Summer School of Behavior Modeling, Behavior in Networks Studies Unit, The University of Tokyo
September 19, 2023

Trans/Inter-disciplinary Behavioral Policymaking

Research for Future Transportation and Development
(incl., Travel Behavior Modeling in China)

Junyi ZHANG

Chair Prof., School of Transportation, Southeast University, China
zjy890321@seu.edu.cn

STl T
D& k% N RPAAZFX B
\ N/ OUTHEAST UNIVERSITY . SCHOOL OF TRANSPORTATION SOUTHEAST UNIVERSITY




Travel Behavior Modeling
in China

By selecting the top-cited papers published in the recent five
years

Jiazhan HU, Yongyi ZHANG, Junyi ZHANG



Travel Behavior Research in China
—— Covid-19 and Pandemic

(ZBIRE)

Journal of Transportation Engineering
Research on the Choice Model
of Travel Mode During the
Pandemic Based on Prospect
Theory

{CHENG Yuan, XIAN Kai, MA Yilin,
SONG Sujuan, CAI Lele}

[

Coronavirus Pandemic |

[

Travel Mode | [ Risk Post |

[

Prospect Theory |

Main Content

Initial key factors were identified
through a questionnaire and refined
using feature selection algorithms.
Classifiers like MNB, RF, and SVM
were used to further screen these
factors.

Multiple logistic regression analyzed
the specific impact of each key
factor on green travel behavior, with
analysis based on significance levels
and estimated coefficients.

(XBERASZIESER)

Journal of Transportation Systems
Engineering and Information Technology

Residents' Travel Mode Choice
Behavior in Post-COVID-19 era
Considering Preference Differences

{YANG Yazao, TANG Haodong, PENG yong}

[

Urban Traffic ][ travel behavior |

Individual Heterogeneity |

Mixed Logit Model |

[
[
[

Latent Class Conditional Logit Model |

Main Content

*  Apost-COVID-19 study was
conducted on residents' travel choices
using questionnaire data.

*  Two models, mixed Logit and latent
class conditional Logit, were
developed and calibrated with Stata.

» The latent class conditional Logit
outperformed the mixed Logit,
proving more accurate for analyzing
travel behavior during health crises.

(ERZBAFEHR)

Journal of Beijing Jiaotong University

Travel Mode Choice Analysis
with Shared Mobility in
Context of COVID-19

{ZHANG Xiaoyu, SHAO Chunfu,
WANG Bobin, HUANG Shichen}

Urban Traffic | Shared Mobility |

(XBERAZIESER)

Journal of Transportation Systems
Engineering and Information Technology

Behavior of Long-distance Travel
Mode Choice under the Duration of
Public Health Emergencies

{LUO Chen, DONG Qing, YAO Qing,
ZHANG Hairong, WANG Qianru}

Integrated Transportation |

Travel Mode Choice || COVID-19 |

Travel Mode Selection |

Mixed Logit Model |

— e —

Mode Choice Inertia |

Main Content

The study evaluated COVID-19's
impact on travel choices, including
shared mobility, using an SP
guestionnaire.

Mixed Logit models analyzed travel
behaviors pre and during COVID-19,
considering factors like pandemic
perception and mode inertia.
Elasticity analysis predicted travel
preferences based on pandemic
management policies.

[
[
[ Public Health Emergencies |
[ Non-aggregate Theory |

Main Content

*  This study examined how risk
perception affects long-distance travel
choices in public health emergencies
using a multivariate Logit model.

» Using online questionnaires collected
during COVID-19, model parameters
were calibrated with SPSS to pinpoint
key risk perception factors.

* Asensitivity analysis assessed the
influence of each risk perception factor
on travel decisions.



Travel Behavior Research in China
—— Environmental and Low-carbon

(RBRE5275)

Technology & Economy
In Areas of Communications

Analysis of Key Influencing
Factors of Urban Residents’
Green Travel Behavior

{LIU Yun, YANGXinfeng, DANG Haoyang}

[ Urban Residents |

Green Travel Behavior |
| [ Classifier |
Multiple Logistic Regression |

[
| Feature Selection
[

Main Content

The study examines the changes in
transportation choices of Beijing's
residents during the 2020 pandemic.
Constructs a travel mode choice
model, based on prospect theory,
that takes risk costs into
consideration.

Uses this model to simulate the
travel choices of citizens for a
specific scenario during the
pandemic.

(FEEERZE)

Chinese Journal of Management Science

Research on Green Travel Behavior
Based on Scale-Free Networks

{ZHENG Junjun, ZHANG Bing, CHENG Yi,
XU Mingyuan, LI Runfa}

(ERTBRFEFLRD

Journal of Chongging Jiaotong University

Low-Carbon Commuting Travel

{WU Wenjing, SUN Renchao,
ZONG Fang, JIA Hongfei}

Green Travel || Group Selection |

Traffic Engineering |

Theory of Planned Behavior |

Scale-free Networks |

—

Opinion Dynamics |

Main Content

*  The study evaluates individuals'
tendencies in complex networks to
adopt green travel.

*  Using the Theory of Planned
Behavior, a model was created
factoring in individual attitudes,
perceived control, norms, and
outcomes for green travel intentions.

*  Opinion dynamics and scale-free
networks shape an interaction model
for these choices.

Low-carbon Travel |

Subjective Attitude Identification
and Impact Analysis of Residents’

Subjective Attitudes Identification

)

MIMIC Model | IFCM |

Main Content

The study examines the variations in
the behavioral willingness formation
mechanisms among groups with
different subjective attitudes.

the intuitionistic fuzzy c-means
clustering algorithm was applied to
categorize residents' subjective
attitudes towards low-carbon travel.
A MIMIC model was developed to
analyze the travel intentions of
different resident types.

(XBERAZIESER)

Journal of Transportation Systems
Engineering and Information Technology

Incorporating Environmental
Consciousness into Low-carbon
Traveling Behavior
{LIU Jian-rong, HAO Xiao-ni}

Urban Traffic |

Environmental Awareness |

Multivariate Probit Model |

Low-carbon Travel Behavior |

Latent Variable || Rasch model |

Main Content

The study examined the influence of
travelers' environmental awareness on
low-carbon transportation using the
Rasch model.

This environmental awareness was
integrated into the multivariate Probit
model.

The influence of this awareness on
acceptance of car restrictions and
interest in electric vehicles is
analyzed.



Travel Behavior Research in China
—— Urban construction and infrastructure

(HIRZER)

ACTA GEOGRAPHICA SINICA

The impact of urban rail transit
and built environment on
residents’ walking behavior

{HUANG Xiaoyan, CAO Xiaoshu, YIN
Jinagbin, MA Ruiguang}

[

Urban rail transit |

[

Built environment ]

[

Self selection |  Self selection

)

Main Content

Explore the impact of Xi‘'an urban
rail transit and built environment on
transportation and leisure walking
frequency.

Establishing a Self-Selection model
and designing a quasi-experimental
study using matched controls

The respondents' perception of the
built environment greatly affects the
walking frequency

(AEEZBRED
Journal of Highway and Transportation
Research and Development

Study on Relationship between
Built Environment and High-
Income Group Travel Mode

{HUANG Yong,ZHAO Hang, XU Wang-tu,
DUAN Mei-hua, WEI Wei}

[ Built environment |

[ Multinomial Logit model |
[ High-income groups |

(ZBizhm LT ESEREFRD

Journal of Transportation Engineering and
Information

Investigation of Heterogeneous Effects of
Built Environment on a Household
Member’s Travel Mode Choice

{YANG Xi-ning, DENG Qiong-hua,
YANG Shuo}

Spatial error model |

Travel mode choice |

Household members |

[ Urban traffic |( Disaggregate theory |

Built environment ][ Heterogeneity |

(IERZBRFEFRD
JOURNAL OF BEWJING JIAOTONG
UNIVERSITY

Non-linear impact model of
community built environment on car

usage behavior
{LIU Keliang, CHEN Jian, ZHU Ye,

PENG Tao, QIU Zhixuan}
Built environment )| Usage behavior |

Gradient boosting iterative decision tree ]

[ Parking lot ][ Non-linear relationship |
[

Transportation system engineering ]

Main Content

» Explored the differences in the impact
of the built environment in Xiamen in
2015 on the travel patterns of high-
income groups with or without cars.

* Based on multiple Logit models.

* Impact intensity of individual socio-
economic attributes and built
environment on travel patterns was
explored.

Main Content

Used classic regression and spatial
error models to analyze household
members’ travel mode choices
Based on the residents’ travel survey,
urban planning, and information
about transportation in Nanjing
Indicate the practicability of the park
and ride development and
demonstrates the importance of
Improving the quality of pedestrian
environments.

Main Content

*  Quantitatively analyzes the
differences in car usage behavior in
the community-built environment

* Gradient Boosting Decision Tree
(GBDT) model is built that takes into
account the nonlinear effect in
Chongqing’s main urban.

« all built environmental factors have
non-linear relationships with the
parking space utilization rate.



Travel Behavior Research in China

—— Elderly and vulnerable groups

(PR B ARFFEIR)
JOURNAL OF SOUTHWEST
JIAOTONG UNIVERSITY

Study on the Characteristics of
Activity-travel Behavior of
Urban Elderly and the Impact of
Related Built Environment

{SONGYAN Liging, WANG Zhuying}

[ Older health | Human environment |

(R IiE)

Systems Engineering

Bus Travel Behavior of the Elderly
Based on IC Card Data

{LIU Wusheng, LI Wang, DIE Qian, ZHOU
Qing, PAN Zixiang}

(EOXEIRZFRD

Journal of Wuhan University of Technology

Research on Bus Travel Behavior
of the Elderly Based on Bayesian

Networks
{LIU Jianrong, LIU Zhiwei}

[ Ubern Transit | [  Elderly group |

[ Elderly group |

[ Community public facilities ]

[ Travel behavior |

([ Urban construction |

Main Content

* Analyze the influence factors of the
activity-travel demand and urban
built-up environment.

» applying the structural equation
model and Logit models.

* The characteristics of daily activities
have a significant impact on the
characteristics of travel behavior.
Personal and family attributes have
little impact on travel behavior
characteristics

| Public transportation behavior |
___MNLmodel | [ MNP model |

Main Content

» Based on the IC card swiping data of
public transportation in Changsha, the
peak travel situation of elderly
travelers was analyzed.

* Using MNP and MNL models

» Card type, age, discount level, and
consumption amount have a
significant impact on departure time
and travel frequency, and there are
differences in peak travel among
different age groups.

Bayesian network |

Public transportation |

[
[
[

Willingness to use public transportation

)

Main Content

Based on the survey data of public
transportation travel in Zhaoging City.
Bayesian network model was
established to correlate the individual
characteristics of the elderly,
objective indicators of public
transportation, subjective evaluation
of travelers, and travel willingness.
Transfer and punctuality factors
greatly affect the willingness to use
buses.

