Assessment of Transportation Geography in Tokyo

Group-3

Team Members

Aditya Saxena (D-2)

Vipul Parmar (D-1)

Date: 20/09/23

Indian Institute Of Technology Bombay

Elements of Transport Geography

- Socio economic variables
- Inter and Intra Regional travel behaviour
- Time space mapping for various trips

Research Objective & Methodology

To assess the

"Travel Behaviour" for varied geography

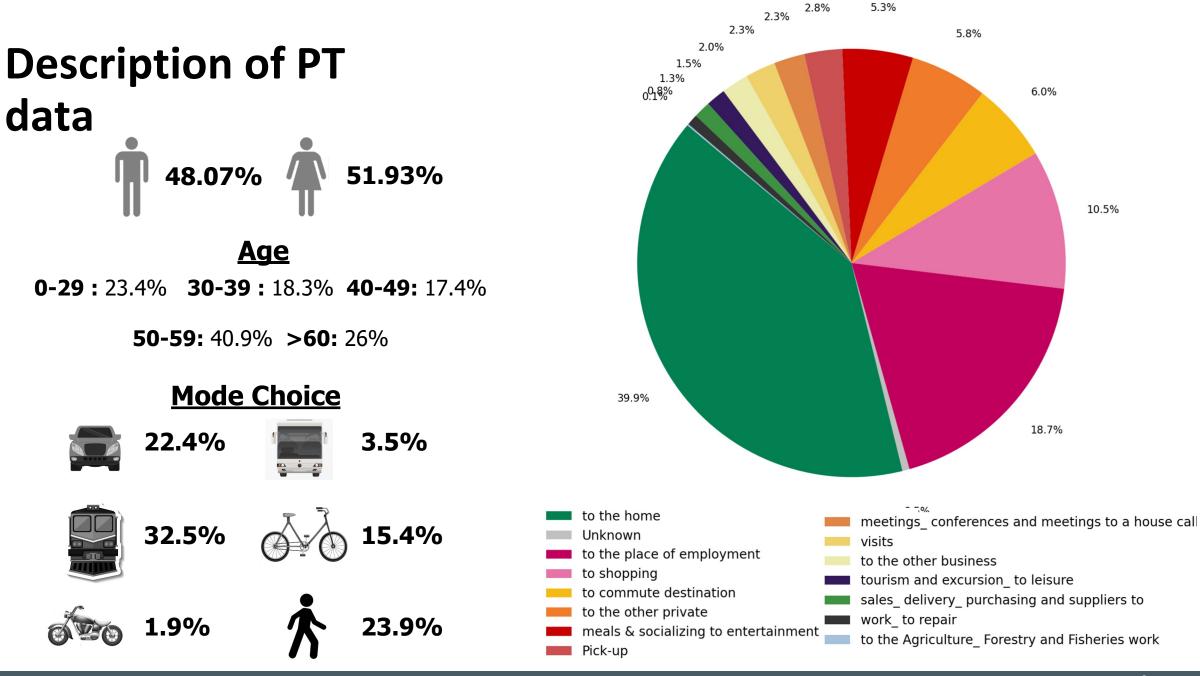
Objective

Travel Behavior assessment at Tokyo

Mode choice using: Classification based machine learning methods

Travel Behavior assessment at Koto city level (Inter regional level)

> Various trip purposes using: Activity based time use model


Travel Behavior assessment at Toyusu (Intra region level)

