The 22nd Behavior Modeling Summer School (10:45-11:15 Sep. 19, 2023)

Markov decision process for modeling behavior in transportation networks

Yuki Oyama

Shibaura Institute of Technology Activity Landscape Design Lab. <u>oyama@shibaura-it.ac.jp</u>

Contents

- 1. Markov decision process
- 2. MDP in networks
- 3. Reward inference as inverse problem
- 4. Adversarial Inverse reinforcement learning
- 5. Summary

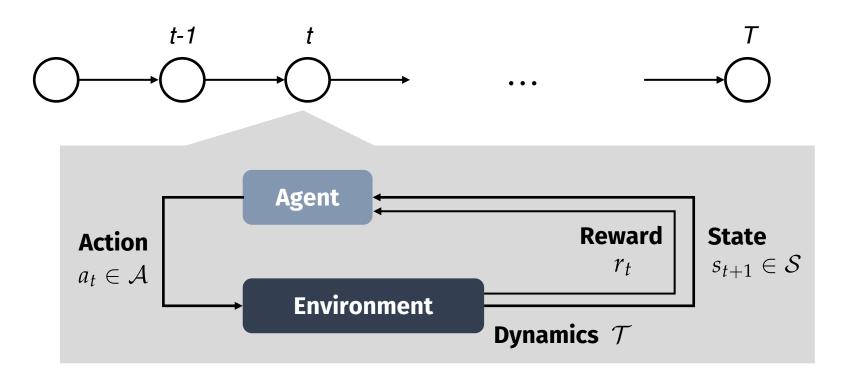
Markov decision process (MDP)

 $\mathcal{M} = (\mathcal{S}, \mathcal{A}, \mathcal{T}, r)$

Modeling sequential decision-making of an agent under uncertainty

MDP is defined as

- S : State space
- \mathcal{A} : Action space
- T : Dynamics (state transition)
- *r* : Reward function



Agent's behavior

Decide **policy** (action probability) to maximize expected sum of rewards

$$\pi^{\star} = \arg \max_{\pi} \mathbb{E}_{\pi} \left[\sum_{t=0}^{T} \gamma^{t} r(s_{t}, a_{t}) \middle| a_{t} = \pi(s_{t}) \right]$$

Recursive formulation:

$$V(s_t) = \max_{a_t \in \mathcal{A}(s_t)} \left\{ r(s_t, a_t) + \gamma \sum_{s_{t+1} \in \mathcal{S}} \mathcal{T}(s_{t+1} | a_t, s_t) V(s_{t+1}) \right\}$$

Different **reward specifications** lead to different MDP models (Mai & Jaillet, 2020)

- Regularized MDP
- Entropy regularized MDP (Maximum causal entropy)
- Dynamic discrete choice model

$$\begin{split} & \max_{\pi} \mathbb{E}_{\pi} \left[\sum_{t=0}^{T} \gamma^{t} \left(v(s_{t}, a_{t}) + \phi(s_{t}) \right) \right] \\ & \max_{\pi} \mathbb{E}_{\pi} \left[\sum_{t=0}^{T} \gamma^{t} \left(v(s_{t}, a_{t}) - \ln \pi(a_{t} | s_{t}) \right) \right] \\ & \max_{\pi} \mathbb{E}_{\pi} \left[\sum_{t=0}^{T} \gamma^{t} \left(v(s_{t}, a_{t}) + \epsilon(a_{t}) \right) \right] \end{split}$$

Dynamic discrete choice model (Rust, 1987)

Connection of MDP with a **choice model**

- State **s** : **situation** for the choice (e.g., attributes of alternatives/agents)
- Action *a* : **choice** among alternatives •
- Reward **r** : **utility** that agent gains from choice •
- Policy *π* : choice probability

Under (additive) random utility theory:

$$\max_{p} \mathbb{E} \left[\sum_{t=0}^{T} \gamma^{t} \left(v(a_{t}|s_{t}) + \epsilon(a_{t}) \right) \right] \quad \text{with} \quad r(a|s) = v(a|s) + \epsilon(a)$$
Systematic & error components

