Modelling office workers' activity of eating out 会社員の勤務時における外食行動の分析

Tohoku University / Team B 東北大学 B 稲垣 和哉 Inagaki Kazuya, 高野 壮稀 Soki Takano, 相澤 拓斗 Takuto Aizawa, 鷹野 由利香 Yurika Takano, 鶴海 雪乃 Yukino Tsurumi, 三好 千温 Chiharu Miyoshi, 神戸 大河 Taiga Kobe, 間嶋 哲平 Teppei Majima

Outline

- Background
- Objectives
- Data overview
- Modeling and estimating parameters
 - Setting
 - Estimation result and interpretation
- Scenario analysis

Background

Staying in office may results in..... 会社に引きこもっていると...

- Less communication between co-workers
 - 会社内でのコミュニケーション不足
- Less use of restaurants 飲食店利用の減少

→ Quick meals are not beneficial for both workers nor the area. "コンビニ飯"は会社員にとっても地域にとってもよくない?

Let's vitalize both areas and office workers with a city where people want to go out for eat! 外食しやすい町で、地域を・会社員を活気づけよう!

Decision-making mechanism of office workers' eating out activity

会社員の勤務時外食の意思決定メカニズムの解明

- ★ Modelling workers' eating out actions
 会社員の外食選択行動のモデル化
- \star Analyzing the related promotion policies

外食促進政策の検討

Toyosu PP (2019), Activity data of office workers 豊洲PP (2019), 会社員の活動データ

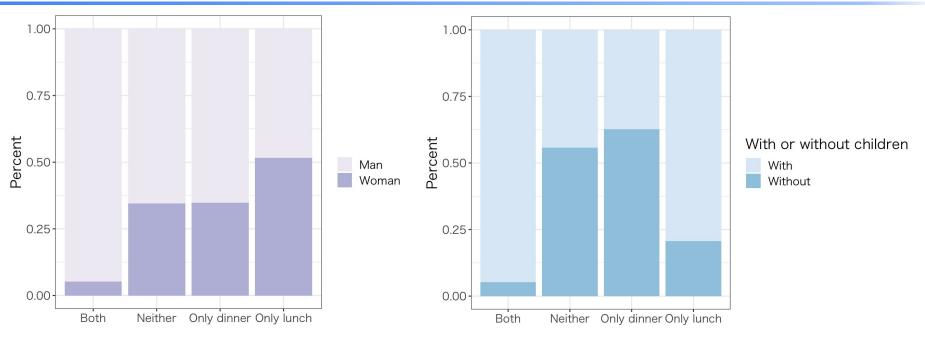
• Activity chain per day:

Trips between "通勤・通学"(commute) and "帰宅"(going home) 1日の活動チェーン: "通勤・通学"と"帰宅"に挟まれた活動

• Eating-out trip: "食事"(Eating out) trip made during certain time

特定時間帯の"食事"を外食として扱う

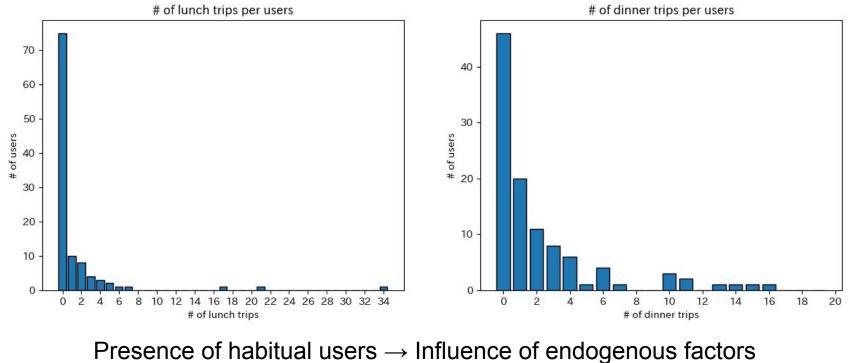
Data overview


DataEating-out activity

使用データ 外食の分析 Data

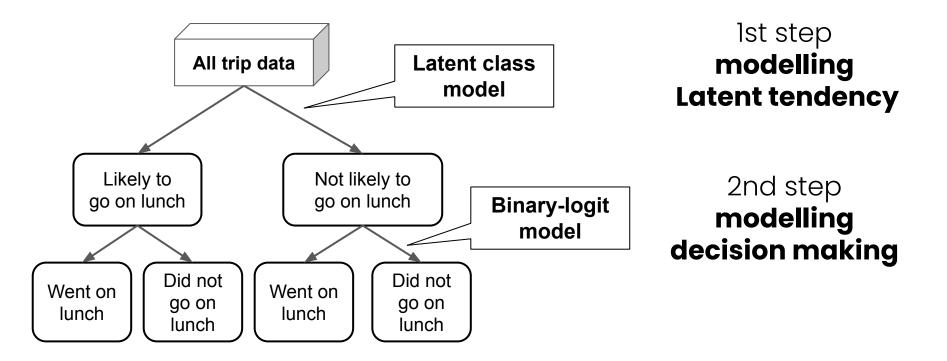
Toyosu PP (2019), Action data of workers 豊洲PP (2019), 会社員の活動データ

