate both sides of the equilibrium yields
𝜕𝑤∗

𝜕𝑓
= ∇𝑤𝑊 𝑤∗, 𝑁∗; 𝑓, 𝜂

𝜕𝑤∗

𝜕𝑓
+ ∇𝑁𝑊 𝑤∗, 𝑁∗; 𝑓, 𝜂

𝜕𝑁∗

𝜕𝑓
+ ∇𝑓𝑊 𝑤∗, 𝑁∗; 𝑓, 𝜂

𝜕𝑤∗

𝜕𝜂
= ∇𝑤𝑊 𝑤∗, 𝑁∗; 𝑓, 𝜂

𝜕𝑤∗

𝜕𝜂
+ ∇𝑁𝑊 𝑤∗, 𝑁∗; 𝑓, 𝜂

𝜕𝑁∗

𝜕𝜂
+ ∇𝜂𝑊 𝑤∗, 𝑁∗; 𝑓, 𝜂

𝜕𝑁∗

𝜕𝑓
= ∇𝑤𝑆 𝑤∗, 𝑁∗; 𝑓, 𝜂

𝜕𝑤∗

𝜕𝑓
+ ∇𝑁𝑆 𝑤∗, 𝑁∗; 𝑓, 𝜂

𝜕𝑁∗

𝜕𝑓
+ ∇𝑓𝑆 𝑤∗, 𝑁∗; 𝑓, 𝜂

𝜕𝑁∗

𝜕𝜂
= ∇𝑤𝑆 𝑤∗, 𝑁∗; 𝑓, 𝜂

𝜕𝑤∗

𝜕𝜂
+ ∇𝑁𝑆 𝑤∗, 𝑁∗; 𝑓, 𝜂

𝜕𝑁∗

𝜕𝜂
+ ∇𝜂𝑆 𝑤∗, 𝑁∗; 𝑓, 𝜂

Rearrange into a linear system

1 − ∇𝑤𝑊 0 −∇𝑁𝑊 0
0 1 − ∇𝑤𝑊 0 −∇𝑁𝑊

−∇𝑤𝑆 0 1 − ∇𝑁𝑆 0
0 −∇𝑤𝑆 0 1 − ∇𝑁𝑆

𝜕𝑤∗/𝜕𝑓
𝜕𝑤∗/𝜕𝜂
𝜕𝑁∗/𝜕𝑓
𝜕𝑁∗/𝜕𝜂

=

∇𝑓𝑊

∇𝜂𝑊

∇𝑓𝑆

∇𝜂𝑆

• 𝑤∗, 𝑁∗; 𝑓, 𝜂 is omitted

for notation simplicity



▪ Solve equilibrium sensitivity from a linear system
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Rewrite the equilibrium as
𝑤∗

𝑁∗ =
𝑊(𝑤∗, 𝑁∗; 𝑓, 𝜂)

𝑆(𝑤∗, 𝑁∗; 𝑓, 𝜂)