Socio-economic variables: Cluster analysis and Space Time Cube Creation

Results

Conclusion

Travel Behavior assessment at Tokyo level

PT Data Analysis

For mode choice : Classification based machine learning models

		A	al	
Evaluation Metrics	Definition		Random	Decision
		Boosting	Forest	Tree
Accuracy	Fraction of correct predictions	0.818	0.827	0.816
Precision (Positive Predictive Value)	Proportion of examples that are correctly identified as relevant to the classification is known as the precision (or positive predictive value).	0.400	0.451	0.376
Recall (True Positive Rate)	Proportion of Positive samples that were correctly identified as Positive to all Positive samples.	0.455	0.480	0.449
False Positive Rate	Measure of the proportion of negative cases in the data that were incorrectly reported as positive.	0.127	0.120	0.131
F1 Score	Weighted average of Precision and Recall	0.393	0.441	0.363
Area Under Curve (AUC)	Measure of a classifier's ability to distinguish between classes	0.704	0.603	0.554
Negative Predictive Value	Percentage of predicted negatives that are true negatives	0.883	0.887	0.884
True Negative Rate/Specificity	Proportion of samples that are genuinely negative and produce a negative result	0.873	0.880	0.869
False Negative Rate	Proportion of all negatives that still result in positive test results	0.728	0.701	0.740

PT Data Analysis

Exploration of Random forest model

Train: 665532		lation: 16638 <mark>4T</mark> e	est: 207979)	Total: 1	039895		
	Confusion Matrix							
		Predicted						
 Mean Decrease in Gini - Age and Sex are the 		Mode	bicycle	bus	car	railway	two-wheeled vehicle	walk
0		bicycle	0.02	0	0.02	0.06	0	0.05
most important predictors		bus	0	0	0	0.01	0	0.01
		car	0.02	0	0.07	0.09	0	0.05
 a positive impact on model accuracy 	Observed	railway	0.01	0	0.03	0.25	0	0.04
 StayTime and Purpose, have relatively lower 		two-wheeled vehicle	0	0	0	0.01	0	0
importance.		walk	0.02	0	0.03	0.06	0	0.13
		,	/ariable I	mporta		Mean decro accuracy	ease in	

