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] DCM vs ML Aaf

To develop more better infrastructure and services, we are
conducting analysis based on behavior models.

O Prediction Accuracy: issue of model parameter estimation

O Model Interpretability: issue of understanding model (behavior)

Discrete choice model Machine Learning
P() _ CXP(,UVl-)
l)= ( ) Black Box
Zexp ng
jeC
Source: Small data Source: Big data
Function: Liner Function: Non-Liner
Accuracy(Model fitting): Mid (Low?) Accuracy(Model fitting): High
Interpretability : High Interpretability: Low
Good understanding travel behavior ? NOT understanding travel behavior ?

Considering the possibility of collaboration between DCM and ML
from the perspective of Aaccuracy and Interpretability



] Overview of ML

= P= o

Supervised Learning

v

Continuous Categorical
Target Variable | | Target Variable
Regression Classification

|
Y

Machine Learning Types

| Unsupervised Learning |

l

Target variable not
available

<

Generative learning

Ex. GAN

Reinforcement Learning

B

Housing Price Text
Prediction Classification

Clustering Association
I |
Y Y
Customer Market Basket
Segmentation Analysis

Categorical Target variable
Target Variable not available
Classification Control
I I
Y Y
Optimized Driverless
Marketing Cars

https://ieeexplore.iecce.org/document/8612259
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How to collaborate DCM and ML ?
Application to research field

- You can (not) apply behavior model-



4l Our on-going research topics Aaf

1. Al based road traffic observation system

« Automatic traffic data collection using CCTV camera for whole
national roads managed by the MLIT.

« Apply to CNN (YOLO) and transfer-learning by original data.
« Development of annotation-free self-learning algorithm.

2. Data generation by multi-data fusion

* Fusion of multiple data source such as national census, traffic
count and probe.

« OD data generation by Gaussian Process model.
« Activity data generation by GAN.

3. NN based choice model and Activity simulation

* Non-liner choice model by neural network (NN)
« Consider explainability of Machine learning.

 Develop the NN type activity simulator and application to
Tokyo Metropolitan area.



Hefl Summary of Topic 1 ]

1. Al based road traffic observation system
« Apply to CNN (YOLO + DeepSORT) and transfer-learning by
original data.
* Obtained high accuracy of over 95%
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Hefl Summary of Topic 1 Aaf

1. Al based road traffic observation system
« High accuracy detection of car type, bicycle, pedestrian
« Optimize count line in CCTV
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Hefl Summary of Topic 1

|

1. Al based road traffic observation system
« Development of annotation-free self-learning algorithm.
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Bl Summary of Topic 2 Aaf

2. Data generation by multi-data fusion
* Fusion of multiple data source such as national census, traffic
count and probe.
* Link volume estimation by GCN+LSTM.
« Realtime OD data generation by Gaussian Process Regression.
« Activity data generation by GAN.

GCN+LSTM CTGAN TVAE
Generate link Vol -] - .
Observed-Predicted Plot
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4l Our on-going research topics

3. NN based choice model and Activity simulation
* Non-liner choice model by neural network (NN)
« Consider explainability of Machine learning.
 Develop the NN type activity simulator and application to
Tokyo Metropolitan area.
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4l Main Contents

|

1. Background and Objective of the Study
2. What is XAl(explainable Al)?

3. Application of XAl

4. Change Neural Network structure
and comparison of MNL and NN

5. Activity Simulation in Tokyo area

11



g4l Contents

|

1. Background and Objective of the Study
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Hef Background & Objective Aaf

Travel Behavior model

Discrete Choice Model (DCM) anourecy

 Highly interpretable

* |t has been used from the viewpoints of interpretabity
“interpretability” and “logicality”

Machine Learning (ML)

 High descriptive performance
 Black box models, lack of interpretability

* Development of interpretive indicators(Explainable Al: XAl)
of sensitivity and predictive basis
>Pl, PD, CPD, SHAP

. DCM

Applicability of ML in Travel Behavior Models

»Development of travel behavior model with neural network
» Applying XAl to understanding travel behavior o



g4l Contents

2. What is XAl(explainable Al)?
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B4l Explainable Al(XAl) Hab

Explainable AI(XAI) is a tool for interpreting machine learning
» Mainly focused on improving accuracy in “regression” and “classification”
* It can add interpretability to black box models

Accidents due to
Al : :
inadequate testing

@ el } Fairness | Transparency

Abuse of Al Improvement of Accountability
Al capabilities

malfunction

* In meeting fairness, transparency, and accountability,

»Necessity to know about prediction basis and learning process of the model
» The basis for the output of the model
»How much the feature values affect the prediction values

* Developing a mode choice model with ML, and applying XAl to it.