	Eating out for lunch	Else
Eating out for dinner	19 samples / 8 users	233 samples / 59 users
Else	126 samples / 30 users	2236 samples / 107 users


Attributes of monitors - gender and child

High percentage of men except for only lunch.

Those who eat out for dinner only and both activities without tend to be childless.


Eating-out activity - # of lunch / dinner trips per users

習慣的利用者の存在 内生的な要素の影響

Modeling and estimating parameters

Overview of our model

Setting - variables

Latent class model

X_{gender}

Dummy variable (1: man)

 X_{income} Dumi

 $X_{partner}$

*X*_{child}

Dummy variable (1: income > six million)

Dummy variable

(1: have a partner) Dummy variable

(1: have at least a child)

Number of supermarkets near

X_{supermarket house}

Binary-logit model

 $X_{time_of_commute}$ C $X_{Friday}/X_{Thursday}$ $\begin{bmatrix} D \\ (1) \\ N \\ N \\ ne \end{bmatrix}$

Commuting time

Dummy variable (1: Friday/Thursday) Number of restaurant near office

Setting - modelling latent tendency

Latent class model 潜在クラスモデル

 Represents individuals' heterogeneity of eating-out activity as a mixture of several typical choice behavior patterns.
 会社員の外食行動決定メカニズムの異質性を、いくつかの典型的な選択パターンの混ぜ 合わせとして表現

$$M_{\text{class}_{1}}^{\text{lunch}} = ASC_{\text{class}}^{\text{lunch}} + \beta_{\text{gender}}^{\text{lunch}} \times X_{\text{gender}} + \beta_{\text{income}}^{\text{lunch}} \times X_{\text{income}} + \beta_{\text{partner}}^{\text{lunch}} \times X_{\text{partner}} + \beta_{\text{child}}^{\text{lunch}} \times X_{\text{child}} + \beta_{\text{supermarket}}^{\text{lunch}} \times X_{\text{supermarket}}$$
$$M_{\text{class}_{2}}^{\text{lunch}} = 0$$
$$P_{\text{class}_{1}}^{\text{lunch}} = \frac{\exp(M_{\text{class}_{1}}^{\text{lunch}})}{\exp(M_{\text{class}_{1}}^{\text{lunch}}) + \exp(M_{\text{class}_{2}}^{\text{lunch}})}$$

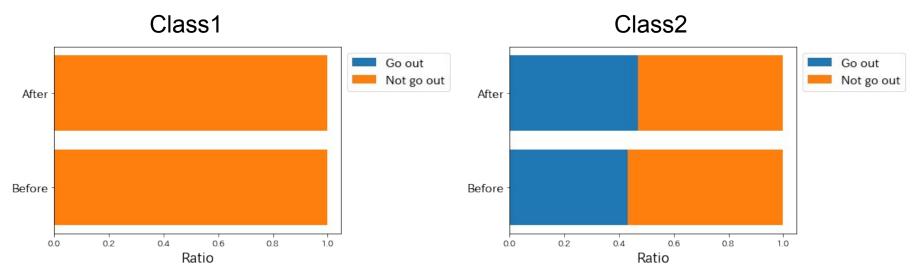
Setting - modelling decision-making

Binary-logit model 二項ロジットモデル

- Represents actual behavioral choices by exogenous factors
 外生的な要素に影響された、実際の行動選択
- Assume that lunch and dinner choices are independent of each other. 昼食・夕食の行動選択は、それぞれ独立のものとする

$$V_{\text{eating_out_class_1}}^{\text{lunch}} = ASC_{\text{class_1}}^{\text{lunch}} + \beta_{\text{time_of_commute_class_1}} \times X_{\text{time_of_commute}} \\ + \beta_{\text{Friday_class_1}} \times X_{\text{Friday}} + \beta_{\text{restaurant_class_1}}^{\text{lunch}} \times X_{\text{restaurant}} \\ V_{\text{eating_out_class_2}}^{\text{lunch}} = ASC_{\text{class_2}}^{\text{lunch}} + \beta_{\text{time_of_commute_class_2}} \times X_{\text{time_of_commute}} \\ + \beta_{\text{Friday_class_2}} \times X_{\text{Friday}} + \beta_{\text{restaurant_class_2}}^{\text{lunch}} \times X_{\text{restaurant}} \\ V_{\text{else_class_1}}^{\text{lunch}} = V_{\text{else_class_2}}^{\text{lunch}} = 0 \\ P_{\text{eating_out_class_1}}^{\text{lunch}} = \frac{\exp(V_{\text{class_1}}^{\text{lunch}})}{\exp(V_{\text{class_1}}^{\text{lunch}}) + \exp(V_{\text{class_1}}^{\text{lunch}})}$$