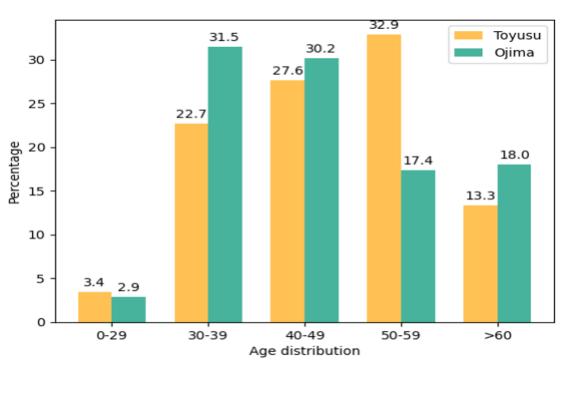
Sex

Age

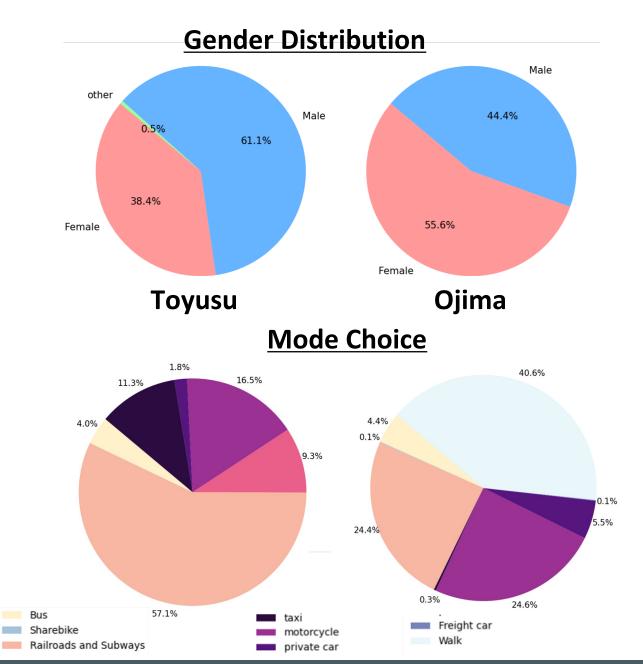
Purpose

StayTime

0.048

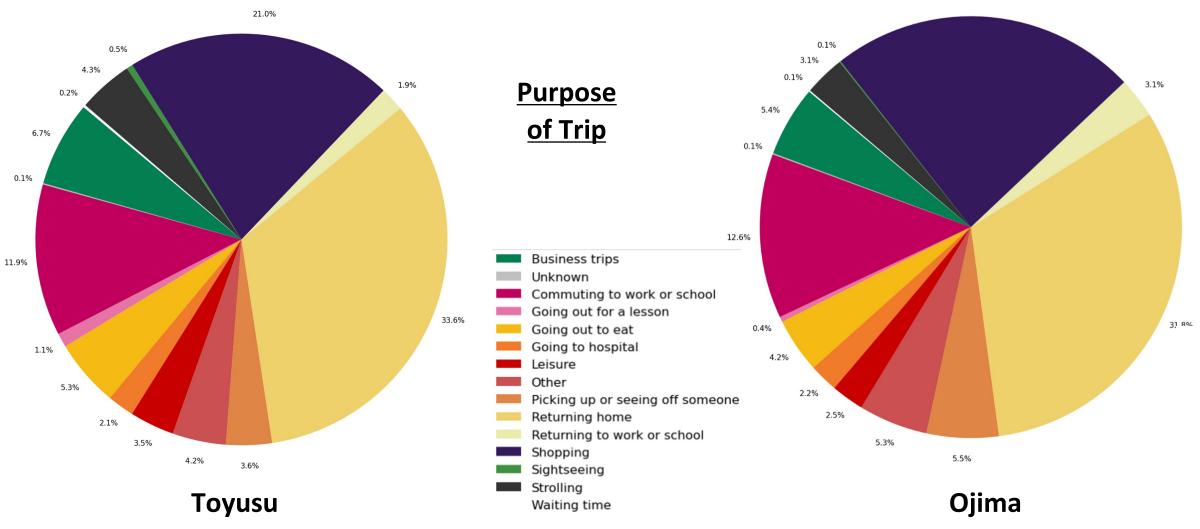

0.042

-0.017


-0.002

Travel Behavior assessment at Koto city level (inter regional level)

Description of PP data


Age Distribution

Occupation Description of PP 6.1% data 4.6% 8.1% 0.5% 2.0% **Car Ownership** Toyusu 80.6 Toyusu 80 Ojima 70 63.7 Company employee, public employee, organisation employee 60 Housewife/Househusband 78.7% Part-time job Percentage 6 05 Self-employed, company owner 2.9% students(including part-time workers) 10.6% unemployed 36.3 31.3% 30 19.4 20 10 Ojima 0 No Yes 9.3% Car Ownership 45.9%

Ojima

Description of PP data

23.5%

Activity based time use model

Negative coefficient for work trip and business trip for women

		Ojima		Toyusu	
Variables	Estimate	Rob.t-ratio(0)	Estimate	Rob.t-ratio(0)	
asc_Business_trip	4.03	3.77	7 5.06	5	13.85
asc_work_trip	5.08	3 5.61	5.11	l	19.76
asc_lesson_trip	2.20) 2.02	2 2.80)	10.49
asc_eat_trip	4.17	7 5.08	3 4.41	l	21.35
asc_hospital_trip	3.35	5 3.89	3.49)	16.29
asc_Leisure_trip	3.68	3 4.16	6 4.07	7	18.97
asc_Other_trip	4.19	5.24	4.20)	20.08
asc_Picking_up_trip	3.99	9 4.41	3.73	3	15.03
asc_Returning_home_trip	6.04	1 7.66	6.26	5	31.97
asc Returning to work trip	3.62	2 4.24	4 3.16	5	12.17
asc Shopping trip	5.55	5 6.80) 5.50)	26.93
asc_Sightseeing_trip	1.46	5 1.35	5 2.42	2	9.25
asc Waiting time	-5.16	-4.11	1.34	1	3.11
asc_Strolling_trip	3.86	5 4.65	5 4.49)	19.15
asc_Unknown_trip	1.00)NA	1.00	NA	
Business_trip_female	-0.27	-1.76	5 -0.95	5	-3.5(
work_trip_female	-0.02	-1.55	5 -0.25	5	-2.01
Shopping_trip_female	0.03	3 1.10	0.14	1	1.70
Waiting_time_female			-0.60)— — — — — —	-0.91
Business_trip_Age_upto_39	-0.06	-0.08	-0.46	5	-1.08
work_trip_Age_upto_39	0.16	5 0.30	0.53	3	2.41
Business_trip_Age_40_59	0.88	3 1.20	-0.29)	-0.78
work trip Age 40 59	0.32	0.72	0.40)	2.00
Strolling trip Age above 60	0.91	2.06	-0.24	1	-0.61
AIC	2565.85		63015.73		
BIC	2667.51		63191.46		
LL(start)	-1732.93		-43762.72		
LL(final)	-1259.93		-31484.86		