« Comparing interpretability and accuracy with discrete choice model

15



gl Explainability of ML

B

In machine learning, there is a tradeoff between the complexity

(= accuracy) of the problem and its explainability.

COmPleX|ty LOW expandability

model
Deep Neural Network

(CNN, RNN, GAN)
Boosting / Bagging model
(XGBoost, RF)

Tree model

Liner / Logistic
Regression

Rule based model

explainability

HIGH expandability
model

16



gl Explainability of ML

Tree model
X2 |

0 O ©
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gl Explainability of ML

CNN model

W 00 =y M e O
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gl Explainable Al(XAl)

(1)Permutation Importance(Pl)

»Calculate the feature importance of the model by randomly
shuffling features.

»Determine which features are important for the accuracy
of the model.

(2)Partial Dependence(PD)

»Calculate the average relationship between features
and predictions to see how a particular feature affects

the model’s predictions. >

. . Feature X
»Determine whether the feature and the predicted value
are proportional or inversely proportional, linear or nonlinear. Group

Group2

=

Features

»
»

Importance

[
»

probability

[

(3)Conditional Partial Dependence(CPD)

Group3

»Indicators grouping PD.
»determine heterogeneity by group.

(4)SHapley Additive exPlanations(SHAP)

»Calculate the contribution of the features to the predictions.

»Shapley Value in Cooperative Game Theory is Reflected in Machine Learning.
»Shapley Value: An index used as a basis for profit sharing.

»interpret why model outputs such predictions.

»
»

Feature X

19



gall Comparison of Explainable Al (XAl) SLE

Comparison of analytical granularity

Macro

Micro

Support for micro and macro analysis
m m » Instance-by-instance micro analysis
« Can be used as a macro method like PI,PD
| SHAP_

by aggregating and visualizing
« Explain specific examples later

Comparison of usage

Weak usage
relatively safe

Strong usage
Caution is needed

Model debugging
» Determine if it is consistent with prior knowledge
or if there is unexpected behavior

Interpret black box models

* The model emphasizes feature A

» As the feature value increases, the predicted value increases
—One aspect of the model can be misinterpreted

Exploring causality
* Interpret model behavior as causality
—Need to use methods of rigorous causal inference together

20



g4l Contents

3. Application of XAl

21



el Mode choice model with Neural Network @Bl

P train
P bus

PCClT'

Accuracy
Pmotorcycle 0 .945

P bicycle

Features

Pyaik
« The middle layer has 4 layers.

e Number of units is in order of 100,100,50,10.

Input Layer | Tokyo Person Trip data [gellisN 4\,

Gender, Age, Occupation, Income,
Travel time, Stay time, Purpose,

Departure facility, Destination facility, Choice probability of each mode
Departure zone, Destination zone, Train, Bus, Car,
Departure time, Destination time, Motorcycle, Bicycle, Walk

Number of trip, Each mode fare,
Each travel time

However, this model is poor interpretability in this states.
— apply XAl to NN to give interpretability 29



Hufl Permutation Importance(Pl) R
» Applying Pl to NN transportation mode choice model

»Pl: calculate feature importance

DepartureTime |
ArrivalTime
Time_Motorcycle
Time_Car |
Time_Walk |
Time_Bicyle |
Time_Bus |

Destination_KeikiZone -
Cost_car -

Cost_bus -

Cost _train -
StayTime -

Age -

Purpose -

Gender
TourOfNumber -
DestinationFacility
OriginFacility -
EmploymentForm -
Income

Egress -

Access 1 Bl Permutation Importance

« Each mode travel time and cost are important

* Departure and arrival time are more important
than each travel time and costs.

« ltis possible that there is a possibility that
they select the mode that they have decided.