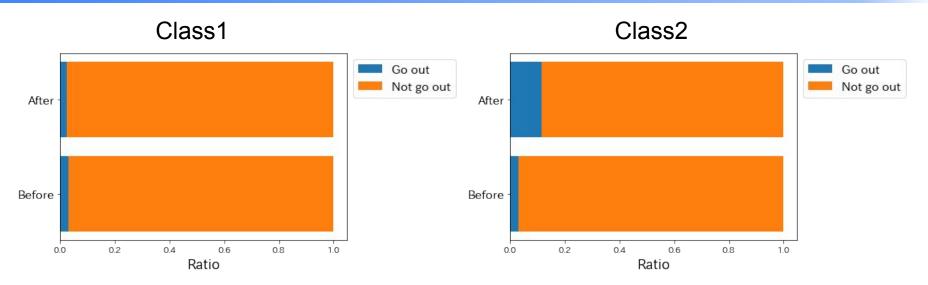
Estimation result - Latent class model


	Lunch		Dinner	
Explanatory variables	estimate	t-value	estimate	t-value
ASC	1.86	7.4***	5.11	7.57***
Gender	-0.19	-1.19	2.09	6.59***
Income	-0.50	-3.12***	0.43	1.29
Partner	0.09	0.50	-0.32	-0.40
Child	0.36	2.08**	-4.07	-5.68***
No. of supermarket	-0.03	-0.21	-0.86	-1.74*

Membership function

Utility function

	Lunch		Dinner	
Explanatory variables	estimate	t-value	estimate	t-value
Class_1: ASC	0.66	6.92E-5	-2.87	-12.68***
Class_2: Constant	-0.43	-1.89*	-2.63	-13.55***
Class_1: Commute time	-1.09	-1.78E-3	-5.27E-3	-3.07***
Class_2: Commute time	4.72E-4	NaN	-0.01	NaN
Class1: Friday/Thursday	0.371	1.25E-4	-0.50	-1.04
Class2: Friday/Thursday	0.29	0.64	-1.00	NaN
Class1: No. of restaurant	-0.50	-1.44E-3	6.80E-3	NaN
Class2: No. of restaurant	7.14E-3	1.78*	0.04	NaN
Sample size	2614		2614	
Initial log likelihood	-1811.89		-1811.89	
Final log likelihood	-812.48		-457.09	
Corrected p^2	0.54		0.74	


Interpreting each class (lunch)

After: change in variables (commute time, # of restaurants around office)

Class1 is a class that captures activity pattern without eating-out, クラス1は"外食をしない"活動パターンを捉えたクラス Class2 is a class that captures decision-making. クラス2は意思決定を捉えたクラス

Interpreting each class (dinner)

After: change in a variable (# of restaurants around office)

Also in dinner, **Class1** is a class that **captures activity pattern without eating-out**, "夕食"も同様、クラス1は"外食をしない"活動パターンを捉えたクラス **Class2** is a class that **captures decision-making**. クラス2は意思決定を捉えたクラス

Positive parameters

Lunch Partner, Child

People who have the partner or a child tend to have **fixed activity patterns**.

Dinner Gender, Income

Male or people with high incomes tend to have **fixed activity patterns**.

Negative parameters

Lunch Gender, Income

Lunch activities of people who has the partner or a child is the result of choice behavior.

Dinner Partner, Child

Male or people with high incomes tend not to go out on dinner latently

- Lunch trips
 - Increasing 1 # of restaurants by 50% results in

0.9% increase (9.6% \rightarrow 10.5%) in lunch trips

- Decreasing ↓ commute time by 30% results in
 0.9% increase ↑ (9.6% → 10.5%) in lunch trips
- Dinner trips
 - Increasing 1 # of restaurants by 50% results in

0.8% decrease $(5.5\% \rightarrow 4.7\%)$ in dinner trips

• Decreasing U commute time by **30%** results in

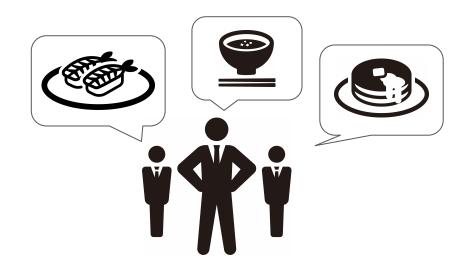
0.3% increase (5.5% \rightarrow 5.8%) in dinner trips

Lunch/dinner activities are formed as living patterns rather than decision-making.