Value function (with known dynamics) is then

$$V(s_t) = \mathbb{E}\left[\max_{a_t \in \mathcal{A}(s_t)} \left\{ v(a_t | s_t) + \epsilon(a_t) + \gamma \sum_{s_{t+1} \in \mathcal{S}} \mathcal{T}(s_{t+1} | a_t, s_t) V(s_{t+1}) \right\} \right]$$

(a)

MDP in (static) networks

Network route choice MDP models

- Often define link (node) as state so that action always and directly leads to the same next state (deterministic dynamics)
- Have **destinations** where agents terminate their actions (**episodic MDP**)

Dynamic discrete choice model (same as previous):

$$V(s) = \mathbb{E}\left[\max_{a \in \mathcal{A}(s)} \left\{ v(a|s) + \epsilon(a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{T}(s'|a,s) V(s') \right\} \right]$$

$$\bigcup$$

Recursive logit (route choice) model (Fosgerau et al., 2013):

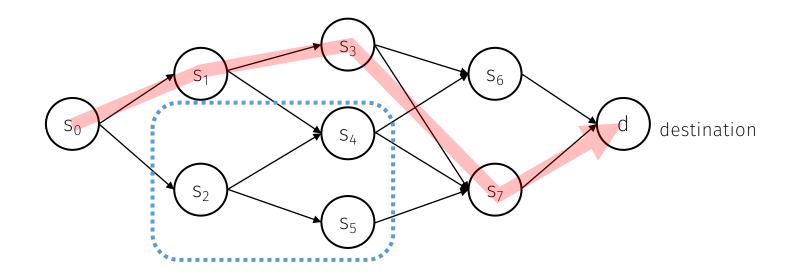
$$V(s) = \mathbb{E}\left[\max_{a \in \mathcal{A}(s)} \left\{v(a|s) + \epsilon(a) + V(a)\right\}\right] = \ln \sum_{a \in \mathcal{A}(s)} e^{v(a|s) + V(a)}$$
(i.i.d. Gumbel)
$$p(a|s) = \frac{e^{v(a|s) + V(a)}}{\sum_{a' \in \mathcal{A}(s)} e^{v(a'|s) + V(a')}}$$
(action choice probability)

*Equivalent to Maximum Causal Entropy MDP (Ziebart et al., 2008; Zierbart, 2010)

Fosgerau, M., Frejinger, E., & Karlstrom, A. (2013). A link based network route choice model with unrestricted choice set. Transp. Res. Part B 56: 70-80.

MDP in networks

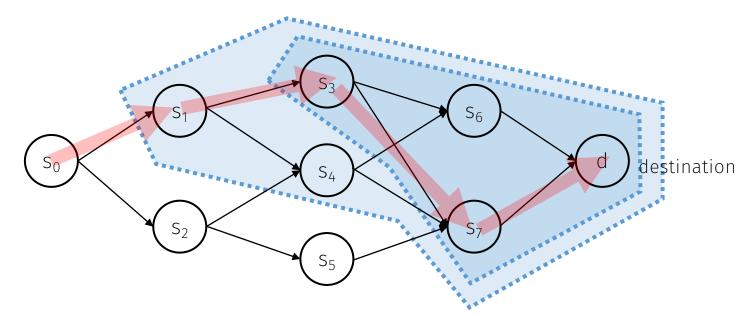
Define choice elements as **state**s and their relationship as a **network**



- A sequence of states is described as a **path** in the network
- An elemental choice problem corresponds to a **substructure of network**
 - E.g., choice (action) set available to S_2 is $\{S_4, S_5\}$

MDP in networks

Define choice elements as **state**s and their relationship as a **network**

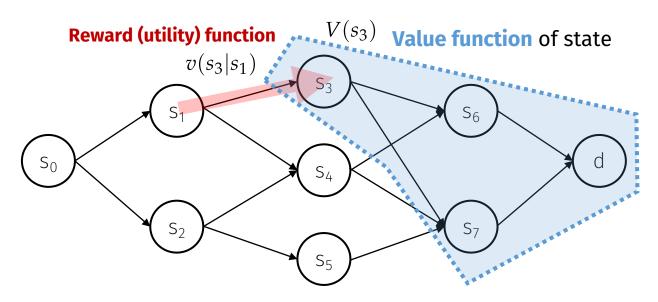


Recursive structure of decision-making:

- 1. Not direct choice of a sequence, but **sequential choices of states**
 - Elemental choice is the choice of next state given the current state
- 2. When choosing the next state, traveler **considers possible future states**
 - Trade-off between the current stage utility and the future expected utility

MDP in networks

Define choice elements as **state**s and their relationship as a **network**



Recursive (link-based) path choice model

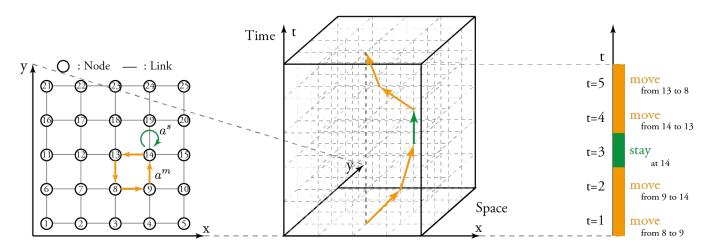
$$V^{d}(k) \equiv \mathbb{E}\left[\max_{a \in A(k)} \{v(a|k) + V^{d}(a) + \mu \epsilon(a|k)\}\right] \Rightarrow \frac{e^{\frac{1}{\mu}V^{d}(k)}}{z_{k}} = \sum_{a \in A(k)} \frac{e^{\frac{1}{\mu}\{v(a|k) + V^{d}(a)\}}}{M_{ka}z_{a}}$$
$$z = \mathbf{M}z + b \Leftrightarrow z = (\mathbf{I} - \mathbf{M})^{-1}b$$
 System of linear equations

Dynamic decision-making description & Efficient computation

Different types of network behavior modeling

MDP path models can describe various types of network path choice problem based on the **definition of states.**

Network	Application	State	Reference
General transportation network	Road, bicycle, walking	Link	Fosgerau+ (2013) Zimmerman+ (2017)
Multi-modal transportation network	MaaS, tourism	(Link, Mode)	De Freitas+ (2019) Tabuchi & Fukuda (2020)
Time-space network	Transit, time- dependent road NW	(Link, Time)	De Moraes Ramos+ (2020) Akamatsu+ (2023)
Activity network	Daily schedule, trip- chain	(Place, Time, Type, Stay/move)	Zimmerman et al. (2018) Oyama & Hato (2016)

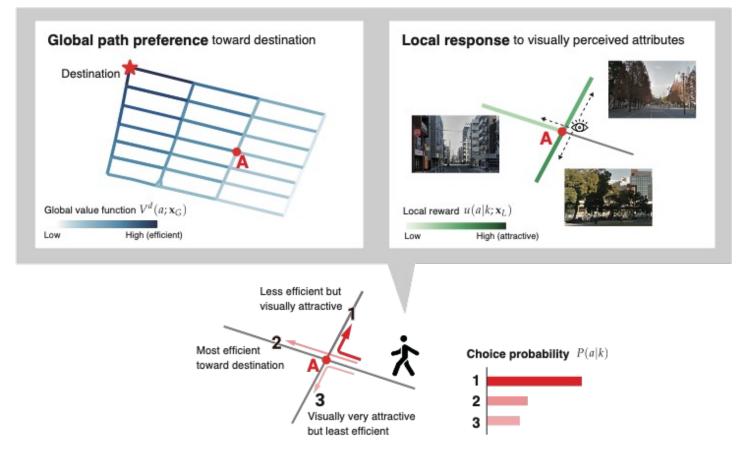


Integrated choice of route, activity places and durations by activity path modeling (Oyama & Hato, 2016)¹⁰

Global routing and local response

Reward decomposition approach (Oyama, 2023)

$$r(a|s) = r_G(a|s, \mathbf{x}_G) + r_L(a|s, \mathbf{x}_L)$$
 and $V(s) = V_s(\mathbf{r}_G)$



Oyama (2023) Global path preference and local response: A reward decomposition approach for network path choice analysis in the presence of locally perceived attributes. arXiv.