Features
444__—--II

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Permutation Importance 23



gl Partial Dependence(PD) Aaf

PD: The relationship between features and predictions
»horizontal axis: Travel time(minutes), vertical axis: Choice Probability
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« Changing travel time of each mode.
* It was confirmed that there was a probability transition with an inflection point
« Capture behavioral changes that have an inflection point. 24



g4l Conditional Partial Dependence(CPD) mal

Choice Probability Choice Probability

Capturing the heterogeneity of each group
»horizontal axis: Travel time(minutes), vertical axis: Choice Probability

1.0 1.0 1.0
0.8 0.8 0.8
0.6 0.6 0.6
0.4 o — 0.4 0.4 fj
0.2 — 0.2 0.2
0.0 0.0 Ei = 0.0
0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120
Time_train Time_bus Time_car
1.0 1.0 1.0
Work
0.8 0.8 0.8 .
Business
0.6 0.6 0.6
0.4 0.4 0.4 Private
& seneme
0.0 | - = 0.0 0.0
0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120
Time_motorcycle Time_bicycle Time_walk

« Classifying trip purpose into 5.
« For example, people who commute to work(commuting to work or school)
tended to choose trains more easily than other trip purposes.

* No significant heterogeneity was confirmed from the results 25



g4l Shapley Additive exPlanations(SHAP) e

Summary plot
»Visualization of the contribution of features to the objective variable

DepartureTime
ArrivalTime
Time_walk Similar to PI, but different in the
fime_car definition of what constitutes
e an important feature
Time_bus ﬂ
Time_bike

Importance based on model

performance degradation
SHAP

Origin_KeikiZone

Destination_KeikiZone

Cost_bus
Cost_train How much does it affect the
Cost_car objective variable
StayTime
Egress
Access v
Gender . Trip departure and arrival times have
DestinationFac'iAI\ig'}cj : \kl)viilyi(cle a large effect, and it is thought that
B = ?nu;torcyde the fixed mode is selected.
0.0 01 0.2 03 0.4 05 0.6

SHAP value

26



el Shapley Additive exPlanations(SHAP) Aaf
“Waterfall plot” and “Dependence plot”

Waterfall plot Dependence plot
TimeWalk 0.02 oo ’ - 800
ArrivalTime iy 5;' i-‘.i" oy
DepartureTime g 0.01 :":l": v 1 ;’T'g £ P
Destination_KeikiZone © 3‘ : . . Y
- . > 0.00 See (o)
. % o
. ~004 &)
Oorigin Keiki_Zone w 200
- —0.02 1
0.0 01 02 03 04 05 06 0 20 40 60 80 100 120
SHAP value TripTime of train
Transition of an individual’s choices Relationship SHAP and feature
* Probability transition of an individual’s « The travel time of the train positively
choice of railroad increases the choice probability.
* Inthe discrete choice model, it was the By adding another feature,
parameter of the entire data, but in SHAP, we can analyze interrelationship

it is possible to see the individual params.  « |t is easy to select the train for trips that the
travel time of the train and cost of the car

are large. 27
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4. Change Neural Network structure
and comparison of MNL and NN

28



all Change mode choice model(NN+MNL) Bl

Networks reflecting elasticity
»Considering elasticity by changing the model structure like MNL

» Sifringer, Brian, Virginie Lurkin, and Alexandre Alahi. "Enhancing discrete choice models with
representation learning." Transportation Research Part B: Methodological 140 (2020): 236-261.

Pirai  _ yMNL NN

Each

. Wy Pbus
Travel time v ‘ Accuracy 0.854
¢

Wi ' Fear Wergin = 0.876

Wi, Wpus = 0.318

i ‘ Pmotorcycle Wear = 0.635

Features \ ‘ p Wineycte = 0.277
bicycle Wbicycle — —0.104
Wwalk = —0.927

 Avoiding travel time from the hidden layer by skip connection
and incorporate it linearly.

 Estimation results show that the parameters for bicycling and walking
are negative.

» The travel time, which is an important feature, is incorporated linearly,
the accuracy of the model is inferior to normal NN(Dense NN acc 0.945). 29



gl Estimation of MNL

Bl

Estimated by MNL for comparison with NN and NN+MNL

MNL:Generic parameter

MNL.:Specified parameters

Generic parameter

The travel time parameter
is negative and satisfies
the sign condition

Specified parameters

Variable params t-value params t-value
ASC_train -0.305 -0.887 -0.0285 -0.0743
ASC_bus -1.10 -5.565 *** -2.15 -7.41 ™
ASC_bike -1.95 -8.82 *** -1.86 -4.91 ***
ASC_cycle 1.29 7.97 *** 1.38 5.20 ***
ASC_walk 4.03 16.5 *** 3.66 12.7 =*
Cost -0.0303 -0.725 -0.0160 -0.398
Short trip dummy 0.785 257" -0.0199 -0.0537
Access distance 0.670 9.43 *** 0.806 9.16 ***
Urban dummy -1.99 -11.0 *** -1.01 -3.81 ***
Travel time -0.166 -15.8 ***