Differentiate both sides of the equilibrium yields
𝜕𝑤∗

𝜕𝑓
= ∇𝑤𝑊 𝑤∗, 𝑁∗; 𝑓, 𝜂

𝜕𝑤∗

𝜕𝑓
+ ∇𝑁𝑊 𝑤∗, 𝑁∗; 𝑓, 𝜂

𝜕𝑁∗

𝜕𝑓
+ ∇𝑓𝑊 𝑤∗, 𝑁∗; 𝑓, 𝜂

𝜕𝑤∗

𝜕𝜂
= ∇𝑤𝑊 𝑤∗, 𝑁∗; 𝑓, 𝜂

𝜕𝑤∗

𝜕𝜂
+ ∇𝑁𝑊 𝑤∗, 𝑁∗; 𝑓, 𝜂

𝜕𝑁∗

𝜕𝜂
+ ∇𝜂𝑊 𝑤∗, 𝑁∗; 𝑓, 𝜂

𝜕𝑁∗

𝜕𝑓
= ∇𝑤𝑆 𝑤∗, 𝑁∗; 𝑓, 𝜂

𝜕𝑤∗

𝜕𝑓
+ ∇𝑁𝑆 𝑤∗, 𝑁∗; 𝑓, 𝜂

𝜕𝑁∗

𝜕𝑓
+ ∇𝑓𝑆 𝑤∗, 𝑁∗; 𝑓, 𝜂

𝜕𝑁∗

𝜕𝜂
= ∇𝑤𝑆 𝑤∗, 𝑁∗; 𝑓, 𝜂

𝜕𝑤∗

𝜕𝜂
+ ∇𝑁𝑆 𝑤∗, 𝑁∗; 𝑓, 𝜂

𝜕𝑁∗

𝜕𝜂
+ ∇𝜂𝑆 𝑤∗, 𝑁∗; 𝑓, 𝜂

Rearrange into a linear system

(𝐼 − 𝐴)
𝜕𝐱∗

𝜕𝐲
= 𝑏 ⇒

𝜕𝐱∗

𝜕𝐲
= (𝐼 − 𝐴)−1𝑏 • 𝐴 =

∇𝑤𝑊 0 ∇𝑁𝑊 0
0 ∇𝑤𝑊 0 ∇𝑁𝑊

∇𝑤𝑆 0 ∇𝑁𝑆 0
0 ∇𝑤𝑆 0 ∇𝑁𝑆

• 𝑏 = ∇𝑓𝑊,∇𝜂𝑊,∇𝑓𝑆, ∇𝜂𝑆
T

* We do not need to do this by hand but use automatic differentiation



▪ Gradient-based algorithm with equilibrium sensitivity

• Initialize with a feasible solution 𝐲0

• At each iteration iteration 𝑛,

▪ Solve market equilibrium 𝐱∗ at current solution 𝐲𝑛

▪ Compute equilibrium sensitivities
𝜕𝐱∗

𝜕𝐲𝑛

▪ Evaluate gradient ∇𝑅 𝐲𝑛

▪ Update solution by gradient ascent 𝐲𝑛+1 = 𝐲𝑛 + 𝛼∇𝑅 𝐲𝑛

• Terminate when ∇𝑅 𝐲𝑛 ≤ 𝜀 for some gap threshold 𝜀

Pricing
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* Similar to all gradient-based algorithms, it only reaches local optimum and thus random
initializations are needed to derive global optimum



▪ Impacts of regulations

• e.g., min wage and max fleet1

Pricing
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1 Zhang and Nie. To pool or not to pool: Equilibrium, pricing and regulation. 2021.

max
𝑓,𝜂

𝑅 𝑓, 𝜂 = (𝑓 − 𝜂𝜏)𝑄(𝐱∗)

𝑠. 𝑡. 𝐱∗ = 𝐹(𝐱∗; 𝑓, 𝜂)

ℎ 𝐱∗ ≤ 0

min
𝜆

max
𝑓,𝜂

ℒ 𝑓, 𝜂, 𝜆 = 𝑓 − 𝜂𝜏 𝑄 𝐱∗ − 𝜆ℎ 𝐱∗

𝑠. 𝑡. 𝐱∗ = 𝐹(𝐱∗; 𝑓, 𝜂)

Reformulation with Lagrangian multiplier

Solution algorithm
• Inner-loop: solve optimal pricing (𝑓∗, 𝜂∗) at current multiplier 𝜆𝑘

• Outer-loop: update multiplier 𝜆𝑘+1 = 𝜆𝑘 + 𝜌ℎ 𝐱∗ with constant penalty 𝜌
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Summary
▪ Platform operation is formulated as MPEC

and solved by gradient-based algorithm

▪ Acritical step is to solve equilibrium sensitivity

by differentiating a fixed point

▪ Someregulations act as additional constraints

Questions?



Platform competition
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DRIVER

PLATFORM A

RIDER

PLATFORM B



▪ Single-homing vs multi-homing

Platform competition
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DRIVER

PLATFORM A

RIDER

PLATFORM B



▪ Single-homing vs multi-homing

Platform competition
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single-homing multi-homing

𝔼 𝑤𝑖 =
𝛿

2𝑣

Π𝑖

Λ𝑖
𝔼 𝑤𝑖 =

𝛿

2𝑣

σ𝑗Π𝑗

Λ

* All unmatched riders σ𝑗Π𝑗 compete for

the same pool of empty vehicles Λ



▪ Platform pricing game

Platform competition
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max
𝐲𝑖

𝑅𝑖 𝐱𝑖
∗, 𝐲𝑖 , 𝐲−𝑖

𝑠. 𝑡. 𝐱𝑖
∗ = 𝐹(𝐱𝑖

∗; 𝐲𝑖 , 𝐲−𝑖)

Each platform 𝑖 solves its optimal pricing in anticipation of other platforms‘ strategies

• 𝐱𝑖
∗: state variables of platforms 𝑖

• 𝐲𝑖: pricing of platform 𝑖
• 𝐲−𝑖: pricing of platforms other 𝑖

∇𝑅 𝐱∗, 𝐲+ , 𝐲 − 𝐲+ ≤ 0, ∀𝐲 ∈ 𝛀

Nash equilibrium among platforms is equivalent to VI solution 𝐲+ such that

• 𝐲: pricing of all platforms 𝐲𝑖 ∀𝑖

• ∇𝑅 𝐱, 𝐲 : pseudo gradient of platform

profit vector 𝑅𝑖 𝐱𝑖
∗, 𝐲𝑖 , 𝐲−𝑖 ∀𝑖

1 Zhang and Nie. Inter-platform competition in a regulated ride-hail market with pooling. 2021.

Existence of equilibrium is proved by evoking theorem of VI solution existence1. When it
locates in the interior of the feasible set, the similar gradient ascent algorithm for single-

platform pricing can be used

∇𝑅(𝐱∗, 𝐲) = ∇𝐱∗𝑅(𝐱
∗, 𝐲)

𝜕𝐱∗

𝜕𝐲
+ ∇𝐲𝑅(𝐱

∗, 𝐲), with
𝜕𝐱∗

𝜕𝐲
solves linear system

𝜕𝐱∗

𝜕𝐲
= ∇𝐱∗𝐹 𝐱∗, 𝐲

𝜕𝐱∗

𝜕𝐲
+ ∇𝐲𝐹 𝐱∗, 𝐲
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Summary
▪ Competition among platform leads to another

equilibrium on top of the market equilibrium

▪ The same gradient-based algorithm is

applicable to solve interior equilibrium

Questions?