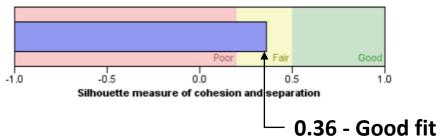
Transferability of Activity based time use model

Transferable except

waiting time and business trip for female

Variables	θί	θj	(θ/τi)^2	(θ/τj)^2	sqrt[(θ/τ i)^2 +	t_star
					(θ/τj)^2]	
asc_Business_trip	-0.98		0.77			
asc_work_trip	4.30					
asc_lesson_trip	2.32					
asc_eat_trip	2.80	2.20	0.07	1.18	1.12	0.54
asc_hospital_trip	4.41	4.17	0.04	0.68	0.85	0.29
asc_Leisure_trip	3.49	3.35	0.05	0.75	0.89	0.15
asc_Other_trip	4.07	3.68	0.05	0.78	0.91	0.43
asc_Picking_up_trip	4.20	4.19	0.04	0.64	0.83	0.01
asc_Returning_home_trip	3.73	3.99	0.06	0.82	0.94	-0.28
asc_Returning_to_work_trip	6.26	6.04	0.04	0.62	0.81	0.28
asc_Shopping_trip	3.16	3.62	0.07	0.73	0.89	-0.52
asc_Sightseeing_trip	2.42	1.46	0.07	1.17	1.11	0.86
asc_Waiting_time	1.34	-5.30	0.19	1.89	1.44	4.60
asc_Strolling_trip	4.49	3.86	0.05	0.69	0.86	0.73
asc_Unknown_trip	NA	NA	NA	NA	NA	NA
Business_trip_female	8.20	3.72	0.88	0.88	1.33	3.38
work_trip_female	4.01	3.67	0.07	0.77	0.91	0.38
Shopping_trip_female	2.13	1.36	0.02	0.40	0.65	1.19
Waiting_time_female	-1.36	-0.46	0.10	0.21	0.55	-1.62
Business_trip_Age_upto_39	-0.40	0.06	0.02	0.09	0.33	-1.37
work_trip_Age_upto_39	0.15	0.05	0.01	0.07	0.28	0.35
Business_trip_Age_40_59	-0.60	4.66	0.43	2.24	1.63	-3.22
work_trip_Age_40_59	0.28	0.08	0.08	0.57	0.81	0.25
Strolling_trip_Age_above_60	0.90	0.51	0.03	0.26	0.54	
	e : reject null hypothesis when (t_star < 1.96)					

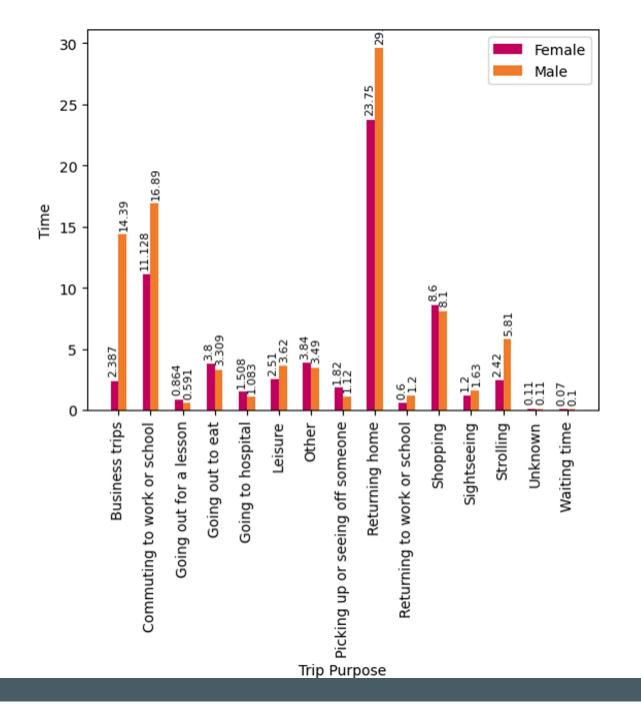
Travel Behavior assessment at Toyusu (Intra region level)