Train travel time 0.176 28.5 ***
Bus travel time 0.0187 2.62 *
Car travel time 0.0789 14.6 **
Motorcycle travel time 0.0230 1.32
Bicycle travel time -0.0773 -5.93 ***
Walk travel time -0.105 -10.2 ***
Samples 1000 1000
Init log likelihood -1779 -1779
Final log likelihood -731 -695
Rho bar square 0.583 0.601
Accuracy 0.761 0.817

Compare with NN+MNL
Parameters of bicycle and
walk are considered
negative because the
mode avoids long distance
travel.

The positive/negative of
the parameter is the same
as the result of NN

30



gl Comparison of probability transition

Choice Probability Choice Probability
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(

o
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Time_car

100 120

PD MNL+NN
PD NN

MNL gene
MNL spec

é/

o

20 40 60 80
Time_walk

100 120

* "MNL same” params are common, so it is similar outlines for all modes.
* “MNL different” and “MNL+NN” model have similar outlines because the

signs of the parameters are the same in all modes.

 Although we do not know the true value, we believe that NN with
nonlinearity can express the actual behavior well.
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Bl Comparison DCM(MNL) and NN

DCM(MNL)

generic ‘ specified

NN

DCM+NN

Interpre-
tability

Accuracy

Logicality

Use ML when descriptive performance is more important than logicality

Feature parameters
Sensitivity analysis
Elasticity
Probability transition

Acc 0.761 0.817

Slow compute speed

Utility Function

Feature Importance

Sensitivity analysis
(Nonlinear)

Group heterogeneity

Feature contribution

Overall and individual

parameters

Acc 0.945
High computation speed

AN

Minimize loss function

Feature Importance

Sensitivity analysis
(Linear)

Group heterogeneity

Feature contribution

Overall and individual

parameters

Acc 0.854
High computation speed

AN

Minimize loss function

32
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5. Activity Simulation in Tokyo area
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4] Structure of NN based Activity model Aaf

Features

Activity

Dept. time

Location

Mode

Features from Tokyo PT data

All Features

Without Dept. time, Arr. Time

Without zone infomation

Without Main mode

P train
P bus

PCClT

P bicycle
P walk

Target val.

choice
HWH, HSH, HPPH.--

choice
5:00, 6:00 ---21:00

choice
FRAHEK, B, STRX.--

cnoice
Train, Bus, Car

Motorcycle, Bike,
Walk




2H Structure of NN based Activity model

Goodness of fit
- NN has High hit ratio more than MNL.
- All models showed improved generalization performance.

Forecasting
- More accurate prediction of activity than DCM

Hit Ratio Activity within day
5:00 —
Original NN DCM
Hit ratIO(MNL) e Train | (60) Train | (60)
Hit ratio (NN)57 0%
. . . (o]
ALY | ©
. 42.1%
tocation D 52 15:00
_ 56.1%
Dept. time . ©' 2%
54.4%
Mode | °°
0 0.5 1 25:00
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2.l Example of prediction result

5:00

7.5

10:00

12.5 -

15:00 +

20:00 -

22.5 -

28N

HWSH |

Home->Work->Shopping->Home |

HPSH |

Home->Private->Shopping->Home |

HWPH |

Home->Work->Private->Home |

5.0 5.0
Original NN Original NN Original NN

7.5 7.5
10.0 10.0 1-
129 125 Bicycle | (95)
15.0 15.0

Private | Private

17.5 17.5
20.0 - -1 20.0+--
22.5 1-- - 22.51--
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Application to Tokyo Metropolitan area

Simulation analysis of earthquake in Tokyo

» Setting hypothetical earthquake scenario.

> The earthquake was assumed to occur at 6:00pm.