(FEXBRFEFIR)

Journal of Southwest Jiaotong University

Spatial heterogeneity of the impact
of built environment on elderly
travel behavior
{YANG Linchuan, ZHU Qing}

Older adult |
[ Community environment |

[ geographically weighted ]
regression model

[ Built environment ||

Main Content

» Based on the large-scale traffic habits

survey data, geographic data, and
Google Street View image data
organized by the Hong Kong SAR
government in 2011.

* A three-level random-intercept

binary logistic regression model
(level 1: individual, level 2:
household, level 3: street block)

* and ageographically weighted binary
logistic regression model are
developed



Travel Behavior Research in China

—— Autonomous driving and driving behavior

(ERZBRFEFRD
JOURNAL OF CHONGQING
JIAOTONG UNIVERSITY

Autonomous Driving Choice
Behavior Based on Panel Data

Mixed Logit Model
{LIAN Qicai, LI Han, SHI Xiaolin, YAN
Zhangcun}

Marginal effect | [ Panel Mixed logit |

<<3Ql__ =P 5??»

Journal of Traffic Information and Safety

Impacts of Autonomous Vehicles on Mode
Choice Behavior in the
Context of Short- and Medium- Distance
Intercity Travel

{LIU Zhiwei, SONG Zhengyun, DENG Wei,
BAO Danwen}

[

Mode choice behavior ]

Autonomous driving |
Travel choice behaviou |

The theory of planned behavior |

[

Random parameter Logit model |

s 7 —

traffic and transportation engineering |

[

Autonomous vehicles |

Main Content

* Analyzed the impact mechanism of
variables representing the socio-
economic attributes of travelers on
age, income, and education level.

» panel data Mixed logit model and
Marginal effect analysis

» People age increasing, probability of
choosing autonomous driving,
public transportation, and walking
increases, but their probability of
choosing ride hailing decreases.

Main Content

Studied the impact of Wuhan
autonomous vehicles on travel choice
behavior between medium and short
distance.

Building a Hybrid Selection Model
Based on Planned Behavior Theory
and Random Coefficient Logit Model
Perceived behavioral control and
behavioral attitude have a significant
positive impact on travelers' choice of
autonomous vehicle travel

(RZEIEE®RE5LK)

System Engineering-Theory & Practice

Analysis of morning commuting
behavior under mixed driving
environment

{ZHU Ling, LU Xiaoshan}

Autonomous vehicle

Travel mode

Bottleneck model ]
)
]

Heterogeneity

Main Content

Considering the behavior difference
between autonomous vehicle and
ordinary vehicle in driving

Studied the morning peak travel
behavior of bottleneck traffic
corridors when the two coexist

Late departure modes have lower
balanced travel costs. With the
increase of traffic capacity and the
decrease of VOT, the total cost of the
system will decrease.

(XBHM 5 &)

Technology & Economy in Areas of
Communications
Quantitative analysis model of
driver’s behavior choice under

the influence of traffic events
{PEI Yulong, YU Jian}

| Traffic event |

| Behavior choice |
|__Econometric analysis |
| Binary Logit model |
| Guidance strategy |

Main Content

Traffic incidents have an impact on
driver behavior choices.

Using the discrete choice analysis
method of econometrics, establish a
binary Logit model to describe the
probability of behavioral choice.
The gender, age, driving experience,
and time delays caused by various
traffic events of drivers have a
significant impact on their behavioral
choices
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| ite-oriented approacn

As a scientific system

Junyi Zhang



SOUTHEAST UNIVERSITY

G 6:& School of Transportation
)

Transdisciplinary methodologies: Life-oriented approach

Zhang, J. (2017) Life-oriented Behavioral Research for Urban Policy, Springer

Theory
Inter-discipline

I .
Life choices P“'?"C
policy
‘ Life-oriented approach
4 @)
3 3
o Hierarchical Integrated @ :
v - v = Practice
o 0 scheme scheme @
’ Activity-based approach § §
® Tour-based approach
® Trip chaining approach
y Trip-based approach
Trar\sport Travel behavior
policy |

- Single discipline
Junyi Zhang



Transdisciplinary methodologies: Life-oriented approach

Residence

Job

Education
& learning

Family
budget

Family life

Health

Social
network

Leisure and
recreation

\
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Big Data of people’s life choices
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/
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/— Behavioral Modeling Modules ﬂ

o

Family life
module

Family budget
module

Residence
module

Leisure &
recreation
modu

Education &
learning

A
N W
CE: Cause-effect association

/— Policy Modules ﬁ

. Policy Evaluation —/\
[

Externality of people’s
life choices

Policy Implementation

Law, economic measures,
technological development,
enlightenment, etc.

— Policy Monitoring

Behavioral changes in

various life domains

-

Junyi Zhang (2017) Life-Oriented Behavioral Research for Urban Policy, Springer

School of Transportation
’ SOUTHEAST UNIVERSITY

Junyi Zhang Editor

Life-Oriented
Behavioral

Research for
Urban Policy

@ Springer

l Junyi Zhang



& P 6:& School of Transportation

SOUTHEAST UNIVERSITY

Transdisciplinary methodologies: Life-oriented approach

Residential self-selection: Need to be improved!

A decision boundary issue = Another type of context

Decision boundary

Global decision - Life choice

Local decision
Residential choice
Self- T
selection :
Travel behavior

Zhang, J. (2014) Revisiting the residential self-selection issues: A life-oriented approach.
12 Journal of Land Use and Transport, 7 (3), 29-45.

Decision boundary

Residential choice
Self- 7
selection

Travel behavior

Junyi Zhang
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Transdisciplinary methodologies: Life-oriented approach

Integrated modeling of daily life and tourism behaviors

Daily leisure activities Daily leisure activities

State dependence

Social Social

interactions

Tourism
generation

Destination

Tourism
generation

Destination

interactions

ii / choice \ ii ii / choice \ ii

1 Mode Travel n|n Mode Travel T
i1 choice party T 11 choice party n
I 1 1 1
i 1 1 1
1 L . n|n . . 1
11| Activities Time use T 11| Activities Time use T

1 1 i 1

1l 1 i 1

11 ) 1 i i 1
Expenditure Expenditure

14 Future dependence

Time period T+1

Time period T Junyi Zhang



Transdisciplinary methodologies: Life-oriented approach

75 SchoolofTYansporUNJon
’ SOUTHEAST UNIVERSITY

Junyi ZHANG, Yubing XIONG (2015) Effects of multifaceted consumption on happiness in life: A case study in Japan
based on an integrated approach. International Review of Economics. 62, 143-162.

(A special issue edited by Prof. Ruut Veenhoven)
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Junyi Zhang



Global challenges

Some personal efforts

Junyi Zhang



School of Transportation
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Great Acceleration

Socio-economic trends Earth system trends
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Steffen W. et al. (2015) The trajectory of the Anthropocene: The Great Acceleration. The Anthropocene Review, 2(1), 81-98.
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Global traffic fatalities
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Human being

Figure 1: Number and rate of road traffic death per
100,000 population: 2000-2016
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“Globally, there are over 1 billion vehicles driving on almost 6 million miles of paved
roads. Every day, millions of mammals, herpetofauna, birds, and insects are killed

trying to cross roads, or incidentally as they move around.”
Citied from https://www.inaturalist.org/projects/global-roadkill-observations

“An estimated 29 million mammals and 194 million birds are killed annually on
European roads. Worldwide, all mortality sources considered, natural or human,

vehicle induced mortality was 7% for adult mammals and 1% for adult birds.”
Citied from https://natureconservation.pensoft.net/article/72970/
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Pandemics and transport

Risk of pandemics = :
Pr(Viruses) * Pr(Intensity|Viruses)* Pr(Transmission|Intensity) * Pr(Exposure IiTransmission)
* Pr(Consequency | Exposure*Transmission) Pr (Tripmaking | Activities)
* Consequence (infection+death, economic/social impacts) * Pr (Activities | Needs in life)

The COVID-19 Pandemic

g © .
‘Illll} ﬂﬂﬂmmmw 2 0 Global confirmed cases=770,437,327; deaths=6,956,900
° 0 Situation by WHO Region _ Daily Casee Count
0
qmwmmnﬂnb Qmﬂﬂ]]) () S Americas 2,958,886
Europe 2,247,711
@D W dddddd
mﬂw South-East Asia 806,765
_ deaths
Western Pacific 416,695 50K
Plague (land and river transport) — -
([ Spanish flu (marine transport) Eastern Mediterranean 351,405
@22 SARS (air transport) - deaths * IM H
o - storcal overu - o .
Nakanishi H and Kobayashi YH (2022) Historical overview of pandemics. - o .n.,||lnr||||ll||||ﬂ|||ﬂﬂll "mllllllln |ﬂ|||||||||||ﬂ| |||Im...,......numn.....n....m| ... .
In: Zhang H and Hayashi Y (eds), Transportation Amid Pandemics: Lessons 1/ outa e s et o ) ) 2 W

Learned from COVID-19, Chapter 2, Elsevier.

https://covid19.who.int/ (accessed on Sept 13, 2023)
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https://shop.elsevier.com/books/transportation-amid-pandemics/zhang/978-0-323-99770-6
https://shop.elsevier.com/books/transportation-amid-pandemics/zhang/978-0-323-99770-6
https://covid19.who.int/

Junyi Zhang, Yoshitsugu Hayashi (2022) Transportation Amid Pandemics:

Lessons Learned From COVID-19, Elsevier

https://www.elsevier.com/books/transportation-amid-pandemics/zhang/978-0-323-99770-6

1. COVID-19 and transport: Recording the history of fights against pandemics

PART | PANDEMICS

2. Historical overview of pandemics

3. The public health challenging of COVID-19

PART Il OVERALL IMPACTS

4. The impacts of the built environment factors and population mobility on the spread
of COVID-19 during its initial stage of the COVID-19 pandemic: A case of China
Impacts of COVID-19 on the transport sector in China: Facts and insights from early
stages

Impacts of COVID-19 on the economy and the transportation system in Germany
Impacts of COVID-19 on transport and responses to pandemic control in the
Philippines

8. Changes in mobility and challenges to the transport sector in Brazil due to COVID-19
PART Ill LOGISTICS AND SUPPLY CHAINS

9. Control and countermeasures for COVID-19 in the cold chain: The experiences of
cold chain logistics in China

10. Urban logistics and COVID-19

11. Freight operations in the European Union during the COVID-19 pandemic: A multi-
country comparison

12. Short-run impacts of COVID-19 on the maritime and port sector: Measures and
recommended policies

13. Longer-run policy measures on COVID-19 for the maritime and port sector: Plans and

recommendations

14.The impact of COVID-19 on air cargo logistics and supply chains

PART IV RESPONSES TO DISTANCING POLICIES AND PUBLIC TRANSPORT

15. Changes in activity organization and travel behavior choices in the United States

16. Social contact patterns and changes at leisure/tourism activity settings during
COVID-19 period: An international comparison

17. A cross-country analysis of behavioral changes in response to COVID-19 social
distancing policies

18. The impacts of COVID-19 and social distancing policies on

social capital in Japan

Restriction of public transport services as a part of COVID-19

containment policies and user responses

Comparing mobility, behavior, and public transit's pandemic

adaptation in New Zealand and U.S. cities B e

21. Impacts of COVID-19 on public transportation in urban India s WeTBS

22. Passengers’ perception of COVID-19 countermeasures on urban railway in Bangkok

PART V RECOVERY

23.The resilience of national highway transportation in China under the outbreak of
COVID-19

24. Tourism policy responses to COVID-19 and first-stage tourism recovery in China

25. The recovery of long distance mobility after COVID-19: what can we expect?

26. Assessing the impacts of COVID-19 on carbon emissions from the road transport
sector in China

27. Contagion spread modeling in transport networks and transport operation
optimizations for containing epidemics

28. COVID-19 and big data technologies: Experience in China

PART VI FUTURE TRANSFORMATION

29. Collective thoughts about COVID-19 pandemic and transport from a worldwide

expert survey

Leveraging the COVID-19 crisis for better public transport services in Asian cities

Putting gender equality in the core of COVID-19 recovery for transport

A proposal of recommendations for post-Corona mobility

The transport policy response to the COVID-19 Pandemic in the UK

Governance for post-COVID-19 carbon reduction: A case study of the transport

sector

Governance, COVID responses and lessons on decision-making in uncertainty

TRANSPORTATION

AMID PANDEMICS

19. LESSONS LEARNED FROM COVID-19

20.