▪ street-hailing vs e-hailing

• the efficiency of e-hailing in high-density market is overestimated due to the
ignorance of passenger competition1

Some findings
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1 Zhang et al. An efficiency paradox of uberization. 2019.

2 Zhang and Nie. To pool or not to pool: Equilibrium, pricing and regulation. 2021.

3 Zhang and Nie. Inter-platform competition in a regulated ride-hail market with pooling. 2021.

▪ min wage vs max fleet

• min wage only improves social welfare in the short-term but can be even
harmful in a long run2

▪ solo vs pooling rides

• effective pooling helps increase both platform profit and trip throughput2

▪ single- vs multi-homing

• multi-homing may induce “tragedy of commons” and lead to insufficient
vehicle supply3



▪ zonal movements of drivers

• searching and charging strategies of profit-max drivers1,2

Extend to zone-based model
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1 Zhang et al. RIde-hail vehicle routing (RIVER) as a congestion game. 2023.

2 Zhang and Lygeros. Routing and charging game in ride-hailing service with electric vehicles. 2023

3 Jusup et al. Safe model-based multi-agent mean-field reinforcement learning. 2023.

4 Zhang and Nie. Mitigating traffic congestion induced by transportation network companies: a policy analysis. 2022.

▪ location-based regulations

• trip-based vs cordon-based congestion fee4

▪ location-based operations

• surge pricing and rebalancing1,3



▪ dockless bike-sharing

• pricing and fleet sizing1

• platform competition with different operational objectives2

Beyond ride-hailing
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1 Zheng et al. How Many Are Too Many? Analyzing Dockless Bike-Sharing Systems with a Parsimonious Model. 2024.

2 Zheng, Zhang and Nie. Does dockless bikesharing create a competition for losers?. 2024.

3 Ye et al. Modeling and managing an on-demand meal delivery system with order bundling. 2024.

4 Ye et al. Modeling an on-demand meal delivery system with human couriers and autonomous vehicles in a spatial market. 2024

▪ meal delivery

• pros and cons of order bundling3

• mixed fleet of human and AV couriers4
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Summary
▪ Aggregate model is a simple yet useful tool to

reveal and examine key trade-offs in market

equilibrium and service design

▪ The same modeling framework is easily

extended to various transport systems with

spatially distributed supply and demand

Questions?



Outline
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Modeling Optimization Application

Aggregate
▪ two-sided market

▪ platform competition

▪ fixed-point iteration

▪ MPEC with fixed point

▪ ride-hailing

▪ bike-sharing

▪ meal delivery

Network

▪ mixed traffic

▪ multi-modal travel

▪ traffic management

▪ traffic assignment

▪ MPEC with VI

▪ AV routing

▪ MaaS



Four-step model for travel forecasting
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Trip Generation

Trip Distribution

Mode Choice

Traffic Assignment

# trips from/to each zone = F1(land use, social demographics)

# trips for each OD = F2(zone demand, activities, travel utility)

% trips by mode for each OD = F3(OD demand, travel time, travel cost)

travel flow on each path/link =

F4(OD demand by mode, network, behavioral principal)

co
n

g
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d
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e
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rk



▪ From route choice to traffic assignment

Traffic assignment
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Route choice
Prob. of individual 𝑖 choosing route 𝑟

𝑃𝑖𝑟 = ℎ(𝑐𝑟, 𝐜−𝑟, 𝛽𝑖)

Network loading
Traffic flow and cost of route 𝑟

𝑓𝑟 = σ𝑖𝑃𝑖𝑟
𝑐𝑟 = σ𝑎∈𝑟 𝑡𝑎(σ𝑎∈𝑟 𝑓𝑟)



▪ Behavioral principal

• user equilibrium (UE): selfish travelers minimizing own travel time

Traffic assignment
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Braess network with demand qAD=1

B

C

A D

x

0

x1

1
▪ UE: all travelers take path A-B-C-D with path cost 2



▪ Behavioral principal

• user equilibrium (UE): selfish travelers minimizing own travel time

▪ stochastic user equilibrium (SUE): without perfect info or rationality

• system optimum (SO): selfless travelers minimizing total travel time

Traffic assignment
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Braess network with demand qAD=1

B

C

A D

x

0

x1

1
▪ UE: all travelers take path A-B-C-D with path cost 2

▪ SO: travelers split evenly between path A-B-D and
A-C-D with path cost 1.5



▪ From UE to Beckmann formulation

• also widely known as Wardrop equilibrium1

Traffic assignment
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1 Wardrop. Some Theoretical Aspects of Road Traffic Research. 1952

Wardrop’s first principle (UE)

The travel costs of all used paths are equal, and less or equal than the unused ones.

Therefore, no traveler has incentive to deviate from their current path.