11

Reward inference as **inverse** problem

Forward decision-making problem: **Reinforcement Learning (RL)**

Find optimal policy p given reward functions r

$$\max_{p} \mathbb{E}_{p} \left[\sum_{t=0}^{T} \gamma^{t} r(a_{t} | s_{t}) \right]$$

Inverse estimation problem: Inverse Reinforcement Learning (IRL)

Recover reward functions r from expert demonstrations D

Maximum likelihood:

$$\max_{\theta} \mathbb{E}_{\tau \sim \mathcal{D}}[\log p_{\theta}(\tau)] = \mathbb{E}_{\tau \sim \mathcal{D}}\left[\sum_{t=0}^{T} \gamma^{t} r_{\theta}(s_{t}, a_{t})\right] - \log Z_{\theta}$$
where
$$\mathcal{D} = \{\tau_{j}\}_{j=1}^{N} \quad \tau_{j} = \{(s_{t}^{j}, a_{t}^{j})\}_{t=0}^{T}$$

(Observed sequence of state-action pairs)

Inverse Reinforcement Learning (IRL)

Recursive logit model / Maximum Entropy IRL

- Assuming deterministic dynamics
- Linear-in-parameter reward functions, i.e., $v_{\theta}(a|s) = \sum_{l} \theta_{l} x_{l,a|s}$

$$\begin{split} \max_{\theta} \mathbb{E}_{\tau \sim \mathcal{D}}[\log p_{\theta}(\tau)] &= \sum_{j} \left(\sum_{t=0}^{T-1} v_{\theta}(s_{t+1}^{j} | s_{t}^{j}) - V_{\theta}(s_{0}^{j}) \right) \\ \text{where} \qquad p_{\theta}(a | s) = e^{v_{\theta}(a | s) + V_{\theta}(a) - V_{\theta}(s)} \\ V_{\theta}(s) &= \ln \sum_{a \in \mathcal{A}(s)} e^{v_{\theta}(a | s) + V_{\theta}(a)} \end{split}$$

Solution algorithm (e.g., NXFP method; also see my previous year's lecture slides):

- Outer loop: Parameter update by non-linear optimization algorithm
 - Econometrics newton-type methods
 - Machine learning gradient descent methods
- Inner loop: **Compute value function** for each updated parameter
 - Recursive logit solving the system of linear equation
 - MaxEnt IRL / nonlinear recursive models value iteration

Estimation of linear rewards and interpretability

Example: Pedestrian route choice analysis (Oyama, 2023)

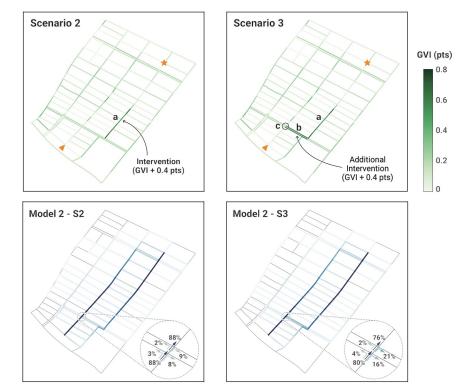
$$\begin{cases} v_G(a|k) = (\beta_{\text{len}}^G + \beta_{\text{walk}}^G x_a^{\text{walk}} + \beta_{\text{green}}^G x_a^{\text{green}}) x_a^{\text{len}} + \beta_{\text{cross}}^G x_a^{\text{cross}} - 20 x_{a|k}^{\text{uturn}} \\ v_L(a|k) = \beta_{\text{green}}^L x_a^{\text{green}} x_a^{\text{len}} \\ \end{cases}$$
 Interaction terms

	Parameter	Estimate	std. err.	t-stat
Global	$\hat{eta}_{ m len}$	-0.290	0.016	-18.62***
	$\hat{eta}_{ ext{cross}}$	-0.816	0.066	-12.35***
	$\hat{eta}_{ ext{walk}}$	0.062	0.010	6.29***
	$\hat{eta}_{ ext{green}}$	-	-	-
Local	$\hat{eta}_{ ext{green}}$	0.096	0.044	2.18**
Scale	$\hat{\mu}_G$	1.280	0.142	1.98**
Path ob	servations			410
Log-lik	elihood			-1689.6
AIC				3389.2