30.
31.
32.
33.
34.

35.

36. Policy Recommendations and Future Challenges
Junyi Zhang
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Pandemic & crisis policymaking: PASS Approach il

P A S S Junyi Zhang (2020) Transport
Prepare _ _ _ policymaking that accounts for

| Avoid Shift Substitute COVID-19 and future public
Protect | | | health threats: A PASS approach.
Prol/ide Adjust Share Stop Transport Policy, 99, 405-418

In total, more than 100 policy measures are proposed. Some examples are as follows:

® P: Preparing emergency plans, transport capacity of health services, inventory holding for increasing resilience,
public participation, and capacity building; Protecting transport service staff and users as well as vulnerable
population groups; Providing guidance and information, financial support, and anti-virus services.

® A: Avoiding inconsistent and less scientific policy decisions, crowded platforms and vehicles, and unnecessary
and non-urgent trips; Adjusting policymaking processes, service operations and demand management, activity-
travel schedules, logistic supply chains and so on for minimizing transport.

® S: Modal shifts (esp. for encouraging sustainable transport), shared mobility, shared operational resources (e.g.,
using public transport and taxi vehicles to transport both passengers and goods), and information sharing.

® S: Substitution of transport activity by virtual communication, substitution of face-to-face procedures by online

procedures to minimize transport, stop of services with close face-to-face contacts, lockdown, and stay at home.
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Pandemic & crisis policymaking: LASTING Approach

L A S TING

Junyi Zhang (2021) People’s responses to the
COVID-19 pandemic during its early stages and
factors affecting those responses. Nature —
Humanities and Social Sciences Communications,
8: 37. https://doi.org/10.1057/s41599-021-
00720-1 [Highly Cited Paper]

Life needs Activity Timing

Proposed by Junyit Zhang, Mobilities and Urban Policy Lab, Hiroshima University in April 2020.

Lower levels of behavioral changes may be due to the lack of a sense of crisis and people’s lack of awareness or concern about
their contribution to society. Unclear requests for self-restraint, poor role specifications of central and local governments in
COVID-19 policies, and the resulting policy turmoil, discourage people from following governmental requests/recommendations.
This research suggests that it is important to figure out effective differentiated communication methods for informing the public
to make cooperative behavioral changes. To avoid/mitigate the infection risk, physical distancing has to be better practiced.
Therefore, it is necessary for people to re-think what kinds of essential needs in life [L] have to be met and accordingly to re-
design their daily life schedules. Based on the re-designed schedules, people needs to further carefully think about what kinds of
out-of-home or out-of-office activities [A] have to be performed, at what kinds of places with sufficient space [S] and proper
duration of time and at the proper timing [TING] (for example, to perform activities as quickly as possible and to shift departure
timing). In other words, a Life-oriented Activity-Space-Timing (LASTING) approach is required for people to survive COVID-19.
Such a LASTING approach is crucial to enhance the effects of massive public involvement in mitigating the spread of COVID-19.
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https://www.nature.com/articles/s41599-021-00720-1
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Zhang, J., et al. (2021) Effects of transport-related COVID-19 policy measures: =
\ 7
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A case study of six developed countries, Transport Policy, 110, 37-57. >

SOUTHEAST UNIVERSITY

The USA, the UK, Australia, Canada, New Zealand, Japan
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Shuangjin LI (2022.09) Exploring associational factors to COVID-19 and evaluating non-pharmaceutical
interventions and recovery measures: Perspectives of built environment and human mobilities

The following is one of the first doctoral dissertations on COVID-19 in the context of urban and regional planning as

well as transportation planning (graduate in Sept 2022).

Introduction

£
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Methodology
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review
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Practical
interventions

perspectives

Limitations and further

Virus spread
1 Initial stage | mechanisms
! (associational analysis) Uptimal policy
K'] packaging
i Progressing stage <2 (system dynamics)
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~
i 6'\)&/ Post-pandemic
/. - - -
‘ Recovery stage (N implication for
i<] ysad ”7@,” urban recovery

Chapters
- 4,5,6,7

ywuman Mobiljg,,

(deep learning)

(joint first-author) Ma, S., Li, S., & Zhang, J.* (2021). Diverse and
nonlinear influences of built environment factors on COVID-19 spread
across townships in China at its initial stage. Nature - Scientific Reports
[Q1], 11, 12415. https://doi.org/10.1038/s41598-021-91849-1
(Chapter 5) [IF=4.380]

Li, S., Ma, S., & Zhang, J.* (2021). Association of built environment
attributes with the spread of COVID-19 at its initial stage in China.
Sustainable Cities and Society [Q1], 102752.
https://doi.org/10.1016/j.5¢s.2021.102752 (Chapter 4) [IF=7.587]

Li, S., Ma, S., & Zhang, J.* (2022.01). Building a system dynamics model
to analyze scenarios of COVID-19 policymaking in tourism-dependent
developing countries: A case study of Cambodia. Tourism Economics
[Q1] https://doi.org/10.1177/13548166211059080 (Chapter 6)
[IF=4.438]

(joint first-author) Ma, S., Li, S., & Zhang, J.* (2023) Spatial and deep
learning analyses of urban recovery from the impacts of COVID-19.
Nature - Scientific Reports, 13, 2447. [IF=4.996]
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Shuangjin LI (2022.09) Exploring associational factors to COVID-19 and evaluating non-pharmaceutical
interventions and recovery measures: Perspectives of built environment and human mobilities
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Hongxiang DING (2023.03) Behavioral research for the COVID-19 pandemic
policymaking: Focusing on activity-travel behavior and social contact
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Rui LIU (2023.09)
Tourism Activity Participation and Social Contact during the COVID-19 Pandemic

Before the pandemic ( seasonal influenza in 2019) During the pandemic (2020-2021.5)

SOUTHEAST UNIVERSITY
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New concepts/theories
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Planetary health
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The health of human civilization and the state of the natural systems on which it depends (Lancet, 2015).
(= Co-health of individuals, society and nature < Redefined by Junyi Zhang, 2021)

Human health effects

A

Mediating factors

A

Proximate causes

A

Ecological drivers

Biodiversity loss, resource scarcity
Worsened biogeochemical cycles
Global pollution

Climate change

A

Underlylng d rlvers Demographic shifts

v
Health of human

Culture and behavior

Refugees

Technology — e

Philanthropy

Wealth Climate change

Governance I Poverty

S, Hunger
3 by, D 44 9

Air quality T "f y"'

Food production £ ) 2 "

Infectious disease exposures \

Access to fresh water .

Natural hazards

4 Health of soci
€a o1 socCie
—>
Health of nature \‘ » ‘ p ) ty
The original
design of this
Science image is
Technology given by

Saori

Consumption Environmental Kashima.

pollution / Pandemic
Technology A Disasters Poll :

29

Modified by Junyi Zhang, based on https://www.thelancet.com/action/shodef?pii=50140—6736%2817%2932846—5
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https://www.thelancet.com/pdfs/journals/lancet/PIIS0140-6736(15)61038-8.pdf

It is necessary to build
a human-society-nature nexus modeling system

| l
Human health effects Health of human
A Culture and behavior ﬁ& >
. Technology ﬁ efugees

Mediatlng faCtors Philanthropy conflicts ’
Poverty

Wealth Climate change
Hunger

A Governance %
Air quality - 3
Food production | f k % | '
&ii \ .,“é w
Health of society
A

PrOXi mate CaAUSES nfectious disease exposures
Access to fresh water
A Natural hazards |
Health of nature \‘ | | v
Ecological drivers
Biodiversity loss, resource scarcity
Worsened biogeochemical cycles
A Global poIIutiogn ' ﬁ P[aneta'y mm
Underlylng drlverS Demographic shifts pollution %Pandemic
| Technology Disasters PT
30

Climate change
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Future development goals and new sciences

https://home.hiroshima-u.ac.jp/~zjy/wp-content/uploads/2021/10/Harmonization-Science_Proposed-in-Sept-2020-2.pdf

Harmonized Development Well-harmonized
Goals (HDGs) Junyi Zhang (2020.09) VS
Harmonization Science Less-ha rrﬁonized
Developed
Sustainable Development VS
Goals (HDGS) s
Developing
S Now, it is a critical time to
Goals (MDGs) re-define the long-existing

country classification!

e.g., post-pandemic scenario. thoughttul 2020s

* Harmomzmg with nature Werner Rothengatter, Junyi Zhang, Yoshitsugu Hayashi, Anastasiia Nosach, Kun
* Harmonizing with life Wang, Tae Hoon Oum (2021) Pandemic waves and the time after Covid-19 —
Consequences for the transport sector, Transport Policy, 110, 225-237
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New theory/approach

SOUTHEAST UNIVERSITY

@ School of Transportation

A “Transport in All Policies” (TiAP) approach

An approach to the formulation of public policies designed to resolve
all transport issues of the whole society.

Transport is closely
connected with many
economic and social sectors! | policy goals!
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Transport is closely Transport is closely

connected with people’s |connected with various

daily lives!
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The life-oriented approach (proposed by Junyi ZHANG, Cheng-Min FENG

interdependencies across life domains. in Asia in 2022.

Junyi ZHANG (2023) A “Transport in All Policies” Approach. In: Junyi Zhang et al.
(2023), Research Handbook on Transport and COVID-19. Edward Elgar Publishing.
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HEARTY City: A new urban/regional
Junyi Zhang in 2010) has revealed various (2018) Routledge Handbook of Transport  development concept proposed by Junyi Zhang

Urbanimmunology

A new discipline to understand the capacities that a city
can protect itself by resisting to disruptions and adapt
to disruptions, and to develop responses that can help
the city to enhance its immunity level and consequently,
to evolve into a resilient system.
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Junyi ZHANG (2023) Urbanimmunology. In: Junyi ZHANG et al.
(2023) COVID-19 & Pandemics, Lifestyles, and the Built
Environment: A Perspective of Planetary Health, Springer.