Summary

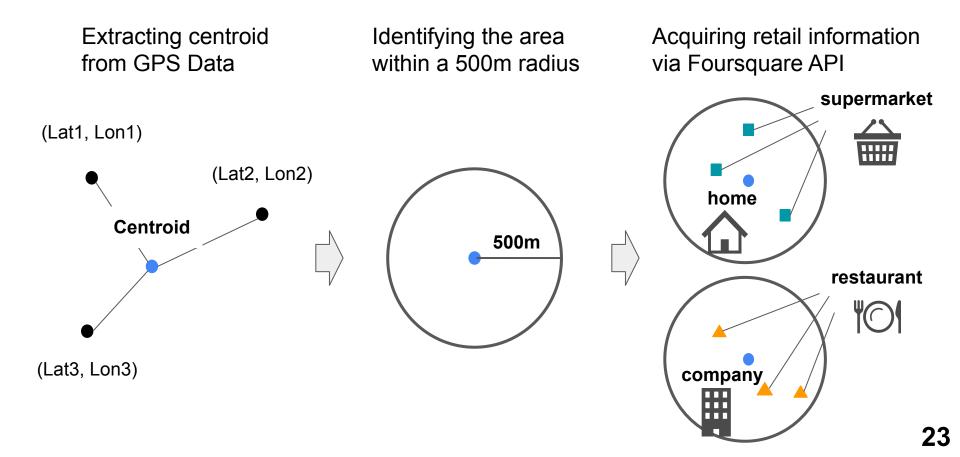
• Objectives:

Modelling office-workers' decision-making of lunch/dinner trips

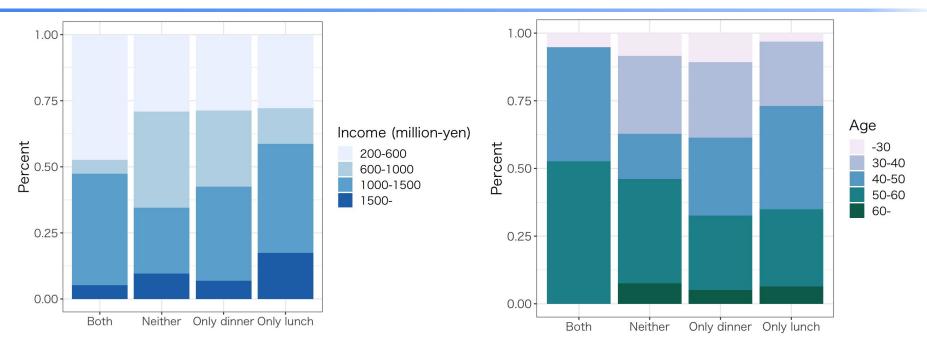

• Modelling:

Latent class model and binary-logit model

Our analysis showed that lunch/dinner activities are formed as living patterns rather than decision-making.