Willingness-to-walk (+m/100m)

	Model 3		
Variable	Mean	CI	
One extra crosswalk along path	-28.2	[-31.5, -25.0]	
One meter increase in sidewalk width	21.7	[17.0, 26.0]	
10% (0.1 pts) increase in GVI (Global)	-	-	
10% (0.1 pts) increase in GVI (Local)	3.65	[0.56, 6.65]	

Policy simulation (flow increase)

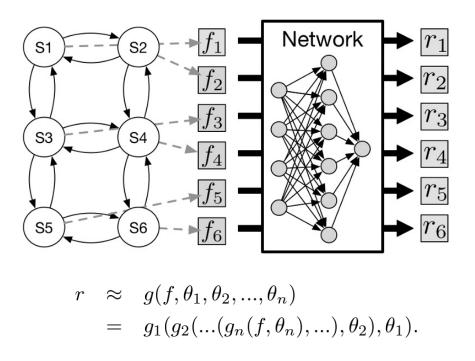


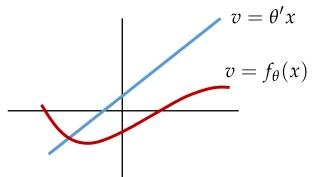
Oyama (2023) Global path preference and local response: A reward decomposition approach for network path choice analysis in the presence of locally perceived attributes. arXiv.

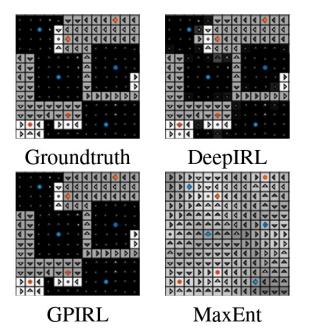
Capturing non-linear rewards by Deep IRL

Linear functions often assumed in behavior modeling have **limited expressiveness** of complex travelers' utilities

MaxEnt Deep IRL (Wulfmeier et al., 2015)



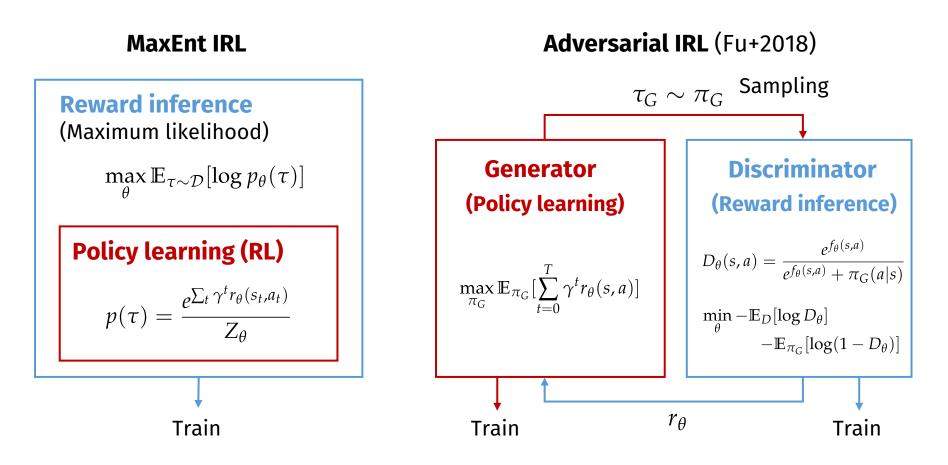




Adversarial Inverse Reinforcement Learning (AIRL)