Junyi Zhang
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Urbanimmunology

Deriving a policy process management approach ( ) based on Urbanimmuology
Original paper: SKIZIZ (2021) 5 & [T 38 8 iE st B9 — (A b A B HEIBCGE. i 3@, 19(5), 43-52. [in Chinese]

- Junyi Zhang (2022) Governance for post-COVID—19 carbon reduction: A case study of the transport sector. In: Junyi Zhang
and Yoshitsugu Hayashi (eds.), Transportation Amid Pandemics: Lessons Learned from COVID-19, Chapter 34, Elsevier.

[Mechanisms of immune responses for planetary health (PH) based on DIRECT approach] The DIRECT approach can be derived DIRECT

from the human immune system, as shown below. The urban immune system can be built and managed for PH. approach

(DDetect (D): Always detect and monitor whether there is an abnormality (an urban problem: an invasive pathogen) in a city, by
learning the roles of the TLR of epithelial cells and phagocyte.

@Inform (I): Inform the urban immune system about the detected abnormalities, by learning the roles of T lymphocytes
activated by lymphocytes produced by phagocytes. T lymphocytes are lymphocytes that have been selected and graduated in
the thymus. Most graduated lymphocytes do not misinterpret themselves as enemies and have the ability to accurately identify
enemies.

(3React (R): Stakeholders being responsible of urban elements with abnormalities react properly to the detected abnormalities
and handle the abnormalities, by learning the roles of antibodies dedicated to invading pathogens. The antibodies are produced
by B lymphocytes released through T lymphocytes.

(4Enforce (E): Thoroughly investigate the influences of the detected abnormalities and strengthen various measures to prevent Enforce/Enlighten

Detect
(D)

Inform/Intervene

(1)

the reoccurrence of the abnormalities and influences, by learning the roles of killer T lymphocytes, which receive antigenic /Evaluate
information from dendritic cells, attach the infected cells and cancer cells and eliminate (kill) them. (E)
(5)Collaborate (C): Stakeholders collaborate to address the various urban issues, by learning the role of various cells responsible Collaborate
for various immunities. )

(©)Transfer (T): The experience gained through the above complex process (acquired immunity) is transferred to deal with the
next abnormality. Acquired immunity is complementary to natural immunity. With the acquired immunity, foreign substances
that have invaded once will be remembered, and they will be attacked the next time when they invade the body.

33 nyi Zhang


https://doi.org/10.13813/j.cn11-5141/u.2021.0034

Policymaking process management: DIRECT approach

34

During-pandemic

DIRECT

Post-pandemic

Pandemic-sensitive mobilities

approach

Detect infection risks and risky mobilities.

Resilient-sustainable mobilities

@ @

Inform the public and stakeholders about the
above detected results for interventions.

Detect unresilient and unsustainable mobilities.

‘ Inform/Intervene

-

-

The public and stakeholders react to the above
intervention.

Inform the public and stakeholders about the
above detected results for interventions.

The public and stakeholders react to the above
intervention.

-

-

To enforce/enlighten and evaluate the above
interventions.

Enforce/Enlighten
/Evaluate

-

-

The public and stakeholders collaborate to
control the pandemic.

To enforce/enlighten and evaluate the above
interventions.

Transfer the during-pandemic experiences to

post-pandemic smart management of mobilities.

The public and stakeholders collaborate to realize
smart management of mobilities.

~

‘ Collaborate

Transfer the post-pandemic experiences of smart
management of mobilities to other places.

School of Transportation
SOUTHEAST UNIVERSITY

Zhang, J. (2022)
Governance for
Post-COVID-19
Carbon Reduction:
A Case Study of
the Transport
Sector.

In: Zhang, J. &
Hayashi, Y. (eds),
Transportation
Amid Pandemics:
Lessons Learned
from COVID-19.
Elsevier

Junyi Zhang
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DIRECT for carbon reduction in transport

|dentity of carbon reduction in the transport sector

Kaya identify & life-oriented approach
COZ (S, t)
CO,(s,t) Energy(s,t)  Transport(s,t) Activities(s, t)

- Energy(s,t) ) Transport(s, t) " Activities(s, t) " Needs in life /business (s, t)

Needs in life/business (s, t) _
* : + Population(s, t)
Population(s, t)

d /dentity of transport-generated CO2 emissions reduction

A{CO,(s,t)}
_ (1)A{ CO,(s,t) }+ (Z)A{ Energy(s, t) }+ 3 A{Transport(s, t)}

Energy(s,t) Transport(s, t) Activities(s, t)

life
Activities(s, t Needs iny——: (s, t)
n (4)A{ \ | (s,t) n (5)A§ business
)

Needs inb h.fe (s,t Population(s, t)
usiness

. + (6)A{Population(s, t)}

Junyi Zhang
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Governance for post-pandemic carbon reduction

Reducing carbon Reducing transport Reducing transport Reducing life and Changing the needs Population policy
(six domains)|intensity from transport| energy consumption [pressure from life and |economic activities for [in life and business
energy consumption economic activities meeting needs in life
and business
(1) Detect (D Develop smart carbon (7) Detect transport 19 Detect transport Detect high-carbon @) Detect high-carbon 6D Detect population
detection technologies energy consumption that pressures that can be  life and economic needs in life and mobility/ migration
can be reduced reduced activities business
(2) Inform/ (2) Develop smart @) I/l measures on I/l measures to I/l measures to I/l measures to 62 Inform and intervene
Intervene (1/1) technologies for I/I energy reduction policy encourage low-carbon encourage decisions on promote low-carbon (/1) measures in
measures (ERPM) transport decisions low-carbon life and needs in life and population
(LCTD) economic activities business (LCNLB) mobility/migration
(LCLEA)

(3) React (3) Develop smart (9 React to I/l measures @ React to I/| measures @) React to I/l measures @) React to I/I measures 63 React to I/l measures
technologies for on ERPM on LCTD on decisions on the on recommendations for on population policy
supporting reactions LCLEA the LCNLB

(4) Enlighten/ 4) Develop smart A0 E/E/E_I/l measures E/E/ I/l measures on @ E/E/E_I/l measures E/E/E_I/I measures E/E/E_I/l measures

Enforce/ Evaluate technologies for on ERPM LCTD on decisions on the on recommendations for on population policy
supporting E/E/E LCLEA the LCNLB

(5) Collaborate (5) Technology @ C between @ C between @) C between C between @) C between
development based on  government-firms-public government-firms-public government-firms-public government-firms-public government-firms-public
collaboration between  for I/l measures on for I/l measures on for I/l measures on for I/l measures on for I/l measures on
stakeholders. ERPM LCTD decisions on the LCLEA recommendations for population policy

the LCNLB

(6) Transfer (6 Transfer experience (12 Transfer |/l measures (8 Transfer |/l measures @ Transfer |/l on Transfer I/l on Transfer I/l measures
of low-carbon tech. dev. on ERPM on LCTD decisions on the LCLEA recommendations for on population policy

the LCNLB

Zhang, J. (2022) Governance for Post-COVID-19 Carbon Reduction: A Case Study of the Transport Sector.

In: Zhang, J. & Hayashi, Y. (eds), Transportation Amid Pandemics: Lessons Learned from COVID-19. Elsevier e



N School of Transportation
@6

SOUTHEAST UNIVERSITY

Management of carbon reduction in the transport sector

Reducing energy consumption from transport
transport suppliers and users: (1) energy choice, (2) energy use.

« [7) Detect] detecting energy consumption from transport activities
Is helpful to guide a user's energy consumption decision-making.

v |

Produce — Sale @techno@ recycle

| !

purchase — Usage — Inspection/Maintenance — disposal

T |

renewal

37
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Management of carbon reduction in the transport sector

Reducing energy consumption from transport

* [® Inform/Intervene] The energy consumption detected should be
conveyed to transport users in a timely way to reduce the
information searching burden on the user and to provide the user
with a credible basis for energy consumption decision-making.
Interventions into decision-making are also required for some users.

Inform J Intervene
l S,———— Decision-making -———~
|
| |

Information search ' Process — Outcome —— Impacts
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Management of carbon reduction in the transport sector

Reducing energy consumption from transport

» [(9 React] Here it should be noted that there are rebound effects of
users' energy consumption when using energy-saving technologies.

P e e I I T e e e e e e T e e e e e T T e e T T i T I e .

/’+ Direct/pure price rebound effect (micro-effect): Improved energy efficiency for a particular energy
. service will lead to an increase in consumption of that service.
+ Income effect (micro-effect): The reduction in the cost of an energy service implies the consumer has
more money to spend on other goods and services.
+ Substitution effect (micro-effect): When the price of an energy service drops, consumers substitute
. for the cheaper energy service.
"+ Indirect/secondary effect (macro-effect): the energy efficiency improvement results in the increase of
energy consumption for other goods and services.
+ Economy wide effect (macro-effect): a fall in the real price of energy services may reduce the price of
intermediate and final goods throughout the economy.
(Sorrell and Dimitropoulos, 2008; Hertwich, 2005 and Greening et al., 2000)

39
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Management of carbon reduction in the transport sector
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Reducing energy consumption from transport
» [@0 Enlighten/Enforce/Evaluate] Because of the rebound effects of energy

consumption related to energy-saving technologies, reducing energy consumption from
transport activities needs to first “enlighten” consumers to nudge them into making
voluntary reactions, and depending on the degree of reactions, to further utilize
appropriately-enforced interventions to facilitate the desired reactions. The above
D/I/R/E steps require a scientific evaluation based on a better understanding of the
decision-making mechanisms of transport activities and energy consumption. But the
decision-making mechanisms of households and firms are different, and implementing
each step needs to reflect the differences in the decisions and behaviors of different
transport decision makers.

v v v v ! |

Detect — Inform @ Enlighten — Enforce H[ Evaluate ]

N | |

Transfer < Collaborate

Junyi Zhang



Management of carbon reduction in the transport sector
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Reducing energy

. [AD Collaborate]

Zhang | (2018) Social Capacity Building for
Environmental Management Related to

Transport Sector:A Broader Perspective. In:

Zhang | & Feng C-M (eds), Routledge

Handbook of Transport in Asia, Chapter 20.
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Figure 20.3 DPSIR+C framework: an example of air quality management




Reducing energy consumption
from transport

Policies should be packaged.

Behavioral interventions should be taken in a continuous way.

Transport and energy policymaking should address heterogeneous responses of
different actors.

Environmental pricing policy should be made.

Technologies for personal usage should be developed at a proper level.

Land use should be supported by suitable transportation.

Reducing car dependence should consider how it affects people’s daily life.
Shared mobility should be prompted.