• mathematical expression of UE

𝑐𝑤𝑟 > 𝜇𝑤 ⇒ 𝑓𝑤𝑟 = 0
𝑐𝑤𝑟 = 𝜇𝑤 ⇒ 𝑓𝑤𝑟 ≥ 0

• 𝑐𝑤𝑟: cost of path 𝑟 between OD pair 𝑤
• 𝑓𝑤𝑟: flow on path 𝑟 between OD pair 𝑤
• 𝜇𝑤: min path cost between OD pair 𝑤

𝑐𝑤𝑟 ≥ 𝜇𝑤
𝑓𝑤𝑟 𝑐𝑤𝑟 − 𝜇𝑤 = 0⇔



▪ From UE to Beckmann formulation

• assume path cost is the sum of link cost and link cost function is determined
by its own flow

Traffic assignment
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𝑐𝑤𝑟 = σ𝑎∈𝑟 𝑡𝑎(𝑥𝑎) = σ𝑎 𝛿𝑎𝑟𝑡𝑎(𝑥𝑎)
• 𝑐𝑤𝑟: cost of path 𝑟 between OD pair 𝑤
• 𝑡𝑎: cost of link 𝑎
• 𝑥𝑎: traffic flow on link 𝑎
• 𝛿𝑎𝑟: binary indicator of link 𝑎 is on path 𝑟

⇔ 𝐜 = Δ𝑇𝐭 𝐱 = Δ𝑇𝐭 Δ𝐟 • 𝐜: vector of path costs

• 𝐭: vector of link cost functions

• 𝐱: vector of link flows

• 𝐟: vector of path flows

• Δ: link-path incidence matrix

• matrix representation of equilibrium conditions

𝐜 − Λ𝑇𝛍 ≥ 𝟎
𝐟, 𝐜 − Λ𝑇𝛍 = 𝟎

Λ𝐟 = 𝐪
𝐟 ≥ 𝟎

• Λ: OD-path incidence matrix

• 𝐪: vector of OD demand



▪ From UE to Beckmann formulation

• equivalent optimization problem

Traffic assignment
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min
𝐟

𝑧(𝐟)

𝑠. 𝑡. Λ𝐟 = 𝐪
𝐟 ≥ 𝟎

KKT conditions

∇𝑧(𝐟) − Λ𝑇𝛍 ≥ 𝟎
𝐟, ∇𝑧(𝐟) − Λ𝑇𝛍 = 𝟎

Λ𝐟 = 𝐪
𝐟 ≥ 𝟎

UE conditions

𝐜 − Λ𝑇𝛍 ≥ 𝟎
𝐟, 𝐜 − Λ𝑇𝛍 = 𝟎

Λ𝐟 = 𝐪
𝐟 ≥ 𝟎

• find a function 𝑧(Δ𝐟) such that

∇𝑧 𝐟 = 𝐜 = Δ𝑇𝐭 𝐱

• Beckmann function

𝑧 𝐟 = 𝑍 𝐱 = σ𝑎 0׬
𝑥𝑎 𝑡𝑎 𝑢 d𝑢

𝜕𝑧 𝐟

𝜕𝑓𝑤𝑟
= σ𝑎 𝑡𝑎 𝑥𝑎

𝜕 σ𝑤 σ𝑟 𝛿𝑤𝑟𝑓𝑤𝑟

𝜕𝑓𝑤𝑟

= σ𝑎 𝛿𝑤𝑟𝑡𝑎(𝑥𝑎) = 𝑐𝑤𝑟



▪ Beckmann formulation for UE

Traffic assignment
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min
𝐱

𝑍(𝐱)

𝑠. 𝑡. Λ𝐟 = 𝐪
Δ𝐟 = 𝐱
𝐱 ≥ 𝟎

• 𝑍 𝐱 = σ𝑎0׬
𝑥𝑎 𝑡𝑎 𝑢 d𝑢

▪ Optimization problem for SO

min
x

𝑇𝑇(𝐱)

𝑠. 𝑡. Λ𝐟 = 𝐪
Δ𝐟 = 𝐱
𝐱 ≥ 𝟎

• 𝑇𝑇 𝐱 = 𝐭(𝐱), 𝐱 = σ𝑎 𝑡𝑎 𝑥𝑎 𝑥𝑎



▪ Beckmann formulation for UE

Traffic assignment
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min
𝐱

𝑍(𝐱)

𝑠. 𝑡. Λ𝐟 = 𝐪
Δ𝐟 = 𝐱
𝐱 ≥ 𝟎

• 𝑍 𝐱 = σ𝑎0׬
𝑥𝑎 𝑡𝑎 𝑢 d𝑢

▪ Beckmann formulation for SO

min
x

𝑍′(𝐱)

𝑠. 𝑡. Λ𝐟 = 𝐪
Δ𝐟 = 𝐱
𝐱 ≥ 𝟎

• 𝑇𝑇 𝐱 = 𝐭(𝐱), 𝐱 = σ𝑎 𝑡𝑎 𝑥𝑎 𝑥𝑎

• 𝑍′ 𝐱 = σ𝑎0׬
𝑥𝑎𝑚𝑡𝑎 𝑢 d𝑢

where 𝑚𝑡𝑎 𝑥𝑎 =
𝜕𝑡𝑎 𝑥𝑎 𝑥𝑎

𝜕𝑥𝑎
= 𝑡𝑎 𝑥𝑎 + 𝑡𝑎

′ 𝑥𝑎 𝑥𝑎

* SO is achieved if travelers perceive the marginal cost 𝑚𝑐𝑤𝑟 = σ𝑎 𝛿𝑤𝑟𝑚𝑡𝑎(𝑥𝑎) as their travel cost

* Theoretical foundation of marginal pricing 𝜏𝑎 𝑥𝑎 = 𝑡𝑎
′ 𝑥𝑎 𝑥𝑎



▪ Variational inequality (VI) formulation for UE1

• path flow 𝐟∗ is UE iff.