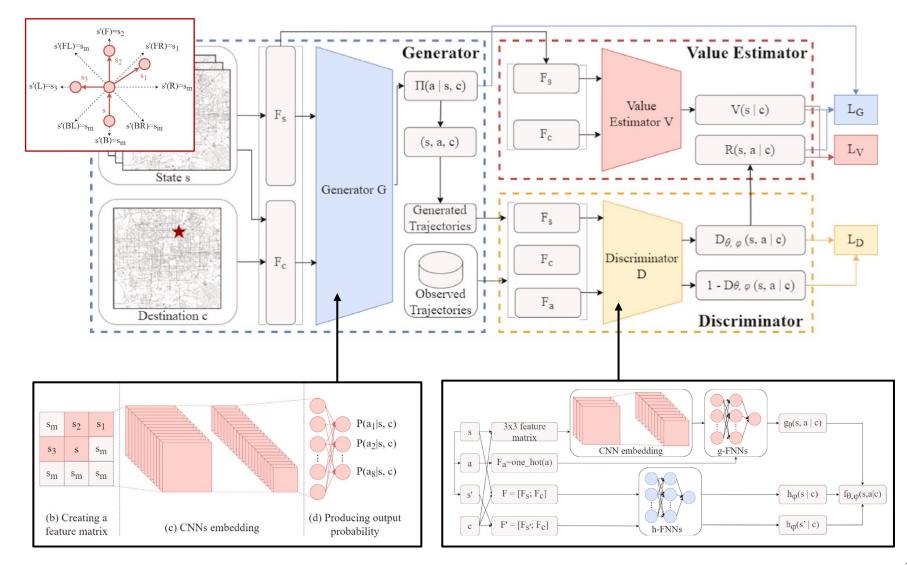
Partition function Z for IRL is intractable (cannot be computed) when

- State-action spaces are large or continuous
- Environment dynamics are stochastic and unknown



Adversarial Inverse Reinforcement Learning (AIRL)

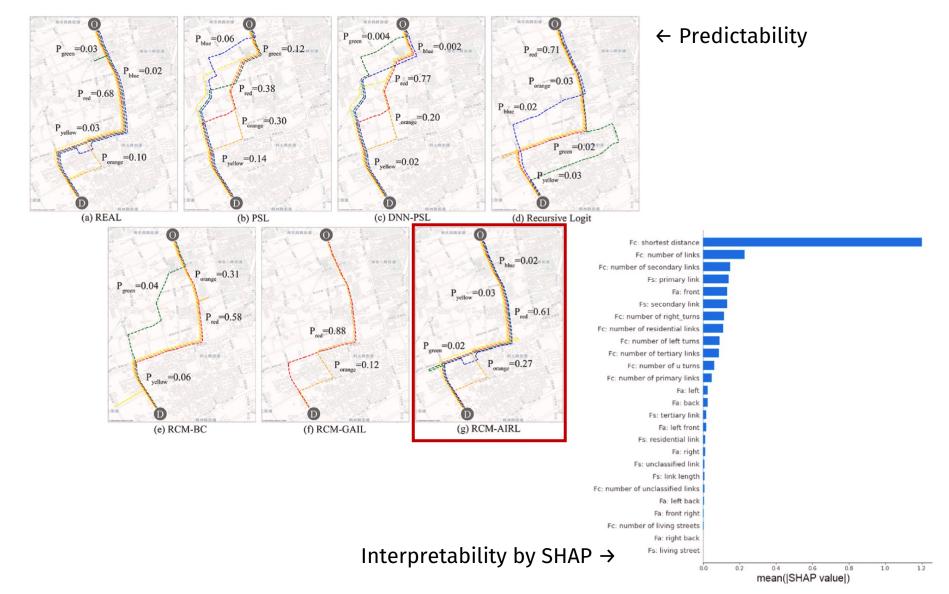
Route choice application by Zhao and Liang (2023)



Zhao and Liang (2023) A deep inverse reinforcement learning approach to route choice modeling with context-dependent rewards. TRC: 104079.