TRANSPORT AND
City boundary should be properly controlled.

ENERGY RESEARCH
O. A city should be walkable and walking environment should be safe and
A BEHAVIORAL PERSPECTIVE comfortable.

11. A neighborhood should meet its residents’ most daily necessities.
12. Transportation system should be comprehensive and affordable.

G D 6:& School of Transportation
)

SOUTHEAST UNIVERSITY

wn =

~omNOUA

Edited by Junyi Zhang 13. Public transport should be prioritized and seamless connectivity of different
= , m public transport modes should be guaranteed.
A= 0P, | 14. Transit-oriented development with affordable houses should be promoted.

15. Transportation facilities, vehicles, and equipment should be environment-friendly
through the whole lifecycles.

16. Travel demand should be better managed.

17. Transport-related energy-consumption issues should be resolved under a cross-
sectoral scheme.

18. Accountable transport and energy policymaking should be supported by models
with behavioral mechanisms.

19. After transport and energy planning/policy are made, it should be properly
monitored continuously.

20. Stakeholders’ behaviors should be better understood.

21. Advanced technologies should be developed for use in all countries.  Junyi Zhang




A proposal of GREAT system

(green and region-friendly eHighway and autonomous freight transport)

for green and smart transport development

As a part of a project “Road networks and transport centers for an
efficient logistics system”, sponsored by the Ministry of Land,
Infrastructure, Transport and Tourism, Japan, 2022-2024

Led by Junyi Zhang



[ School of Transportation
LA

SOUTHEAST UNIVERSITY

A GREAT System

SA/PATS 2 thigk 0D 4K
T EEFRLE
BAEMREIRILY—

AT L

INVBTSTT

=2, o
=)

— . | £ B | — h
—E) () 6B _ — — - O mEmEE .< C )
%T&ﬁﬂ‘ﬁ:% (@)

- EBEOESRISVY
=" EEEGEESISYY

As a part of a project “Road networks and transport centers for an effective logistics system”, sponsored by

i the Ministry of Land, Infrastructure, Transport and Tourism, Japan, 2022-2024 (Led by Junyi Zhang)

Junyi Zhang



HEARTY City

Challenging a realistic future city

Junyi Zhang
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All lessons learned from
history and from the current

' ERE R » COVID-19 pandemic suggest
4 | that

TRANSPORTATION ,
AMID PANDEMICS we, as human beings, should

LESSONS LEARNED FROM COVID-19 be kinder to nature, and that

s each of us should be kinder to

each other.

46 46
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HEARTY City @ @ SciocioiTransportaton
/ Healthy (H) \
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Tourist-liking (T) / O
Yearning (Y)
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For a transdisciplinary research future
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Books on COVID-19 and transport

Published
* Junyi ZHANG, Yoshitsugu Hayashi (2022) Transportation Amid Pandemics:
Lessons Learned from COVID-19. Elsevier (September 2022)

Underwriting/editing

* Junyi ZHANG et al. (2023) Research Handbook on Transport and COVID-19.
Edward Elgar Publishing (welcome contribution)

* Junyi ZHANG, et al. (2023) COVID-19 & Pandemics, Lifestyles, and the Built

Environment: A Perspective of Planetary Health, Springer (welcome contribution)

49
Junyi Zhang



50



Travel behavior research in key universities of China

51

(In alphabetic order)

* Beihang University

* Beijing Jiaotong University
* Southeast University

* Tongji University

Junyi Zhang



Beihang University: Haijun Huang's lab

52

Origin-Destination matrix estimation

Traffic assignment with elastic demand or
constraints

Combined trip distribution and assignment models
Dynamic TA, evolution from disequilibrium to
equilibrium

Stochastic user equilibrium (logit or probit based)
Upper bound of difference betwee UE and SO
Mixed TA model (some UE and some SO)

Use pricing scheme to implement SO

Realize SO through information induction
Bicriteria TA (time-based and cost-based)

TA with multiple or heterogeneous users

Mixed TA (some with autonomous vehicles, some
non)

TA combined with parking

Activity-based TA models

Evaluate the effects of information release

Traffic network design, bi-level programming

C. D d§ School ofTranSportation
@
MQ SOUTHEAST UNIVERSITY

Location of monitoring devices and EV charging

stations

Carpool, HOV, shared travel

Transportation issues of urban agglomeration

Bottleneck models, corridor problem

Operation of shared mobility, online car-hailing

platforms

Car following models, stability analysis, overtaking

LWR equation + Acceleration dynamic equation

* Muti-lane road, mixed flow, shock wave

formation and dissipation, perturbation
propagation, consequences of changing lanes,
influences of driver personality (conservative,
risky, learning ability, memory and prediction
ability)

Cellar automata (CA) models

Pedestrian moving model

Evacuation model

Aircraft and subway train boarding model (using CA

or improved DTA together with LWR)

Junyi Zhang
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Beijing Jiaotong University: Enjian Yao’s lab

A Location Model of EV Public Charging Station Considering Drivers’ Daily Activities and Range
Anxiety: A Case Study of Beijing (Long Pan, Enjian Yao)

* A charging decision model considering daily * A location model of EV public charging stations aiming
activities and range anxiety at accomplishing more daily activities of EV drivers
Initial Calculating the Calculating the )
SOC >  energy > SOC at midway min f (X) = ZYJ- (Minimize the entire missed trips of all the drivers)
consumption destination i
subject to: O Constraints:
CDr?a?é); K; Number of charging stations is fixed
(1) Y, = Z Y;(K)  Maximum of utilizing parking time
k=1 SOC balance equation
Larﬁme (2) Z Xi=p Calculation of trip energy cost
Yes - tr?reshold? B No el ]
~ I (3) E,(k)=min((L-SOC,(k))-BC,, Pt, (k))
If not charge, could the Charge Ej (k —l) — ECJ- (k)
Yes{ driver accomplish the }No (4) SOCJ- (k) = SOCJ- (k —1) +
v remaining trips? v BCJ-
Do not \/ (5) ECJ(k):dJ(k)EFJ

Charge

Charge

O Solving Algorithm
O Two main assumptions 1. Keep a comfortable range Integer programming problem

2. Maintain daily trips and activities Genetic Algorithm (GA)

53 under current time schedule _
Junyi Zhang



Be

ijing Jiaotong University: Enjian Yao’s lab
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A Location Model of EV Public Charging Station Considering Drivers’ Daily Activities and Range

Anxiety: A Case Study of Beijing (Long Pan, Enjian Yao)

Case study

54

0 Data

Obtained by Beijing Household Survey in 2014

(40,000 families with their trips)

0 Study Area

Haidian District of Beijing,184 Traffic Analysis Zones
0 Study Database
Extract drivers having destinations in the study area

sample rate

L

Area 430.8 km?

Population 3.28 million

EV adoption rate

2,500 EV drivers with 6,000 trips

Junyi Zhang
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Beijing Jiaotong University: Enjian Yao’s lab

A Location Model of EV Public Charging Station Considering Drivers’ Daily Activities and Range

Anxiety: A Case Study of Beijing (Long Pan, Enjian Yao) 7
1800 _ - 45 20 - . T3 .
1 = | = Total missed trips + s — »
® 1700 - ——a 40 3 T /
g- /‘ I > Haidian
5 1600 — — o ]
1= . A A— Declining rate e
&% 1500 " 30 5
2 ; : |
= 1400 25 %
el . . L i |
P 1300 & : Y S —
1200 — , , . . T
0 20 40 60 80 100

Number of charging stations

v" Installing more stations could
effectively decrease the missed trips

v Obey the law of diminishing returns

v' Missed trips still exist even with a large
number of charging stations

55
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Beijing Jiaotong University: Enjian Yao’s lab

Metro demand forecasting and passenger flow control based on Multi source data
(Enjian Yao, Ning Huan, Yongsheng Zhang)

New trend: integrated rail system

Passenger flow control becomes regular

Metro + rapid metro + intercity metro

Afternoon (5:30-8:30)
Mainly at workplaces

Wi ABREREENE | o=

With the integration of rail systems, the
ridership will continue increasing.

Entrance Security check Turnstile  Transfer tunnel

56 measures
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Beijing Jiaotong University: Enjian Yao's lab

Metro demand forecasting and passenger flow control based on Multi source data
(Enjian Yao, Ning Huan, Yongsheng Zhang)

Passenger Flow Forecasting

Accessibility Measure: Logsum Value

. — Accessibility analysis . . :
_, Entry/Exit ] 4 Y ARIMA model, Bayesian estimation,
volume > Historical data deep learning method
v
Integrated oD — Destination choice model WESML : .
‘ : L, _ Aggregated Disaggregated _ Choice
estimation distribution N Logit model Data Data model
e —
y
— Route choice model
|_Passenger flow _ Metro users’ choice preference
assighment — Flow assignment model

57
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Beijing Jiaotong University: Enjian Yao's lab @ @ ociws

Metro demand forecasting and passenger flow control based on Multi source data
(Enjian Yao, Ning Huan, Yongsheng Zhang)

Junyi Zhang



Southeast University
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B Behavioral modeling in China: passenger choice

» Passenger choice behavior of carpool drivers

Passenger selection interface of DiDi platform

before 2018

< EESREE wE @

» The platform was accused of providing an opportunity
for prospective criminals to exploit sensitive
passenger information after two criminal cases N l i ot o | |
happened in May and August 2018. o o

‘ Photo of the passenger that clicked to enlarge

| Comments on this passenger

| appearances, manners, and

_______________

from other drivers about

» A stated preference (SP) survey was conducted to —
explore the carpool drivers’ passenger choice behavior. i i
- & AR L3N:
> Findings: i . 25.1 e
> The carpooling service seemed like a platformto  « = N[ wanr s qnom
make social contact for specific drivers; Kt Sk homonen o Bb/Reriill |
» Gender, age, and appearance discrimination e 5
existed when choosing passengers; -
» Sharing a trip with people they prefer is much o nn rmmaa ™
more important than earning a little more money. ME HOH127km 22 = |
.

U7 ZM157T

60

---------

elc.

- - - - -

----------------

Li, D., Song, Y., Liu, D., Cao, Q., & Chen, J. (2023). How carpool drivers choose their passengers in Nanjing, China: effects of facial attractiveness and credit. Transportation, 50(3), 929-958.