Traffic assignment
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𝐜, 𝐟 − 𝐟∗ ≥ 𝟎, ∀𝐟 ∈ Ω𝐟 = {𝐟|Λ𝐟 = 𝐪, 𝐟 ≥ 𝟎|}

⇔ Δ𝑇𝐭 𝐱 , 𝐟 − 𝐟∗ ≥ 𝟎 ⇔ 𝐭 𝐱 , Δ𝐟 − Δ𝐟∗ ≥ 𝟎 ⇔ 𝐭 𝐱 , 𝐱 − 𝐱∗ ≥ 𝟎

• link flow 𝐱∗ is UE iff.

𝐭 𝐱 , 𝐱 − 𝐱∗ ≥ 𝟎, ∀𝐱 ∈ Ω𝐱 = {𝐱|Λ𝐟 = 𝐪, Δ𝐟 = 𝐱, 𝐱 ≥ 𝟎}

▪ VI formulation for SO

• link flow 𝐱∗ is SO iff.

𝐦𝐭 𝐱 , 𝐱 − 𝐱∗ ≥ 𝟎, ∀𝐱 ∈ Ω𝐱 = {𝐱|Λ𝐟 = 𝐪, Δ𝐟 = 𝐱, 𝐱 ≥ 𝟎}

* We will continue using this formulation due to its compactness

1 Dafermos. An algorithm for quadratic programming. 1980.



▪ Existence and uniqueness of equilibrium

Traffic assignment
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(P) min
𝐱

𝑍 𝐱 = σ𝑎 0׬
𝑥𝑎 𝑡𝑎 𝑢 d𝑢

𝑠. 𝑡. Λ𝐟 = 𝐪
Δ𝐟 = 𝐱
𝐱 ≥ 𝟎

• when demand and network are properly defined, the feasible set of 𝐱 is non-
empty, close, and bounded

• when link cost function 𝑡𝑎 is continuous, there must exist a solution to P, i.e.,
equilibrium link flow 𝐱∗

• if link cost function 𝑡𝑎 is strictly increasing, equilibrium link flow 𝐱∗ is unique
due to the convexity of P

• Yet, equilibrium path flow 𝐟∗ such that Δ𝐟∗ = 𝐱∗ may not be unique



▪ Frank-Wolfe algorithm

• a solution algorithm for convex program with linear constraints1

Traffic assignment
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1 Frank and Wolfe. An algorithm for quadratic programming. 1956.



▪ Frank-Wolfe algorithm

• a solution algorithm for convex program with linear constraints1

Traffic assignment
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1 Frank and Wolfe. An algorithm for quadratic programming. 1956.

min
𝐱

𝑍 𝐱 = σ𝑎 0׬
𝑥𝑎 𝑡𝑎 𝑢 d𝑢

𝑠. 𝑡. Λ𝐟 = 𝐪
Δ𝐟 = 𝐱
𝐱 ≥ 𝟎

convex when 𝑡𝑎 𝑥𝑎 is monotonically increasing

linear by definition

• built upon a linear approximation of objective at a feasible solution 𝐱0

෨𝑍 𝐱 = 𝑍 𝐱0 + ∇𝑍 𝐱0 , 𝐱 − 𝐱0

min
𝐱

∇𝑍 𝐱0 , 𝐱

𝑠. 𝑡. Λ𝐟 = 𝐪
Δ𝐟 = 𝐱
𝐱 ≥ 𝟎

• this leads to a linear subproblem

min
𝐟

𝐜0, 𝐟

𝑠. 𝑡. Λ𝐟 = 𝐪
𝐟 ≥ 𝟎

⇔
* Find a path flow vector that min total
travel cost with fixed path costs

* Assign all flow to the shortest path,
i.e., all-or-nothing assignment



▪ Frank-Wolfe algorithm

• Initialize with a feasible link flow 𝐱0

▪ e.g., all-or-nothing assignment based on free flow travel time

• At each iteration 𝑛,

▪ Compute link travel time 𝐭(𝐱𝑛)

▪ Perform all-or-nothing assignment and get corresponding link flow 𝐲𝑛

▪ Determine step size 𝛼 via line search:

• Let 𝐝𝑛 = 𝐲𝑛 − 𝐱𝑛 and find 𝛼 ∈ [0,1] that min 𝐭 𝐱𝑛 + 𝛼𝐝𝑛 , 𝐝𝑛

▪ Update link flow 𝐱𝑛+1 = 𝐱𝑛 + 𝛼𝐝𝑛

▪ Compute lower bound 𝐿𝑛 = ሚ𝑍 𝐲𝐧 and upper bound 𝑈𝑛 = 𝑍 𝐱𝐧

• Terminate when 𝐿𝑛 −𝑈𝑛 ≤ 𝜀 for some gap threshold 𝜀

Traffic assignment
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Summary
▪ Traffic assignment describes how travel flows

distribute on congestible traffic network

▪ user equilibrium vs system optimum

▪ Equilibrium is expressed in different ways

▪ complementary conditions

▪ convex programs

▪ variational inequality

▪ Existence of equilibrium usually holds, though
uniqueness requires additional conditions

▪ Classic traffic assignment is solved efficiently
by Frank-Wolfe algorithm

Questions?