Cluster analysis

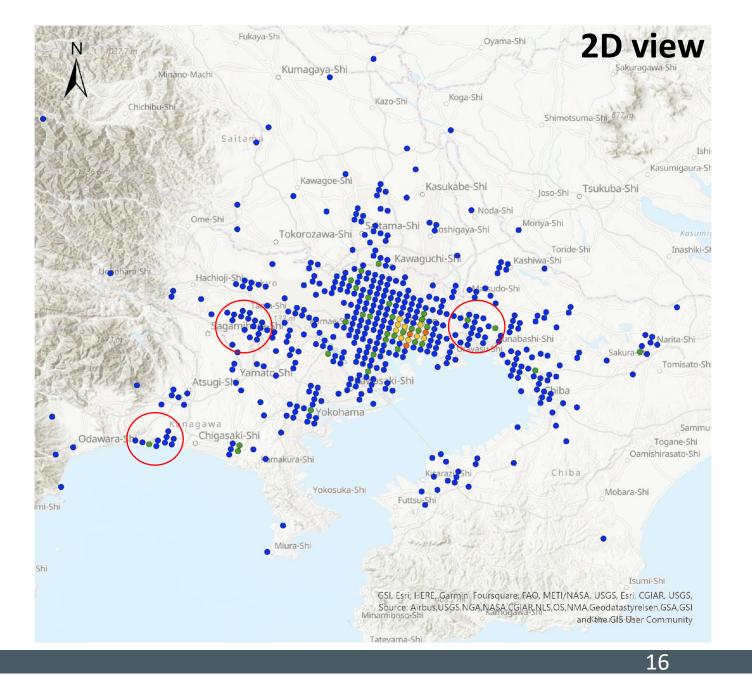
- Socio-economic variables
- Travel characteristics

