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Recent treads in DCM
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Haghani, M., Bliemer, M.C.J., Hensher, D.A.: The landscape of 
econometric discrete choice modelling research. Journal of Choice 
Modelling 40, 100303, 2021.



Treads in Research Domains
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Trends in Keywords
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Network map of title and abstract terms by research domain

Haghani et al. (2021)



Trends in Keywords
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Haghani et al. (2021)

Network map of title and abstract terms overlaid with the average publication year



Journals publishing DCM papers
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Journals publishing DCM papers
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Network of collaborations

8Network of collaborations between authors



Network of collaborations
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Network of collaborations

10Network of collaborations between countries/regions
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1. Enriching passively collected data

2. Diving into more detailed decision-making process
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1. Enriching passively collected data
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Inverse Discrete Choice Modeling (IDCM)

ü Zhao, Y., Pawlak, J.and Sivakumar, A.: Theory for socio-demographic enrichment performance using 
the inverse discrete choice modelling approach. Transportation Research Part B 155, 101-134, 2022.

ü Zhao, Y., Pawlak, J.and Polak, J.W.: Inverse discrete choice modelling: theoretical and practical 
considerations for imputing respondent attributes from the patterns of observed choices. 
Transportation Planning and Technology 41, 58-79, 2018.



Enriching data
• “Data enrichment” has long been conducted in 

transportation field.
– Map matching (source: GPS trajectory data) [e.g., Lou et al., 2009]

– Travel mode (source: GPS trajectory data) [e.g., Feng & Timmermans, 2013]

– OD estimation (source: traffic count data) [e.g., Yang et al., 1992]

– Trip purpose (source: smart card data) [e.g., Kusakabe & Asakura, 2014]

– Traffic state (source: vehicle trajectory) [e.g., Seo & Kusakabe, 2015]

– Comprehensive Package (source: GPS trajectory data) [Hara, 2017]

• Further improvements are needed, with gaining the 
popularity of digital twin concept.
– Digital twin: A digital model of an actual real-world urban and 

transportation system.
– Passively collected data (such as GPS data) would be good 

candidates as inputs for digital twin, but these are big-but-thin 
dataset, e.g., no socio-demographic data included. à IDCM
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Basic idea of IDCM
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LGR: Logistic regression
SVM: Support Vector Machine



Framework for IDCM enrichment
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(Zhao et al., 2022)

An creation of IDCM kernel The socio-demographic enrichment



Implementing IDCM
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An creation of IDCM kernel

The socio-demographic enrichment
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Differently from !, 2 is often of discrete nature, and thus:
!∗ : Newton’s method-based gradient-descent algorithms (e.g., BFGS)
2∗: exhaustive search (brute force)

0: attributes of alternatives
2: attributes of respondents
.: choice

MAP: Maximum a posteriori; MLE: Maximum likelihood



Performance of IDCM
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Comparison between PCPs using LGR, SVM and IDCM, and Relevant Statistics in LTDS Application

PCP: percentage correctly predicted
LGR: Logistic regression
SVM: Support Vector Machine
LTDS: London Travel Demand Survey

Conventional IDCM

IDCM does not outperform conventional methods.
Then why IDCM was proposed?



Transferability of the methods
• The trained LGR and SVM using the estimation sample inevitably 

learn information about the attribute distribution of the enrichment 
sample, limiting the transferability of LGR and SVM in the socio-
demographic enrichment under different data conditions.
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Conventional
(e.g., LGR and SVM)

IDCM

Condition to use conventional methods:
the distribution of the enriched attribute in the estimation sample is 
similar to the true attribute distribution in the enrichment sample.

And, given the theoretical consideration of the mechanism, IDCM 
would be more preferable than conventional methods.



Future directions
• An initial empirical trial of IDCM approach was made in 

Zhao et al. (2018), followed by further theoretical 
investigation by Zhao et al. (2022) restricted to the 
context of enrichment of a binary attribute from a single, 
binary choice behavior.

• Future directions
– IDCM framework for multiple choices and multi-class/multiple 

attributes (empirical investigations would relatively be easy)
– Adding a feedback loop using structural estimation.
– Linking with small-but-thick data collection strategy

19



Structural estimation (Oyama & Hato, 2018)

Oyama, Y.and Hato, E.: Link-based measurement model to estimate route choice parameters in urban pedestrian 
networks. Transportation Research Part C: Emerging Technologies 93, 62-78, 2018. 20



Structural estimation for IDCM

21

(Zhao et al., 2022)

An creation of IDCM kernel The socio-demographic enrichment



Utilizing semi-supervised learning
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Reem & Chikaraishi (2024), submitted to TRB

Co-learning algorithm



Utilizing semi-supervised learning
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Reem & Chikaraishi (2024), submitted to TRB

1 2 3 4 5 6 7 8 9
Unlabled Data 10% 20% 30% 40% 50% 60% 70% 80% 90%
Labeled Data 90% 80% 70% 60% 50% 40% 30% 20% 10%
F2 Score 84% 86% 87% 83% 80% 76% 72% 71% 70%
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Feedback to survey design

24An creation of IDCM kernel The socio-demographic enrichment

Optimal sampling strategy



2. Diving into more detailed 
decision-making process
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Decision Field Theory (DFT)

ü Roe, R.M., Busemeyer, J.R.and Townsend, J.T.: Multialternative decision field theory: A dynamic connectionst
model of decision making. Psychological Review 108, 370, 2001.

ü Hancock, T.O., Hess, S.and Choudhury, C.F.: Decision field theory: Improvements to current methodology and 
comparisons with standard choice modelling techniques. Transportation Research Part B 107, 18-40, 2018.