▪ Mixed traffic equilibrium

• a finite number of user classes 𝑖 ∈ 𝐼 perceive link travel time differently
𝑡𝑖𝑎 𝑥𝑎 , where 𝑥𝑎 = σ𝑖 𝑥𝑖𝑎 is the total travel flow on link 𝑎

Extend to multiple user classes
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• Beckmann function may no longer exists but VI formulation normally does

𝐗∗ is an equilibrium joint link flow if it is a solution to VI problem

𝐓 𝐱∗ , 𝐗 − 𝐗∗ ≥ 𝟎, ∀𝐗 ∈ Ω𝐗 =∪𝑖 Ω𝐱𝑖

• 𝐗 = 𝐱𝑖 ∀𝑖∈𝐼: joint link flow
• 𝐓 = 𝐭𝑖 ∀𝑖∈𝐼: joint link cost function

• 𝐱 = σ𝑖 𝐱𝑖 = 𝑥𝑎 ∀𝑎: aggregate link flow

• Ω𝐱𝑖 = {𝐱𝑖|Λ𝐟𝑖 = 𝐪𝑖 , Δ𝐟𝑖 = 𝐱𝑖, 𝐱𝑖 ≥ 𝟎}

* While the class-specific equilibrium link flow 𝐗∗ is usually non-unique, the aggregate
equilibrium link flow 𝐱∗ is unique in many applications



▪ Multi-modal traffic assignment

Extend to multiple travel modes
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OD

Transit

Ride-hailing

Driving
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OD

Transit

Ride-hailing

Driving

• additional links connecting subnetworks

▪ e.g., dummy link (zero cost) and transfer link (access cost)

• interactions between subnetworks

▪ e.g., ride-hailing and driving share the same road network

• link capacity constraint in some subnetworks

▪ e.g., transit links



▪ Multi-modal traffic assignment

Extend to multiple travel modes
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OD

Transit

Ride-hailing

Driving

• VI formulation still holds in most scenarios, similar to mixed traffic equilibrium

𝐓 𝐱∗ + 𝝀∗, 𝐗 − 𝐗∗ ≥ 𝟎, ∀𝐗 ∈ Ω𝐗

• 𝝀∗ : Lagrangian associated with capacitated links, also known as ”shadow price”



▪ Motivation

• correct the inefficiency of UE compared to SO

• achieve other objectives (e.g., equity)

Traffic management
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▪ Stackelberg game framework

• traffic manager as “leader” who makes changes to the traffic network

• travelers as “follower” who adjust their behaviors in response

▪ MPEC formulation

min
𝜿∈𝚱

𝑔(𝐱∗, 𝜿)

𝑠. 𝑡. 𝐭 𝐱∗; 𝜿 , 𝐱 − 𝐱∗ ≥ 𝟎, ∀𝐱 ∈ Ω𝐱(𝜿)

* Share the same structure as MPEC with fixed point but more challenging to solve



▪ Reformulation and solved as a bi-level program

• Upper level:

▪ approximated equilibrium mapping ෤𝐱 𝜿 = 𝐱∗(𝜿0) +
𝜕𝐱∗ 𝜿0

𝜕𝜿
(𝜿 − 𝜿0)

based on some known equilibrium 𝐱∗(𝜿0) and its sensitivity
𝜕𝐱∗ 𝜿0

𝜕𝜿

▪ constrained feasible set ഥ𝚱 (e.g., a small neighborhood of 𝜿0)

• Lower level:

Traffic management
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min
𝜿

𝑔(෤𝐱(𝜿), 𝜿)

𝑠. 𝑡. 𝜿 ∈ ഥ𝚱

𝐭 𝐱; 𝜿 , 𝐱 − 𝐱∗ ≥ 𝟎, ∀𝐱 ∈ Ω𝐱(𝜿)

𝑔(𝜅)

𝜅
𝜅0

෤𝑔(𝜅0)

𝜅1

෤𝑔(𝜅1)

𝜅∗

෤𝑔(𝜅∗)



▪ Reformulation and solved as a bi-level program

• Initialize with some feasible 𝜿0

• At each iteration 𝑛,

▪ Solve lower-level equilibrium 𝐱∗(𝜿𝑛)

▪ Evaluate equilibrium sensitivity
𝜕𝐱∗ 𝜿𝑛

𝜕𝜿

▪ Construct equilibrium mapping ෤𝐱 𝜿𝑛 and feasible set ഥ𝚱𝑛

▪ Solve upper-level problem and set optimal solution to be 𝜿𝑛+1

• Terminate when 𝜿𝑛+1 − 𝜿𝑛 ≤ 𝜀 for some gap threshold 𝜀

Traffic management
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* Highly depend on the problem property and

thus customized approaches are often used
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Summary
▪ Multimodal traffic assignment

▪ user class and network structure

▪ Top-up network design problem

Questions?