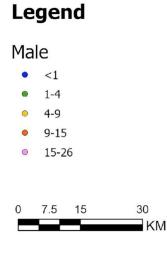
Algorithm	TwoStep
Inputs	7
Clusters	2

Model Summary

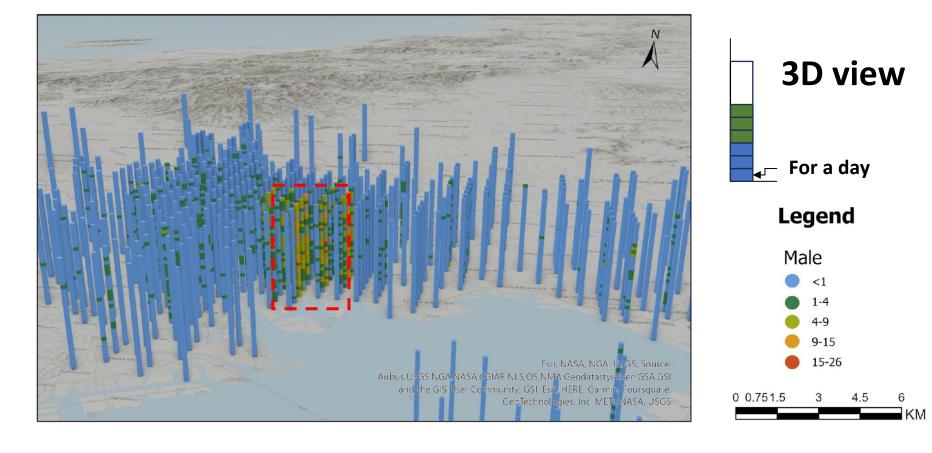


Variables	Cluster 1	Cluster 2			
Size	25138 (74.1%)	8801 (25.9%)			
Most Frequent					
Age	40-49 (28.3%)	50-59 (66.8%)			
Car Ownership	No (85.8%)	Yes (99.3%)			
Most Frequent	2,000,000 yen to 5,990,000				
Income level	(37.2%)	10,000,000 to 14,990,000 (40%)			
Most frequent					
mode of					
transport	Walk (41.7%)	Car (31.1%)			
Most frequent occupation	Company, public employee (71.6%); Self-employed (12.3%); and housewife/househusband (7.7%)	Company, public employee (98.8%)			
Gender	Female (51.3%)	Male (96.4%)			
Most frequent					
trip purpose (excluding return home)	Shopping (24.8%); Commute to work (11.5%); Picking up someone (2.7%)	Shopping (17%); Commute to work (15.3%); Picking up someone (4.5%)			


Gender wise travel duration

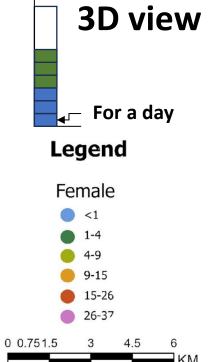

- Time spent for work trips and business trips are more for male
- Time spent for shopping trip and pick up trips are more for female