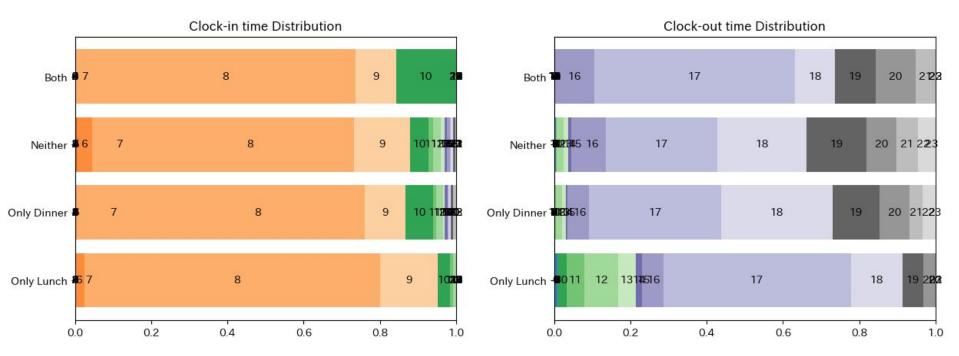

外食行動は日々の意思決定ではなく、 生活パターンの結果として形成されことを示唆

Thank you for listening

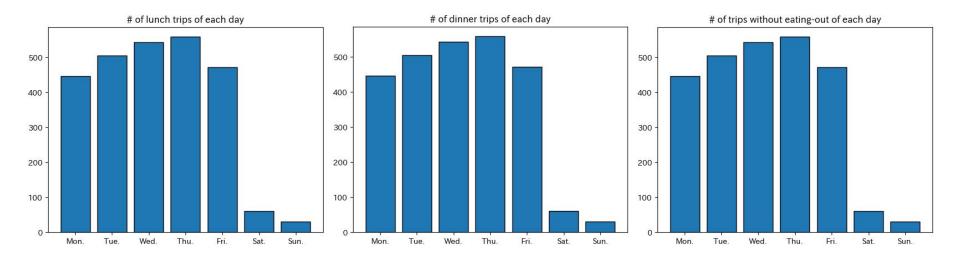


Appendix

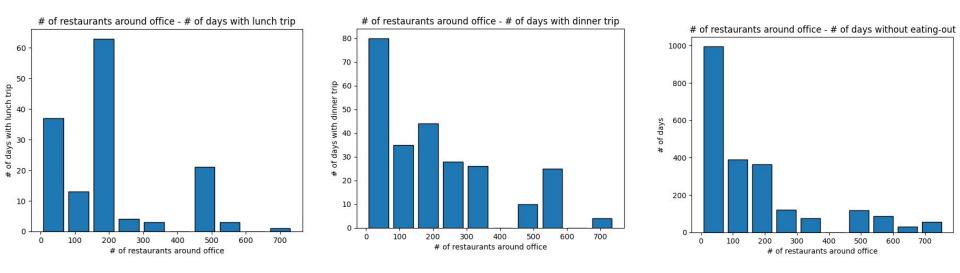
Explanatory variables - # of supermarket and restaurant

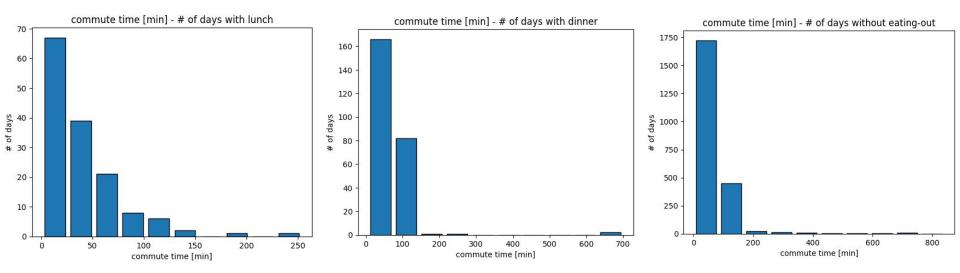


Attributes of monitors - Income and age

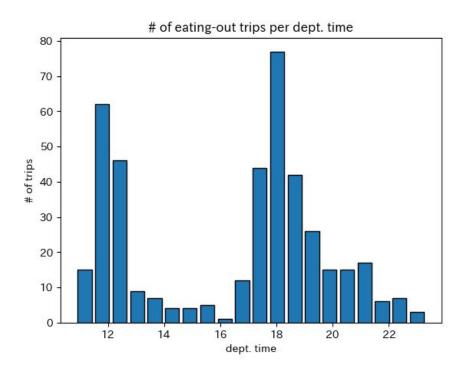

High percentage of people who eat only lunch have a higher income. High percentage of over 40s in all types.

clock -in/out time Distribution




* Each numbers in the graph represent hour-part of clock-in / clock-out time

of trips of each day



of restaurants around office

Eating-out activity - # of eating-out trips per dept. time

Eating-out trips has 2 peaks (12:00 for lunch, 18:00 for dinner)

Estimation result - Binary logit model

	Lunch		Dinner	
Explanatory variables	estimate	t-value	estimate	t-value
ASC	-3.616	-9.734***	-2.390	-17.553***
Commute time	-0.017	-5.519***	-	-
Friday / Thursday	0.713	3.470***	0.231	1.410
No. of restaurant	-	-	0.001	1.090
Gender	0.789	3.908***	-0.226	-1.524
Income	-1.324	-5.721***	0.498	3.336***
Partner	-	-	-0.115	-0.680
Child	2.646	10.029***	-0.349	-2.126**
No. of supermarket	0.544	2.081**	-	-
Sample size	2614		2614	
Initial log likelihood	-1811.887		-1811.887	
Final log likelihood	-458.841		-815.772	
Corrected p^2	0.743		0.546	

*: p < 0.1; **: p < 0.05; ***: p < 0.01. **30**