Outline
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Modeling Optimization Application

Aggregate
▪ two-sided market

▪ platform competition

▪ fixed-point iteration

▪ MPEC with fixed point

▪ ride-hailing

▪ micromobility

▪ meal delivery

Network

▪ mixed traffic

▪ multi-modal travel

▪ traffic management

▪ traffic assignment

▪ MPEC with VI

▪ AV routing

▪ MaaS



▪ Microscopic

• speed harmonization

• highway platooning

• signal-free intersection

• lane-free traffic

AVs in traffic
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CONTROL MOVEMENT

Zhang, Li and Li (2023) TUM DFG Lane Free Traffic

Sugiyama et al. (2008)



▪ Microscopic

• speed harmonization

• highway platooning

• signal-free intersection

• lane-free traffic

AVs in traffic
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CONTROL MOVEMENT

▪ Macroscopic

• dedicated lane

• route coordination

CONTROL ROUTING



▪ Can we route a fraction of AVs to reduce congestion?

AVs in traffic
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• Regular vehicles (RVs) and uncontrolled AVs

▪ choose route to min own travel time

• Controlled AVs

▪ choose route to min total travel time

⇔ argmin
𝑟

σ𝑎 𝛿𝑟𝑎𝑡𝑎(𝑥𝑎)

⇔ argmin
𝑟

σ𝑎 𝛿𝑟𝑎𝑚𝑡𝑎(𝑥𝑎)

traffic equilibrium with two user classes

▪ Which and how many AVs should we control?

• Control AVs by OD pair and bound by total demand

• Balance control intensity (i.e., # controlled ODs and vehicles)
and system efficiency(i.e., total travel time)

⇔ ෥𝐪 ∈ [𝟎, 𝐪𝐴𝑉]

⇔ min𝑇𝑇 𝐱

network design problem

⇔ min ෥𝐪
1



▪ Optimal ratio control scheme (ORCS)1

AVs in traffic
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min
෥𝐪

𝛾 ෥𝐪
1
+ 𝑇𝑇 𝐱∗

𝑠. 𝑡. 𝐦𝐭 ෤𝐱∗ , ෤𝐱 − ෤𝐱∗ ≥ 𝟎, ∀෤𝐱 ∈ Ω ෤𝐱 ෥𝐪

𝐭 𝐱∗ , 𝐱 − 𝐱∗ ≥ 𝟎, ∀𝐱 ∈ Ω𝐱(𝐐 − ෥𝐪)

𝟎 ≤ ෥𝐪 ≤ 𝐪𝐴𝑉

• 𝛾: weight of objectives

• 𝐐: total demand 

▪ Bi-level formulation
• Upper-level:

• Lower-level:

min
𝜹෥𝐪

𝛾 𝜹෥𝐪
1
+ ∇෥𝐪𝑇𝑇 𝐱∗ ෥𝐪0 , 𝜹෥𝐪

𝑠. 𝑡. 𝜹 ≤ 𝜹෥𝐪 ≤ ഥ𝜹

𝐦𝐭 ෤𝐱∗ , ෤𝐱 − ෤𝐱∗ ≥ 𝟎, ∀෤𝐱 ∈ Ω ෤𝐱 ෥𝐪0 + 𝜹෥𝐪
∗

𝐭 𝐱∗ , 𝐱 − 𝐱∗ ≥ 𝟎, ∀𝐱 ∈ Ω𝐱(𝑸 − ෥𝐪0 − 𝜹෥𝐪
∗ )

1 Zhang and Nie. Mitigating the impact of selfish routing: An optimal-ratio control scheme (ORCS) inspired by autonomous driving. 2018.

• 𝜹෥𝐪: additional demand shift

• ෥𝐪0: current demand shift

• ഥ𝜹, 𝜹: upper and lower bound



▪ Key findings of ORCS1

AVs in traffic
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1 Zhang and Nie. Mitigating the impact of selfish routing: An optimal-ratio control scheme (ORCS) inspired by autonomous driving. 2018.

▪ Does the same result hold in general networks?

• A small fractions of OD pairs are fully controlled while others are not

controlled at all

• SO can be closely approached by controlling around 10% of all vehicles

▪ The spatially uneven control leads to equity issue. How to compensate the

controlled travelers?



Outline
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Modeling Optimization Application

Aggregate
▪ two-sided market

▪ platform competition

▪ fixed-point iteration

▪ MPEC with fixed point

▪ ride-hailing

▪ micromobility

▪ meal delivery

Network

▪ mixed traffic

▪ multi-modal travel

▪ traffic management

▪ traffic assignment

▪ MPEC with VI

▪ AV routing

▪ MaaS



▪ What is Mobility-as-a-Service (MaaS)?

• Integrates various transport services into a single on-demand mobility 
service through a single application and payment channel1

Multi-modal travel
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1 European MaaS Alliance



▪ What is Mobility-as-a-Service (MaaS)?