B Behavioral modeling in China: travel mode choice

» Heterogenelity in passenger satisfaction with air-rail integration services

Conceptual framework of
passenger satisfaction index (PSI) model

Reliability h Expectation on Expectation on Whether to Whether to sue
\ service personalized Ovimtl_l complain about intermodal
\ reliability service expectation intermodal service service
. \ P 4
Connectivity \ \ /‘ d /
SN 7 )
\ e /
\ \ / H ,d_—_.if_\
Accessibility \\ Passenger 3 Gap between service Pa ssenger\\
\ Expectation_ __‘“‘H— expectation and realit Complaint/‘
. b T —
Ticket +\‘ \ /- H
service 8
Perceived Passcngcr Hy
H, Value/ p-Satisfaction
Personalized . / “\ H7
service /+ , .h
- Passcngcr
Overall satisfaction
Operation H; Oya]ty
schedule
Safety. & A/ Evaluation of Evaluation of Likehhood of Likelihood of
Security service based ticket price Selecting recommending
on current based on current intermodal trip | | intermodal trip to
ticket price service the next time family or friends

Comfort

Information p
service

Analytical procedures of

finite mixture partial least squares method

Step 2

Standard PLS-SEM modeling for PSI: the basic PLS algorithm provides path
model estimates on the aggregated data level of passenger satisfaction

NS

Scores of latent variables in the PSI model are used as input

for the FIMIX-PLS procedure
Number of Number of Number of Number of
classes K =2 classes K =3 classes K =4 classes K =...
FIMIX-PLS FIMIX-PLS FIMIX-PLS FIMIX-PLS

Evaluation of results and identification of an appropriate
number of passenger segments

~S

A segment-specific estimation of the PLS path model for PSI

¢

Evaluation and interpretation of segment-specific PLS results

.

Importance-performance map analysis of segment-specific data

Yuan, Y., Yang, M., Feng, T., Rasouli, S., Li, D., & Ruan, X. (2021). Heterogeneity in passenger satisfaction with air-rail integration services: Results of a finite mixture partial least squares model. Transportation
Research Part A: Policy and Practice, 147, 133-158.




B Behavioral modeling in China: travel mode choice

» Tour-based mode chain modeling and multi-modal path planning

~
L"v";ﬁa"éféf_ &
> Dynamic discrete choice food aHEINE

model for mode chain choice

» User-constrained shortest
hyperpath algorithm for
multi-modal path planning

walk

recommended system in the
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transit
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Song, Y., Li, D., Cao, Q., Yang, M., & Ren, G. (2021). The whole day path planning problem incorporating mode chains modeling in the era of mobility as a service. Transportation Research Part C: Emerging
Technologies, 132, 103360.



B Behavioral modeling in China: travel mode choice

» Broad learning system (BLS) for choice modeling
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Liu, D., Li, D., Song, Y., Kun, G., & Zhang, T. (2023). An Interpretable Broad Choice Model for Enhancing the Computational Efficiency, Predictive Performance and Dynamic Inference of Discrete Choice
Models. Travel Behaviour and Society.



B Behavioral modeling in China: route choice

» Correlations in multi-modal route choice modeling

Generalized path overlapping problem Multi-modal logit kernel model
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Li, D., Yang, M., Jin, C. J., Ren, G., Liu, X., & Liu, H. (2020). Multi-modal combined route choice modeling in the Maa$S age considering generalized path overlapping problem. IEEE Transactions on Intelligent
Transportation Systems, 22(4), 2430-2441.



B Behavioral modeling in China: route choice

» Route choice modeling with sparse Automatic Vehicle Identification (AV1) data

Conceptual framework of
Semi-supervised model
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Cao, Q., Ren, G,, Li, D., Ma, J., & Li, H. (2020). Semi-supervised route choice modeling with sparse Automatic vehicle identification data. Transportation Research Part C: Emerging Technologies, 121, 102857.
Cao, Q., Ren, G,, Li, D., Li, H., & Ma, J. (2021). Map matching for sparse automatic vehicle identification data. IEEE Transactions on Intelligent Transportation Systems, 23(7), 6495-6508.



W Behavioral modeling in China: route choice

» Conditional Variational

Autoencoder (CVAE) is used
for route choice-set generation.

A novel approach integrating
Convolutional Neural Network
and Multinomial Logit is
proposed.

Proposed data- and knowledge-
driven neural-embedded model
framework is versatile and
equally applicable to other
choice modeling tasks that
possess different networks and
patterns.

CVAE-
based route
choice-set
generation

Route
choice
modeling
Integrating
DCM and
DNN

» Data- and knowledge-driven approach choice-set generation and route choice modeling
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Liu, D., Li, D., Kun, G., Song, Y., & Zhang, T. (2023). Enhancing choice-set generation and route choice modeling with data- and knowledge-driven approach. Transportation Research Part C: Emerging Technologies.



B Behavioral modeling in China: activity-travel chain choice

» Activity-based modeling using dynamic discrete choice methods (DDCM)

Representation of activity-travel chain
under a Markov Decision Process
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Song, Y., Li, D,, Liu, D., Cao, Q., Chen, J., Ren, G., & Tang, X. (2022). Modeling activity-travel behavior under a dynamic discrete choice framework with unobserved heterogeneity. Transportation research part E:

logistics and transportation review, 167, 102914.
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Activity-based network equilibrium and optimization models
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Activity-based network equilibrium and optimization models

Model: Results:
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Activity-based space-time accessibility under uncertainty
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Xiao Fu, Y. Zuo, et al. Measuring joint space-time accessibility in transit network under travel time uncertainty, Transport Policy. 2022.
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Data-driven methods for behavioral modelling: Case 1

Space-time accessibility prediction based on
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Zuo, Y., Fu, Xiao*, et al. 2021. Short-term forecasts on individual accessibility
in bus system based on neural network model. Journal of Transport
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The prediction accuracy is high, and the error is only in the
regions with low population density
Junyi Zhang



Data-driven methods for behavioral modelling: Case 2
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Joint accessibility measure based on
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Data-driven methods for behavioral modelling: Case 3

Urban Crowd Density Prediction Based on

Raw MPSD & Cell tower map
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Fu, Xiao, Yu, G., et al. Spatial-temporal convolutional model for urban crowd density prediction based on mobile-phone signaling data, IEEE Transactions on

Intelligent Transportation Systems, 2022.

Huo, J., Fu, Xiao*, et al. Short-Term Estimation and Prediction of Pedestrian Density in Urban Hot Spots Based on Mobile Phone Data, IEEE Transactions on

Intelligent Transportation Systems. 2021.
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Data-driven methods for behavioral modelling: Case 3

Urban Crowd Density Prediction Based on
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B Behavior Research in Tongjil

« The 15-minute walking accessibility exhibits a pattern of central aggregation with decreasing distribution around the periphery. The
Nanjing East Road area has good recreational and dining resources, while the Xujiahui area boasts abundant sports and fitness

facilities. Jing'an Temple area offers strong medical resources.

The 30-minute public transportation accessibility shows a high central clustering distribution, with the highest accessibility in the

nner-ring central urban districts, gradually decreasing towards the outskirts. The Nanjing East Road area has favorable shopping,
dining, and fitness resources, while Huaihai Road features excellent leisure and entertainment options

Catering Shopping Relaxation Hospital

Spatial distri-
bution of 15-
minute walking
accessibility

Spatial distri-
bution of 30-
minute public
transport
accessibility

020 24
(3

Cheng Xue, Xiao LUO* et.al.Evaluating the Enhanced Emission Reduction Effect of Carsharing
with Minimum Carbon Emission Targets and the Synergistic Pollutant Reduction Effect



J Behavior Research in Tongji| Y

« The research data from Weibo text in Shanghai is processed to extract the intensity of each emotion. The
emotional intensity ranges from 0 to b, where a higher value indicates a stronger emotion. Taking
'happiness' as an example, '0' represents happiness, and 'b' represents very happy.

ST = ., - :
B 4 hrd
1 :1 3250 - 0.4333 ‘}f -

0.4334 - 0.5172 : g \,'-‘;,.

0.5173 - 0.5686 - - -
B o. 5657 - 0.6220 s i ' &l i
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g e S -

Happy emotion Surprise emotion Anger emotion Sad emotion

« A well-constructed environment can bring about more positive
\ : T\ emotions in people: Positive emotions exhibit an increasing trend

) " N | from the inner to the outer areas, followed by a decrease. In terms
( _?’f""*‘f' of the average proportion of positive emotions, it is 57.4% within the
(TR YA 2 inner ring, 54.5% between the inner and middle rings, 49.2%

R e between the middle and outer rings, and 50.4% beyond the outer

| ring. Research units with a higher proportion of positive emotions
mostly possess abundant public service resources and convenient
transportation.

The proportion of positive emotion
in each street in Shanghai



I Behavior Research in Tong ;iR

To quantify the preferences of young individuals in Shanghai towards various facilities, problem options were generated by combining
facilities and levels using orthogonal design. Subsequently, a questionnaire was distributed and logistic regression analysis was
conducted on the responses to obtain the parameters for each facility variable. Finally, these coefficients were incorporated into the

utility formula to calculate the selection probability of different facilities.

(20rthogonal design

(1Elements and levels e e e ======3 (COombining elements and levels)
Elements (facilities) Levell (1) Level2(0) Combination Catering Shopping Entertainment Living Fitness Scenic spot
Catering Yes No scenario
Shopping Yes No L L 1 0 0 1 0
Entertainment Yes No g } 8 } (1) g (1)
Living Yes No 4 0 1 1 0 1 0
Fitness Yes No 5 0 1 0 1 0 1
Scenic spot Yes No 6 0 0 0 1 1 1
@) Calculate the utility of variables ¢ ========e==== (3)Binary logistic regression A=———————
V. variable coefficient Standard Error significance
e’ Catering 3.394 . 463 . 000
P = Shopping 2.139 . 480 . 000
I N vV Entertainment . 843 . 627 . 038
e i Fitness . 590 . 253 . 020
Scenic spot 2.624 . 552 . 000
i=1 constant =7.287 1.011 . 000
| Log Likelihood 986. 44
|
|
I L d L d L d . . . . .
I Facilities Catering Shopping Entertainment Fitness Scenic spot
lm

P 39. 76%

15. 83% 16. 99% 9. 45% 17.97%
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Time-varying feature:
Dimodal distribution
O The pollution concentration during

i N the evening rush hour is higher than
A during the morning rush hour, which
Legend . H H
5 is more Close_ly_ahgned vv|tf_1 the
I 00.00 - 15.00 temporal variations of traffic volume.
I 15.01-20.00
B 2001 2s. 1 .
=00 Spatial feature:
o -n0 Decreasing from the city center to the suburbs
- 33.01 -36.00
wo-300 [ Daytime: Heavy pollution areas are
o _sson concentrated in the downtown area of
suanthe city,
1 ao-swo O Nighttime: Heavy pollution areas shift to
P T, T, ek Pl =G the suburbs with dense logistics parks
% L > i _ [ 57.01-60.00 i ]
- | I 60.01 - 65.00 and industrial zones such as Baoshan
— District and Minhang District.

hy

- : e

'Xtv ?)‘ _ B0 8 AR - - mmso-wo [0 Peak Hours: During the evening rush
C mor;mg - (d) evening —sf'°"°5‘°° | hour, the impact of traffic emissions is

pea peak ————in  more significant.