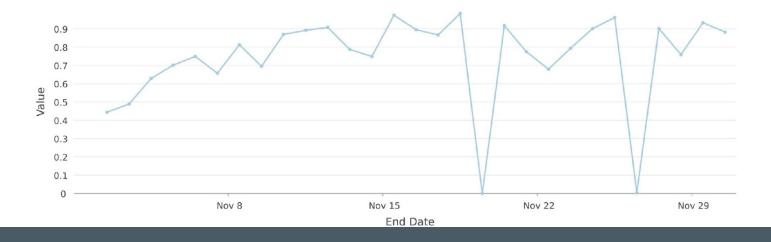
Space Time Cube


Spatial Coverage for Male is larger

Space Time Cube

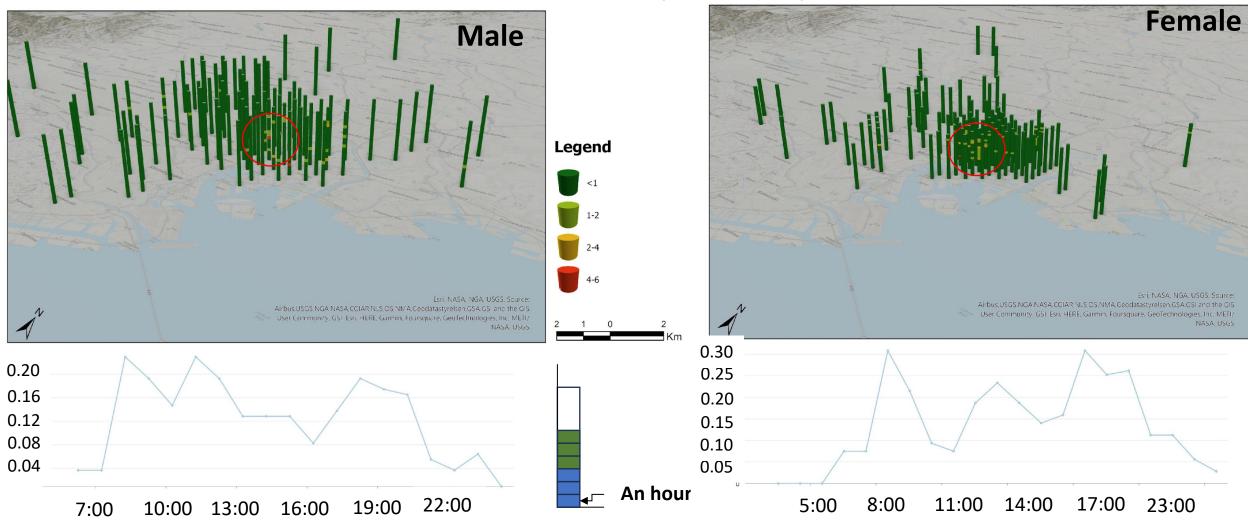
Distribution of trips for a month




17

Space Time Cube

Distribution of trips for a month



Space Time Cube

Distribution of trips for a day

Discussions

Difference in travel Behavior of Men and Women

- As per a study by Collins et al. 2002 found that gender differences in the peak age for travel existed in business and work-related travel. Therefore, the purpose of travel and gender are important factors that need to be considered when predicting the long-term demand for travel.
- As per the World Bank study, typically, women travel shorter distances at off-peak hours, and make chained trips, frequently changing between transport modes to complete multiple tasks, balancing domestic errands and employment.
- Transport Systems are, therefore, needed to collect and analyze gender-disaggregated data to understand women's mobility patterns and design public transport services accordingly.

Difference in travel Behavior of Men and Women

- Safety concern for women may also affect their travel behavior and mode choice. As per ADB 015), Lack of
 access to safe transport has been identified as a particular constraint to women's labor force participation
 in developing countries.
- As per a World Economic Forum report of 2018, **70% of women** in Tokyo back single-sex transport amid safety concerns.
- As per the study conducted by Shibata 2020, **25% of women** have experienced groping in the past three years, most often on trains than on buses. It was further concluded that Women-only cars are considered to be a suitable solution but not as effective as surveillance cameras or increased police patrols.

Difference in travel Behavior of Men and Women

- As per a study by Collins et al. 2002 found that gender differences in the peak age for travel existed in business and work-related travel. Therefore, the purpose of travel and gender are important factors that need to be considered when predicting the long-term demand for travel.
- As per the World Bank study, typically, women travel shorter distances at off-peak hours, and make chained trips, frequently changing between transport modes to complete multiple tasks, balancing domestic errands and employment.
- Transport Systems are, therefore, needed to collect and analyze gender-disaggregated data to understand women's mobility patterns and design public transport services accordingly.

Recommendations

Global Practices

- Safe City Mission in India have introduced women-only buses or train compartments equipped with, CCTV cameras, panic buttons, and better lighting
- **Mexico** have introduced "pink buses" or "women-only" buses to provide a safer and more comfortable commuting experience for women.
- Several **Australian cities** have introduced safety apps that allow passengers to report incidents in real-time and connect with authorities and transport staff.
- "Hands Off My Buddy" Campaign in France encourages bystanders to intervene when they witness harassment on public transport and provides information on how to do so safely.
- Although Japan has **Women-Only Train** cars during peak hours to reduce the risk of harassment and overcrowding. Yet, it is it is needed to look into give more attention to the issue of safety for women.

<u>Thank you</u>

References

- Collins, D., Tisdell, C., 2002. Gender and differences in travel life cycles. J. Travel Res. 41, 133–143. https://doi.org/10.1177/004728702237413
- Dunckel-Graglia, A., 2013. "Pink transportation" in Mexico City: reclaiming urban space through collective action against gender-based violence. Gend. Dev. 21, 265–276. https://doi.org/10.1080/13552074.2013.802131
- Galbraith, R.A., Hensher, D.A., 1982. Intra-metropolitan transferability of mode choice models. J. Transp. Econ. Policy 16, 7–29.
- Shibata, S., 2020. Are women-only cars (WOC) a solution to groping? A survey among college students in Tokyo/Kanagawa, Japan. Int. J. Comp. Appl. Crim. Justice 44, 293–305. https://doi.org/10.1080/01924036.2020.1719533
- Women's mobility must be a key focus in urban policy, 2023 https://www.worldbank.org/en/news/opinion/2023/03/08/women-s-mobility-must-be-a-key-focus-in-urbanpolicy
- 70% of women in Tokyo back single-sex transport amid safety concerns <u>https://www.weforum.org/agenda/2018/11/women-in-tokyo-strongly-back-single-sex-transport-amid-security-</u> fears
- Understanding Urban Travel Behaviour by Gender for Efficient and Equitable Transport Policies https://www.itf-oecd.org/sites/default/files/docs/urban-travel-behaviour-gender.pdf
- Policy Brief: A Safe Public Transportation Environment For Women And Girls https://www.adb.org/sites/default/files/publication/179182/safe-public-transport-women-girls.pdf