Adversarial Inverse Reinforcement Learning (AIRL)

Route choice application by Zhao and Liang (2023)



Multi-agent AIRL (MA-AIRL)

Reward inference considering interactions between agents (Yu+, 2019)

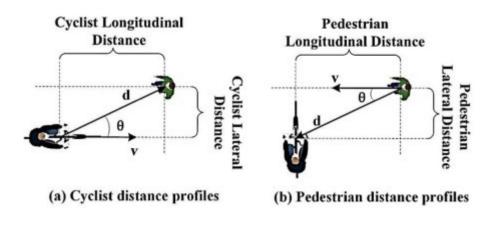
Logit stochastic best response equilibrium

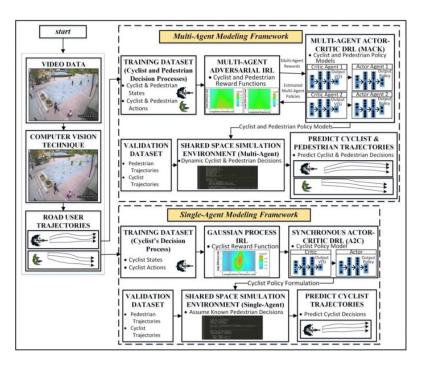
$$p_i(a_i | \mathbf{a}_{-i} = \mathbf{z}_{-i}) = \frac{\exp(\mu Q_i^{\boldsymbol{\pi}}(s, a_i, \mathbf{z}_{-i}))}{\sum_{a'_i} \exp(\mu Q_i^{\boldsymbol{\pi}}(s, a'_i, \mathbf{z}_{-i}))}$$

Maximum pseudolikelihood:

$$\max_{\theta} \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=1}^{T} \sum_{i=1}^{N} \log \pi_{i}^{t}(a_{i}^{t} | \mathbf{a}_{-i}^{t}, s^{t}) \right]$$

Cyclist-pedestrian interaction modeling (Alsaleh & Sayed, 2021)





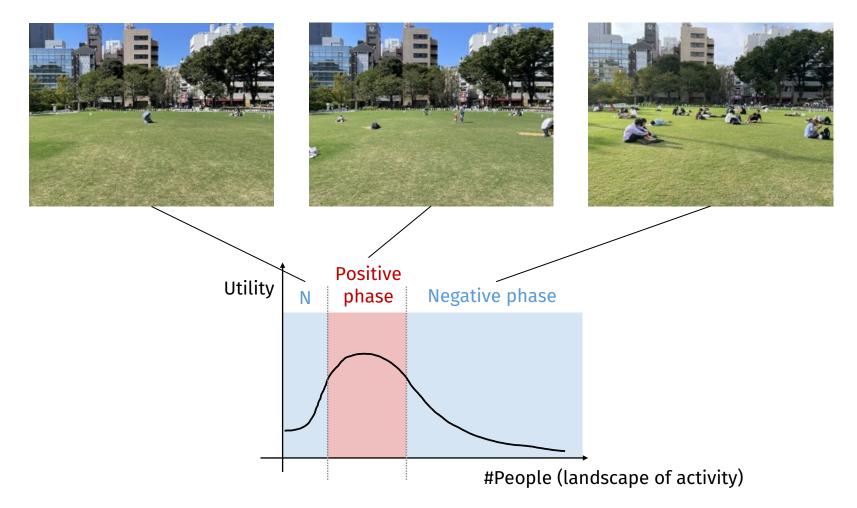
19

Yu, L., Song, J., & Ermon, S. (2019). Multi-agent adversarial inverse reinforcement learning. International Conference on Machine Learning: 7194-7201.

Alsaleh, R., & Sayed, T. (2021). Markov-game modeling of cyclist-pedestrian interactions in shared spaces: A multi-agent adversarial inverse reinforcement learning approach. *Transportation research part C: emerging technologies*, *128*, 103191.

Multi-agent AIRL (MA-AIRL)

Deep MA-AIRL may allow us to analyze **complex (non-linear & non-monotone) social interactions between people** who share the same space, as well as complex structure of spatial attractiveness.



Summary

1. Markov decision process

Modeling framework of agent's sequential decision-making

2. MDP in networks

Recursive logit as an efficient & consistent path choice modeling

3. Reward inference as inverse problem

Learn rewards based on observed trajectories

4. Adversarial Inverse reinforcement learning

Scalable method applicable to various problems including route choice and multi-agent interactions

Questions ?

oyama@shibaura-it.ac.jp