Qian Wang,Xiao Luo* et.al.Spatio-Temporal Variation and Group Disparity of Traffic-derived NO2 Pollution
Exposure in Baoshan District, Shanghai Based on CALPUFF Model, Transportation Research Part D.(in circulation)
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Period Average  Minimum Maximum Standard eviation
Daytime 35.56 35.23 35.7 0.13
Nighttime 47.89 47.69 48.03 0.11
Morning | 5, o3 50.8 51.15 0.06

peak
Evening 52.26 52.11 52.34 0.05

peak

Bimodal distribution

O Evening peak>Morning peak>Nighttime>Daytime

O The daytime exposure risk exhibits the highest
level of dispersion, followed by nighttime, and
the morning and evening peak hours show the
least dispersion.

=

[ e

Daily variation regularity

PR——
o 48.00
4795
< a7 — .— o—, o—s
B 4790 e T et e \ —
S 47385 ~ /
8 g 4780 \.
\ N\, g ar1s
. -
= 70
|||||
b I h  19th  21st 23 25th b ! b I ho 17th  19th  21st  23rd  25th  27th  29th
(a)daytime (b)nighttime
0
1
10
105 Temme—e—e  FTemeemel, e =
— " -
T 5100 \/ z - '/\
% 0.95 % p ' g e B / ------- \ /._— s
£ g . 4
& 5090 i N o
& L &
& s N g
) ¢ S Y
z z
50.70 52.00
Ith  13th 15th 17t 19th  21st  23rd  25th 27th  29th Lith  13th 15t 17

19th 21 23rd h 27th  29th

(c)morning peak (d)evening peak

Weekend effect

O The exposure risk shows a decreasing trend on rest days,
which is more in line with the daily variation pattern of
traffic volume.

O However, this characteristic is not significant during
nighttime periods.
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Single-peak distribution: The contribution rates of
daytime, nighttime, morning peak, and evening peak are

-

33.8%, 11.5%, 30.7%, and 30.6% respectively, with a 1., X *..-.. i Areas with higher
weighted average of approximately 22.1%. ¥ pans CONLTIDULIONS 1O traffic
o o i = pollution include
| tm—— _ -0
\ |k ‘.g (a)daytime Gnigntim =5 vvusongkou Port,
T - e «..  Baoyang Wharf, and east-

«w west outbound roads,

123 14 26 27 28 4 2 21 213
B B

'\..,__ T \ SRR .. = traffic pollution from nprth-
' \. Eg‘:j;;f;; south highways is relatively
o T ©morning * (evening :_=_ - lower.
peak peak

s :F A - The impa_ct o_f-road tra_ffic pollution on
g b o % males is significantly higher than females.
2 - = maes | NE exposure differences between different
g o " "= gender groups reach their maximum during
o 2 R =T . = the daytime, followed by the morning and

" (@)daytime U migntim ' (omoming peak  (d)evening peak evening peaks, and are the lowest during the

© nighttime.
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@

@

Deduce origin-destination (OD) patterns from taxi data, and furthermore, estimate original traffic emissions by integrating

the initial speed with the COPERT Il model.

Based on a shared network, determine the optimal shared mobility solution with the goal of reducing vehicle miles traveled

(VMT). Integrate the COPERT Il model to estimate dynamic traffic emissions in both oracle and online scenarios.
Utilize the traffic flow-density-speed model to reevaluate dynamic traffic emissions, taking into account the speed effect.

By comparing all emission estimates, further analyze the overall distribution and spatiotemporal characteristics of emission

reduction across different road segments.

COPERT 11| Original
T > traffic \
emission
Taxi Infer| . | Share-ability [Matching Ridesharing |coper | fidcsharing
trajectory »  Trip ODs | petwork > luti > traffic o
data solution emission Emlss?"n
reduction
Mapmatching 1raffic speed
*| in peak/non- |
peak hours j
| ] First order effect |COPERT Ini| SPeed-effect )
» ridesharing

Speed-density model | on traffic speed emission

Xuanyu Liu, Xiao Luo * .Assessing the Economic and Emission Benefits of
Ridesharing in a Megacity: A Case Study of Shanghai. Applied Energy.(in circulation)
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Polluant

Original Oracle Online Oracle -RP Online -RP Oracle-RP1st Online -RP1st Oracle -delta Online -delta
VMT (10%km) 81.860 62.780 69.192 23.31% 15.48%
CO(t) 47.179 36.309 39.998 23.04% 15.22% 21.76% 14.33% -1.28% -0.89%
HC(t) 1.434 1.110 1.222 22.54% 14.78% 22.90% 15.12% 0.36% 0.34%
NOXx(t) 6.011 4.613 5.083 23.25% 15.44% 24.00% 16.01% 0.75% 0.57%
FC(10%t) 5.078 3.916 4.312 22.88% 15.09% 23.84% 15.83% 0.96% 0.74%
CO,(10%) 16.148 12.453 13.711 22.88% 15.09% 23.84% 15.83% 0.96% 0.74%
PM, g(t) 0.152 0.117 0.129 22.88% 15.09% 23.84% 15.83% 0.96% 0.74%
300 50% onona v R
45% 2 ; -
250 40% g In areas of high pollution,
200 35% § the emission reduction
o
= 0% g effect becomes even more
o 150 25% 5 .
= 20% 3 significant.
100 15% g + The Matthew effect leads
50 10% é to an emission reduction
5%
0 0% = effect of carpooling that
01234567 8091011121314151617181920212223 exhibits a single-center
——Original ——Oracle .
~—Online ===Qracle_reduction_perc and concentric pattern.

===0nline_reduction_perc




Tongji University

Spatial Behavior Modeling

De WANG’s Planning Lab



R f‘:§ School of Transportation
2

SOUTHEAST UNIVER SITY

Research history

* Before 2010: To apply conventional behavior models

in large-scale important projects

« EXPO2010 in Shanghai, 5 2tHE<. BHEK

* 2014-2020: Big Data-driver behavior model

* Individual activity models

* For supporting smart city construction

* Since 2020: Spatial-temporal behavior planning

(optimization) models

87
Junyi Zhang
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Applying discrete choice models in EXPO2010 Shanghai
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Visitation simulation and facility planning
for the finalized planning
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Big Data Behavior Modeling: Agent-based mixed logit model

Dynamic DCM

Uijt = xijtﬂ + gijt + }'JtEV(i,j, t) )

o Xijthjcté jetHEV(i,),t)

Fije = / exij'tﬁjt"'Eij’t"'ﬂEV(Ur,t) , VIEPVIEJVLET
j'e]

J: index of alternatives, t: index of time periods

Individual parameter logit (IPL)

UU=xUﬂ+8U, VIEP, V]E}

vjEJ

eXijP
by = [ g, vier
jler€

I: index of individuals, j: index of alternatives

ViEP,VjEJVLET

AMXL framework

Agent-based Mixed Logit

min

Gﬂm.eim_ (ﬁOm EL )

1EP

Subject to

Viim* Bim) + &ijm* = Vijm Bim) + &ijm + b, jZi L, YjEJiEPMEM

1
ﬁ0m=mZBimr vmeM

ieP

ﬁims:ﬁim’s; ViEP;SESO,m,mrEM

I index of individuals, j: index of alternatives, m (t): index of sub-choices
ny > 6 {6

gi
o7 KEK jerk

s.t.

ﬁi(an —an* = ln(.S'U) —ln(Sij*) —tOI, Vi € I,j',j* E],j ij*

Bi(Xnj — Xn;+) = In(S;;) — In(S;;+) + tol, VieLjj €],j+]j

1
=— i vk e K
BO |Ik|ZBI
iel®

I index of individuals, j: index of alternatives, k: index of latent classes



Big Data Behavior Modeling: Agent-based mixed logit model
AMXL framework

Multiagent inverse utility maximization (MIUM)

*

Setting the initial to [0,0,...,0]
* Normalize the variable
Add random utilities ¢;;

Add safe boundary b

Igl]g{(gﬂ — 91‘)2: VU* + SU* = VU + SU‘ + b, ]#j*,V] (:_S}, VieP

*

*

subject to G = ﬁziep o;

[ | 10_10k[1,-1,-1] |10_10k [MNL_coef|| 10_10k[0,0,0] | I10_N_10k[0,0,0] | 10_R _10k[0,0,0] | IO_NR_10k[0,0,0] | V; —V; > e;-c;;-
Time to converge 3032 s

Number of iterations

Plot of &

E
]

Distribution of ;
dl_final £om
L 2000

* Chow, J. Y. J., & Recker, W. W. (2012). Inverse optimization with endogenous arrival time constraints to calibrate the household activity pattern problem. Transportation

Research Part B: Methodological, 46(3), 463-479. 91
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Big Data Behavior Modeling in the practice of Lujia Zhui, Shanghai

26,149 commuter samples in two weekdays,
containing information of five choice dimensions

iid S work S lunch S afterwork M_commute K lunch
693 7:30-8:00 14.0:00-14.0:30 14:00-14:30 Transit Inside the CBD
694 7:30-8:00 11.0:00-11.0:30 17:30-18:00 Transit Workplace

695 7:30-8:00 11.0:30-12.0:00 19:00-19:30 Driving kWorkplace

[ : : : = : : : : : : = +—> timeline
0:00 4:00 8:00 12:00 16:00 20:00 24:00

‘Whole-day activity scheduling choice 7%2*5%3*7 = 1,470 alternatives
H [T] W [[L] W [ T] AW H: home activity
i W: work activity
L: lunch activity

Commute choice (14 alternatives)

1.Time to leave home for work (7) |
Lunch choice (15 alternatives)

Ao RIRRE ) 3.Time to have lunch (5) AW: afterwork activity
IR o el H | T I + '4.Lunch location (3) | T: trips
elated coetlicients: I +
ef'ununute,i’eiommute,i*egzmmute,i*eizork,i‘ Related coefficients: Afterwork choice (7 alternatives)
0! oL pdur e L 5.Time to finish work(7)

work,i* Ywork,i* Vwork, Gdes,l

6 s Ol ;

lunch,i> Ylunch,i> ¥ lunch,i* -:“I
edes,Z ot edur A

lunch,i® Ywork—lunch,i> Ywork,i

Related coefficients:

dur dur dur
eafterwork,iv einter,i' ewt)rk,l

BAOSHAN DISTRICT

ISTRICT

Changxing

MINHANG DISTRICT

FENGXIAN
DISTRICT

P Study area
—— 1K-SHCO07 dataset
— 26K-SHCO07 dataset‘

92



bl

CBD

AR IER A

TR A

TR
Uik o

93

0:00

N

-]
E5CE5)

LHZH RS BEHARREK

—

N
e
e

3 THIR B

L)

8:00 - 3F

: : ' :

12:0005 4K 1R
] l

LfE

17:00 FHEEI 5
| l ]

g EZ55)