ü Hancock, T.O., Hess, S., Marley, A.A.J.and Choudhury, C.F.: An accumulation of preference: Two alternative 
dynamic models for understanding transport choices. Transportation Research Part B 149, 250-282, 2021.



Background
• Revisiting choice decision-making process

– Searching better options
– Evaluating trade-offs across different attributes
– Discriminating one option from the others

• These indicate that a choice task inevitably involve a cognitive 
process to understand options and to differentiate one from the 
others, where a decision maker spends a certain time in the process.

• Decision field theory (DFT) is a theory modeling such a dynamic 
nature of decision-making process in a straightforward manner.
– Information is sequentially sampled and accumulated over time to make 

a decision.

• Increased availability of biosensor data, such as EEG 
(Electroencephalogram) and eye-trucking data, needs a model that 
can incorporate the dynamic nature of decision-making process.
– Incorporating a bunch of observations (with timesteps) to model one 

single decision-making.
26



Example of EEG

27Transportation Engineering Lab., Hiroshima University



Decision Field Theory (DFT)
• Intuitive explanation of DFT:

– A decision maker’s preference for each option evolves during 
deliberation by integrating a stream of comparisons of 
evaluations among options on attributes over time

28

Timing of decision making:
1. An externally imposed time constraint
2. A self-imposed criterion (threshold)



Example (Roe et al., 2001)
Car purchasing behavior
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Decision Field Theory (DFT)
• Sequential sampling decision process
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Valence

Preferences

! " = $%& "

' " + 1 = *' " + !(" + 1)

! " = -. " , -0 " , -1 " 2: valence vector

-3 " : valence (momentary advantage/disadvantage) for option 4 at time "



Decision Field Theory (DFT)
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• Sequential sampling decision process

Valence

Preferences

! " = $%& "

' " + 1 = *' " + !(" + 1)

%: personal evaluation of each option on each attribute
-./: the subjective value of option 0 on attribute 1
Ex: % = %2|%4 , where economy: %2 = -56,-86,-96 :

quality: %4 = -5;,-8;,-9;
:

&("): attention weight allocated to each attribute at time "
Ex: & " = <6 " ,<; " :

%& " looks like the additive utility function in the classical RUM model: 

%& " =
<6 " -56 +<; " -5;
<6 " -86 +<; " -8;
<6 " -96 +<; " -9;



Decision Field Theory (DFT)
• Sequential sampling decision process
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Valence
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$: Comparison process to determine the relative advantage/disadvantage of each option
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Average value of other alternatives 
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* This model specification is similar with relative utility theory (Zhang, 2015)
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Decision Field Theory (DFT)
• Sequential sampling decision process
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Valence

Preferences
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) " = ./ " , .1 " , .2 " 3

+ = 4 5 .  EX: + = 6 − 89×exp −8>×59

where: 89: sensitivity parameter
8>: memory parameter (capturing similarity effect)
5: distance between the attributes across alternatives

Diagonal: self-feedback loop, i.e., the memory of the previous preference state
Off-diagonal: influence of one alternative on another (e.g., if the inter 
connections are negative, then strong alternatives suppress weak alternatives)



Decision Field Theory (DFT)
• Sequential sampling decision process
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Transforming from preference to probability
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Decision Field Theory (DFT)
• Sequential sampling decision process
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Similarity effect

36

Driving Economy

Pe
rfo

rm
an

ce
 q

ua
lity

A

B

S

Pr #| #, & > Pr &| #, & Pr #| #, &, ( < Pr &| #, &, (but,

Similarity effects are caused by 
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Attraction effect
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negative preference state for (. This 
negative preference will feed into closely 
positioned option (#) with a negative link, 
increasing the attraction of #.



Compromise effect
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due to the momentary fluctuations in 
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advantage to ( over # and &.



Operationalization of DFT
Efforts to operationalize DFT for choice modelers

Hancock et al. (2018 & 2021), Szép et al. (2022)
– Adding heterogeneities across decision makers

• Observed heterogeneities
• Unobserved heterogeneities (mixed DFT)

– Equivalence to the probit with structured covariance
– Discussions on identifiability problem
– A way to solve issue of scale-variant
– A way of reflecting finite timesteps, etc., etc.

39



Possible Application 1
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Sato (2023) Bachelor thesis (Hiroshima University)

Driving task under semi-automated condition



Possible Application 2
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Shimooka (2021) Master thesis (Hiroshima University)

Information acquisition process and evacuation decision



Possible application 3: x-GDP data
(Parady, Oyama & Chikaraishi, 2023)

• Propose Text-aided Group Decision-making Process Observation 
Method (x-GDP)
– A novel survey methodology to collect data on joint leisure 

activities, from all members of a given clique (not egocentric 
network data collection).

– Observe not only the outcome (i.e., the joint activity location 
chosen), but also the decision-making process itself, including:
• the alternatives that compose the choice set
• individual and clique characteristics that might affect the 

choice process
• the discussion behind the choice via texts

• The first attempt to observe group joint travel decisions in real time 
through a zoom-moderated experiment.

42

DFT could be utilized to explore group decision making with x-GDP data



Degree of matching between individually 
top-ranked locations and clique choice

Number of individuals whose top-ranked locations 
are chosen by the clique

0 1 2 3 4 5

Clique size

3 18.6% 37.1% 33.0% 11.3%

4 14.7% 29.3% 28.0% 18.7% 9.3%

5 20.0% 37.8% 24.4% 11.1% 6.7% 0%

43

ü In less than 12% of cases, all members’ individually top-ranked locations 
were actually chosen

ü Irrespective of clique size in around 17% to 20% of cases, no one’s top-
ranked location was chosen by the clique
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Profiling 
group 
decision 
making 
process

Case 2
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