> Visualization of 1 hour (6:00-pm7:00pm) trip “uncontrol” and
“control” case from the time of the disaster.

uncontrolled controlled

Tsukuba  Tsychjura

Tsukuba  Tsuchiura

Inashiki

Inashiki

. Toride
KaslTiwa
\ Inzai
Narita f

Narita
Tomisato

Tomisato

* /. Ichihara - \(.h\har.a

Sodegaurd Sodegaura Mobara

Kisarazy Kisarazu

Futtsu Futtsu -,

“ Vol " YoRifuka
12/25/2022 Isumi N 13/25/2022 Isumi
5:53:35PM - 6:53:41 PM 5:53:31PM - 6:53:51 PM

Miura




Structure of Activity model nt

Ualelelalige]|CTe@® assume “freedom” departure time choice
|

3141 1308 1

©
50000 | I Original © 428 {14730 4483 3
|- Simulation N 2502
@ 4827 PRAEE) 2390 1 2
| o 1695 12023 1835 2 2
40000
| e 900 11323 1792 1
2 = 1 563 10892 2093
E I a : 301 9152 1214 C .t t d'
5 200007 | 8 ; 747 8462 1595 Oncen ra e .
2 < 2 329 10558 2493
§ 20000 A I © 653 14356 3203 1
I e 789 11651 109,
~ 13299 471
I e 500 7
100001 | 2 2350 13043 2098 53
& 34 1784 8874 1207
I ] 4 478 3532 3379

5 6 7 8 9 10 11 12 13 14 15 16'17 18 19 20 21 5 6 7 8 9 10 " 12 13 14 15 16 17 18 19 20 21

Origin Time 1 Pred.
Disaster

controlled assume “control” departure time choice
(Divide departure time into three groups)

I . © 3141 1308 1
50000 4 | erglna ' © 428 14739 4483 3
I Simulation ~ 2502 JREN 5063
| © 2390 1 2
° 1695 12023 1835 2 2
40000 1 I ° 900 11323 1792 1
a | - 1 563 10892 2093
= f o 301 9152 1214
5 30000 - I n * D d .
0 Qe 747 8462 1595 |Sperse trlp
2 [ O = 2 329 10558 2493
g ° 653 14356 3203 1
Z 20000 - I ; 789 11651 10 —
= 7005 2844 6488 8709
© 9140 10267 2526 7865
10000 1 = 809 9491 6799 445
5 14 1178 9497 1210
< 2 334 3675 3382
5 6 7 8 9 10 1" 12 13 14 15 16 1

5 6 7 8 910111213141516'1718192021

Origin Ti

Disaster Pred. 38



Thank you for your attention!
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el Conclusion ]

* Transportation choice model by machine learning
* Interpretability is taken into consideration by the interpretation index
(XAl) in machine learning
 PI,PD,CPD,SHAP
« Ability to interpret models from both macro and micro perspectives

« Elasticity can be reflected by changing the model structure by skip
connection

* Discrete Choice Model and Machine Learning “Proper use” and
“Combined use”
Proper use
* Discrete choice model is used when theory is required such as decision
of transportation policy
« Use machine learning when descriptive performance is more important
than theoretical
Combined use
 Using results derived from a theoretical model (discrete choice model)
and a high-precision model (NN) makes it possible to make more
accurate decisions.

4



4l Permutation Importance(Pl)

* Applying Pl to NN transportation mode choice model

»Pl: calculate feature importance

|

DestinationTime -
OriginTime -
Time_bike -
Time_car -
Time_walk
Time_cycle -
Time_bus
distance -
Time_train -
Origin_KeikiZone A
Destination_KeikiZone -

o Cost_.car{ mmm « Each mode travel time and cost are important
35 . . .
® Cost busy WM * Departure and arrival time are more important
L Cost_train - | th ht ¥ d t
StayTime|  # an each travel time and costs.
Age{ 1 « ltis possible that there is a possibility that
posel they select the mode that they have decided.
endaer A
TourOfNumber - |
DestinationFacility \
OriginFacility A \
EmploymentForm - |
Income -
Egress -
Access 1 BEE Permutation Importance
0.0 0.1 0.2 0.3 0.4 0.5 0.6
Weight
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gl Partial Dependence(PD)

Reflected the selection probability of other modes
»horizontal axis: Travel time(minutes), vertical axis: Probability

Probability

Probability

1.0

0.8

o
o

o
»

©
[N]

o
o

=
o

o
©

o
o

o
»

©
[N)