A

8:00

V2 -

12:00

T1ERE#

FIHHE

16:00

T 1ER

1 ]
T T T

24:00

EFME.
Fis

Ak

FEUEL FTH5F

8:00
4

— —> [ a4
DR EUE L FHHF

> e

Big Data Behavior Modeling in the practice of Lujia Zhui, Shanghai

7000 Time v.s Commuters' Activities
~@- Leave home l
~e- Amive gate \
6000 1 _o- Arrive workplace ¥ IR
Begin lunch e
8 5000 4 —®— Leave workplace £E \"‘
a —e— Leave gate ! ‘1,\‘ W
ﬁ N= e 3 —e— Anive home fahy
E / ® 4000 T
@ R
s RS
@ 3000 PaAn
2 TR
/| \ e
2 2000 + ",’. 3 \.“
g \ \“
1000 4 &
v 53
. -
K S S S S e e T T T P S S S g X S I )
) /I\£| Hj_l\é];miu 7 NP A7 a2 P P 7 AT P 6P P 0?’ > 0‘." «;""’ @'.5 ,&’.5 \:\’b x*’?’ \9’5 ,‘Q-‘? ’1:\-’," ,Q;"’ {,»’5
Time period
— 174 A A T T :
V= Vwork,i + Vlunch,f + Vafterwm"k,i + Vcommute,i + Vwol"k—lunch,i! Vier
A — 175D Dur
Vwm“k,i - Vwm"k,i + Vwm"k,f
= SDEporki + GoriciSDlworii + F i i Plavorki
= Ywork,i work,i work,i work,i work,i work,i
ur .
work,i ln(Dwork,i) ) vVieP
A — es,1 1 es,2 2
Viineni = Gruncn iSDEnmen; + diunch,iSDLlunfh,f + gliunch,ideslunch,i + funchideszumh,i.
VYiEeP
VA = &Y, ;In(D )+ & In(Dyork) In(D : ViePp
afterwork,i — Yafterwork, afterwork,i inter,i work,i afterwork,i)»
T _ .
Vcnmmute,i - egommute,itcommute,i + écnmmute,iccnmmute,i + g'c”gmmute,imcnmmute,in vieP

T _ .
anrk—lunch,i - dvork—lunch,itwork—lunch,ia VieP

93



Big Data Behavior Modeling in the practice of Lujia Zhui, Shanghal

26,149 samples: coverage after 28.9 hours after 82 iterations

10.0 - - 10.0 . . 10.0
—— t_commute —— e_lunch
7.5 —— c_commute 7.5 —— I_lunch 7.51
—— m_commute —— desl_lunch i
5.0 1 —— e_work 5.0 4 —— des2_lunch 30
251 —— |_work 254 ~—— t_work_lunch 2.5
— pl_work ~— dur_work
3 0.0 —— dur_work ] 0.0 - 5 0.0
s : - L = s .
—2.5 -2.51 -2.51
=5,0 —5.0 ~5.0 1
5.0 S0 —— dur_afterwork
=7.51 -7.5 -7.54 ~— dur_inter
—— dur_work
-10.0 T T T T -10.0 T T T T T -10.0 T T T T T
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
Number of iteration Number of iteration Number of iteration
1.0 : 1.0 T U . r
| mmm t_commute = e _|lunch ! ! |mmm dur_afterwork
| W c_commute W= |_lunch i {mmm dur_inter
0.8 - mmm m_commute 0.8 1 = desl_lunch - 0.8 A ------mmmmmmbemme b dur_work
| mmm e_work = des2_lunch ' i T
: 1 | mmm |_work mmm t_work_lunch | :
o)1 UNURNRNRIRINS (IS W TSR WET——— . | - 0.6 e e e b
2z ! ! ; = pl_work z == dur‘_work 30.6 : :
a . W dur_work a i =
& ! 8 § ‘ |
- B e
L S e
: ; 0.0 . .
-30 -20 -10 0 10 20 30 ~30 —20 ~10

Value Value Value
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In-sample and out-of-sample accuracy

Commute choice
(14 alternatives)

Lunch choice
(15 alternatives)

Afterwork choice
(7 alternatives)

Whole-day schedule
(1,470 alternatives)

In-sample accuracy (26K-SHCO07 dataset)

MNIL -aggregated level
AMXI -aggregated level
MNL-individual level
AMXL-individual level

81.40%
89.61%
13.70%
74.67%

85.53%
86.71%
31.16%
78.43%

92.88%
98.87%
35.76%
80.93%

7.50%
80.89%
1.37%
47.18%

Out-of-sample accuracy (SHC14 dataset)

MNL-aggregated level
AMXI -aggregated level
MNL-individual level
AMXL-individual level

82.50%
75.79%
13.53%
30.74%

89.92%
86.73%
27.93%
24.25%

89.75%
96.07%
28.99%
37.71%

5.21%
61.68%
1.06%
4.33%

Compared with DCMs, AMXL considerably improved:

« In-sample accuracy of individual-level prediction (from 1.37% to 47.18%)

« Out-of-sample accuracy of aggregated-level prediction (from 5.21% to 61.68%)

True label

True label

Comparison at the aggregated level (MNL)

Big Data Behavior Modeling in the practice of Lujia Zhui, Shanghai

Comparison at the aggregated level (AMXL)

= observed
mm prediction_MNL

2000

1500

1000

500

ing.6:30-7:00
ng.7:00-7:30
ng,7:30-8:00
ng,8:00-8:30
ng.8:30-9:00
ng,9:00-9:30

e
=
(s
2
G
5

ansit,8:30-9:00
ansit,9:00-9:30

Driving.9:30-10:00

Transit,9:30-10:00

£ 8 8

D
D
Di
D
D

T

T

5
MNL-aggregated level: out-of-sample
accuracy 82.50%

Confusion Matrix (MNL)
Driving,6:30-7:00
Driving,7:00-7:30
Driving,7:30-8:00
Driving,8:00-8:30
Driving,8:30-9:00
Driving,9:00-9:30
Driving,9:30-10:00
Transit,6:30-7:00
Transit, 7:00-7:30
7:30-8:

Predicted label

(e) MNL-individual level: in-sample
accuracy 13.70%

Confusion Matrix {MNL)

L 0.8
Driving,6:30-7:00
Driving,7:00-7:30 07
ivi 06
Driving,9:00-9:30 0.5
Driving,9:30-10:00 i
Transit,6:30-7:00 -
Transit,7:00-7:30 03
Transit,7:30-8:00
Transit,8:00-8:30 02
Transit,8:30-9:00
Transit,9:00-9:30 0.1
Transit,9:30-10:00 i

Driving,6:30-7:00

Predicted label
(g) MNL-individual level: out-of-sample
accuracy 13.53%

True label

True label

== observed
me prediction 10

2000

1500

1000

500

g 2 32 g o g e g
8 888 8 g 8 a2 8
KRB o® o s ® G 3
S & o g ¢ g 9 e =
a9 m o m Qi N 2 g
L ) 2 e 5 a &
% % & 5 & G g & & g g g 8
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5 3 253235 £65 § 2
;;;; = B B8 5§
Q 8 86 8 o - L

5 =

(d) AMXL-aggregated level: out-of-sample
accuracy 75.79%

Confusion Matrix (AMXL)

. 08
Driving,6:30-7:00

Driving,7:00-7:30 o
Driving,7:30-8:00

Driving,8:00-8:30 06
Driving,8:30-9:00

Driving,9:00-9:30 05
iving,9:30-10:00

riving,9:30 o

: 03

- 02

:00.9: 01

y 00

7:00
7:30
7:30-8:00

8:30
9:00
10:00

6:30-
7:00.
8:00
8:30-

Transit,9:30-

Driving,
Driving,
Driving

[}
Predicted label

(f) AMXL-individual level: in-sample

accuracy 74.67%
Confusion Matrix (AMXL)

Driving,6:30-7:00 1] L
Driving,7:00-7:30 07
Driving,7:30-8:00

Driving,8:00-8:30 06
Driving,8:30-9:00

Driving,9:00-9:30 05
Driving,9:30-10:00 i

Transit,6:30-7:00

Transit,7:00-7:30 03

Transit, 7:30-8:00

Transit,8:00-8:30 0.2

Transit.8:30-9:00

Transit.9:00-9:30 0.1
Transit,9:30-10:00 -

Driving,6:30-7:00

Predicted 5
(h) AMXL-individual level: out-of-sample
accuracy 30.74%
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Choice shift predicted by MNL and AMXL

96

S S5 Choice shift predicted by MNL and AMXL Time to leave work predicted by AMXL Cumulative density function of individuals’ utility
- MNL — MNL 1.0
| mmm Benchmark 2 = Benchmark
2.0% A e AMXL 2.0% - m AMXL 3502 mmm Postpone_1h ~— Postpone_lh
30.0% B Postpone_2h 0.8 4 = Postpone_2h
1.0% 1.0% A o
25.0% g
0.0% A 0.0% P & 0.6 1
. 0 >
—1.0% -1.0% A 15.0% - g 0.4 4
£
~2.0%- ~2.0% 10.0% S 5]
B T 5.0% 7
S 2888888888883 S 3883383888888 E%S — 001 :
N N o o O N N o O O O N v v : L X 7 T L)
2 s 2223232528 3 232222353333 g g3 S 2 S 2 S 2 S 0.0 25 50 7.5 100 125 150 175 20.0
3; ,‘3 : 3 g éoi_ E & K R ® & & g 2 S : g-_ 2 3 § © =~ ~ & & o g é ﬁ 3 2 R 5] 5‘ Utility of the chosen alternative
© 9 oS B o TE R R E T B o g 2@ QD E R G F B R D oS =) =) =) =) o =) =3
S 83 Y kS 5 5 2 < c c c = = @ = = = = EE e < c = c = c @ M S M b=} M S Il
2 & & 2 2 2 5 8 8 9 F ¥ &8 F 22 & £ £ 23 48 & & E & E £ ~ < o & & S S
8 6 8 8 48 48 §fFfF FFFFFEZ 8§ 848 488 8 F5F FF F FFE — — - — — ~ N
(a) Peak-hour driving time decreased by 10% (b) Peak-hour driving time decreased by 20% (a) Simulation results (b) CDF of utilities
maxZ = c1x; + €% + -+ + CgoXgo (20) g — . g | — . S — .
P @ \ A \ A N\
. - \ e \ v \
subject to: % ¥ e
! \ { \ !
Ve \\ \¢ \\ \e
— es,1 1 _ R X A X N
Cp = E (%ark—zunch,iAtwork—zunch,i + OuneniAdeSpnen i) » b=1,...,80 Q1) pNe= \ \ “S(v S <
- g g
¥ L ¥gg
\, \, \, A
e < N Y X ‘ 3
|Py|x1 + [Pz|xz + -+ + |P3|xgo < B (22) —
+ + + < K K=5 B =2000 \ f K=10 B =5,000 \ / K=20 B =5000
X X e X < Zvalue = 193127 \ / Zvalue = 362065 \ I Zvalue = 431754
1 2 80 (23) legend i 7 legend i 1 Legend
K Location of the restaurant N K Location of the restaurant N K Lacation of the restaurant N
x'l ) xz FN xBO € {0 ,1} (24) B Selected street block B Selected street block B Selected street block
The CBD area o S The C8D area i he €80 area 2P lid o
(a) K=5, B=2,000 (b) K=10, B=5,000 (¢) K=20, B=5,000
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