• Integrates various transport services into a single on-demand mobility 
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1 European MaaS Alliance

▪ What is role of a MaaS platform?

• Match travel demand with service capacity on a multi-modal network

• Negotiate with service providers and price the MaaS trips



Multi-modal travel
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MaaS
OD-based

price

wholesale

price

mode-based

price



▪ MaaS assignment1

Multi-modal travel
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1 Yao and Zhang, Design an intermediary mobility-as-a-service (MaaS) platform using many-to-many stable matching framework. 2024

• MaaS and non-MaaS travelers interact in the same multi-modal

transportation network

• MaaS platform decides how many MaaS travelers to serve and

how much service capacity to purchase

traffic equilibrium with two user classes

network design problem



▪ MaaS assignment*

Multi-modal travel
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* A simplified formulation of Yao and Zhang (2024)

min
𝐪,𝐤

𝑇𝑇 𝐱∗, ෤𝐱∗

𝑠. 𝑡. 𝐭 𝐱∗ , 𝐱 − 𝐱∗ ≥ 𝟎, ∀𝐱 ∈ Ω𝐱 𝐪

ǁ𝐭 ෤𝐱∗ , ෤𝐱 − ෤𝐱∗ ≥ 𝟎, ∀෤𝐱 ∈ Ω ෤𝐱 ෥𝐪

𝐪 + ෥𝐪 = 𝐐,

𝐱∗ ≤ 𝐤, ෤𝐱∗ ≤ 𝐊− 𝐤.

• 𝐱, ෤𝐱: MaaS and non-MaaS link flow

• 𝐪, ෥𝐪: MaaS and non-MaaS demand

• t, ǁ𝐭: MaaS and non-MaaS link cost

• 𝐐: total demand

• 𝐤: MaaS service capacity 

• 𝐊: total link capacity



▪ MaaS assignment*

Multi-modal travel
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* A simplified formulation of Yao and Zhang (2024)

min
𝐪

𝑇𝑇 𝐱∗, ෤𝐱∗

𝑠. 𝑡. 𝐭 𝐱∗ + 𝝀, 𝐱 − 𝐱∗ ≥ 𝟎, ∀𝐱 ∈ Ω𝐱 𝐪

ǁ𝐭 ෤𝐱∗ + 𝝀, ෤𝐱 − ෤𝐱∗ ≥ 𝟎, ∀෤𝐱 ∈ Ω ෤𝐱 ෥𝐪

𝐪 + ෥𝐪 = 𝐐,

𝐱∗ + ෤𝐱∗ ≤ 𝐊,

𝝀 𝐱∗ + ෤𝐱∗ − 𝐊 = 𝟎.

• 𝐱, ෤𝐱: MaaS and non-MaaS link flow

• 𝐪, ෥𝐪: MaaS and non-MaaS demand

• t, ǁ𝐭: MaaS and non-MaaS link cost

• 𝐐: total demand

• 𝐤: MaaS service capacity 

• 𝐊: total link capacity

• 𝝀: Lagrangian multiplier

• Gradient-based algorithm joint with multiplier update

▪ solve equilibrium (𝐱∗, ෤𝐱∗) and evaluate equilibrium sensitivity 
𝜕𝐱∗

𝜕𝐪
,
𝜕෤𝐱∗

𝜕𝐪

▪ construct gradient ∇𝐪𝑇𝑇 𝐱∗, ෤𝐱∗ and perform gradient descent

▪ update Lagrangian multiplier 𝝀 based on constraint violation 

max
𝝀



▪ MaaS assignment1

Multi-modal travel
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1 Yao and Zhang, Design an intermediary mobility-as-a-service (MaaS) platform using many-to-many stable matching framework. 2024

• MaaS and non-MaaS travelers interact in the same multi-modal

transportation network

• MaaS platform decides how many MaaS travelers to serve and

how much service capacity to purchase

traffic equilibrium with two user classes

network design problem

* This is half of the story because the platform needs to properly decide on trip

fare and capacity purchase price to achieve the desired MaaS assignment



▪ Key findings of MaaS1

Multi-modal travel
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▪ How do service providers respond in terms of their operational strategies?

• MaaS promote multi-modal travel while reducing private driving

• The launch of MaaS platform can benefit all stakeholders

▪ What are the prerequisites (e.g., connectivity of public transport networks)

to reach this result?

1 Yao and Zhang, Design an intermediary mobility-as-a-service (MaaS) platform using many-to-many stable matching framework. 2024
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Summary
▪ Examples of how mixed traffic equilibrium and

network design problem serve as the

modeling framework to studyAVs and MaaS

▪ More emerging mobility problems can be

framed and optimized in a similar way

Questions?



▪ So far we have been focusing on the supply side while simplifying or
even ignoring many behavioral factors, e.g.,

• mode and route choice

• imperfect info and rationality

• personal preference and characteristics

Connection to behavioral modeling
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▪ Models that capture these factors are obviously ideal but

• additional challenge in solution procedure

• introduce more uncertainties that may blur key trade-offs



Thanks!
Q & A
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HOMES @ EPFL
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