0.0

Time_motorcycle

Time_bicycle

1.0 1.0
0.8 0.8
0.6 0.6
e L w— 0.4 [imppwennttiILE
A B R N A ST L SR I
............................................................................................. —
LT TOPP 0.2 e 0.2 R T
A v .|::::'_'. ----------- P T te ..-.........'-'-'-"’""-‘-
TR T THITT T T T 1T IT 0.0 | ce——— L LT 0.0 PP T T T T n e e o
0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120
Time_train Time_bus Time_car
1.0 1.0
----- Time_train
0.8 0.8 . T!me_bus
= Time_car
----- Time_motorcycle
0.6 0.6 [ L Time_bicycle
................................................ e Time_walk
............................................................. 0.4 0.4
‘_. LeeferrTeeeen 2.
Tael” S R LT S B A I R LTIV < O e TP . P R I S AT
..... oot 0.2 0.2 R LA
m——— 0.0 0.0
0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120

Time_walk

* Add stochastic transitions of other modes in addition to the stochastic transitions

of the target mode

» Confirmed it, the nonlinearity of other modes was confirmed

L3



gLE Shapley Additive exPlanations(SHAP) Akl

beeswarm plot

»|n addition to the summary plot, a graph reflecting the size of the feature value

Time_walk
DestinationTime
OriginTime
Cost_train
StayTime
Time_bus
avail_car
Cost_car
Time_car
Time_bike
Cost_bus
distance
Time_train
Age

Egress
Access
avail_bike
avail_walk
avail_train

avail_bus

0.4

-0.2 0.0 0.2 0.4
SHAP value (impact on model output)

0.6

High

Feature Importance in railroad
« Larger feature values are redder,
smaller feature values are bluer.
« The higher the feature value,
the more important it is.

Feature value

For travel time
The greater the travel time,
the greater the SHAP value
will also increase.

4

Greater probability of choosing rail

44



el Permutation Importance(Pl) el

Importance of features by Permutation Importance
»Index for calculating feature importance in a model

» Shuffles certain features, resulting in worse prediction accuracy
— Important features

random shuffle

\ 4

PersonID Age Gender Ttﬁr‘:: I PersoniD Age Gender 1;';?:":'
1 24 M 15 1 24 M 30
2 15 F 30 2 15 F 20
3 30 M 35 3 30 M 15
4 46 F 20 4 46 F 35

»Can be calculated by performing the same process for each feature

» A feature is important in the model if the error in the model
predicted by the randomized feature is large.

»The difference of the loss function is the feature importance.

»Importance for model accuracy and causal interpretation is
Inappropriate

> It is important to perform deeper analysis on features of higher
Importance
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Hef| Partial Dependence(PD) ]

How each feature affects the model’s predictions
»Calculate the average relationship between features and predictions

>t is possible to determine whether the model’s predictions
increase as the feature size increases, or whether the relationship

is nonlinear
»Analyze sensitivity by moving only certain features while fixing other features

X, X; X, prediction Averages forecast results

1 2 5 f(1,2,5) 1
1 7 2 f(1’7,2) } §{f(1;2;5) + f(1,7,2) + f(1,3,4)}

13 4 f(134)

Xo X1 X3 Xo X1 X, prediction

2 5 2 2 5 f(225) 1
I o > SUQ225) + (27,2 + f(234)

2 3 4 (234

Xo X; X, prediction

3,2,5 1
;EB,ZZ; } §{f(3'2'5) + f(3,7,2) + f(3,3,4)}

f(3,3,4)
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gLE Shapley Additive exPlanations(SHAP) Akl

» Reflecting Shapley Value in Cooperative Game Theory in Machine Learning
« Shapley Value: Indicators used as criteria for profit sharing

« Used to distribute the profits from the cooperation of multiple players
according to each player’s contribution.

Predicted
participant reward feature Change
A 6 Xo 1.0
B 4 X4 0.7
C 2 } X, 0.3
A,B 20 Xo, X1 2.5
Replace each feature
AC 15 in the machine learning Xo, X2 1.5
B,C 10 model X5, X3 1.0
AB,C 24 X0, X1, X, 3.0
Cooperative Game Theory Machine Learning
S| (n—|S| — 1)! S|'(n—|S| = 1)!
pwy= Y SEEZIZ D sup - vis)) po= Y ST G su) - i)
SSN\{i} ' SSN\{i} '
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