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Background
• Demand forecasting for unknown goods and services

• If autonomous driving becomes a reality, will you buy an 
autonomous vehicle?

• If you buy an autonomous vehicle, will you live in the city center or 
in the suburbs?

• Do you want to use an autonomous mobile gym that comes to 
your home?
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Stated Preference (SP) Survey
• Preference data that observe preference in a hypothetical 
situation is called Stated Preference (SP).

• Specifically, discrete choice data is referred to as stated choice (SC).

• SP surveys enable us to forecast the demand for new 
transportation services that do not currently exist.

• Differences from questionnaire surveys
• Controls for the effects of trade-offs between attributes of 
alternatives based on experimental design.

• responses are used to estimate behavioral models.
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Example of Stated Preference Survey
• Which transport mode will you use?
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Subway Bus LRT

Total travel time 25 min 40 min 30 min

Fee 220 JPY 200 JPY 250 JPY

Access time 8 min 2 min 5 min

Egress time 5 min 1 min 4 min

Frequency 10 per hour 6 per hour 5 per hour

Choice



Example of Stated Preference Survey
• Which transport mode will you use?
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Subway Bus LRT

Total travel time 38 min 22 min 17 min

Fee 400 JPY 250 JPY 350 JPY

Access time 2 min 5 min 4 min

Egress time 3 min 7 min 8 min

Frequency 5 per hour 8 per hour 4 per hour

Choice

By controlling for the trade-offs between the attributes of each option, 
SP survey enable us to estimate sensitivity with respect to each attribute.



Hypothetical bias in SP survey
1. Experimental Scenario Uncertainty

• Ambiguity and uncertainty about unfamiliar goods and services
• Validity of hypothetical scenarios

2. Heterogeneity of respondents
• Information and knowledge possessed by each respondent
• Preference heterogeneity

3. Dishonest response
• Survey credibility, including policy maneuvering bias and justification bias
• Survey stability, including response fatigue and cold start issues
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Method to eliminate inaccurate responses
• In contrast to the quality control of crowdsourcing in the 
field of human computation

7Crowdsourcing Stated Preference

Td4eva Td4eva Td4eva aaaa Self-driving Self-driving Normal Normal

Do you want a self-driving car or 
a normal car?



Spam worker detection in crowdsourcing
• Detect spam workers by calculating the percentage of 
correct answers.

• Detect spam workers by having them solve the same problem 
and deciding the answer by majority vote

• Both are inefficient.
• Latent class model (Dawid and Skene, 1979; Boxall and Adamowicz, 2002)
can estimate the workers’ ability and ground truth 
simultaneously.
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ground truth worker’s ability

EM algorithm

Classification of workers' skills can lead to 
detection of spam workers.



However, there is no ground truth in the case of SP
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Crowdsourcing Stated Preference

Td4eva Td4eva Td4eva aaaa

Do you want a self-driving car or 
a normal car?

Self-driving Self-driving Self-driving Normal

Detected as spam
We cannot determine whether a response is a spam 
response (a random response) or a personal preference, 
even if it is in the minority.



The method to induce information and 
knowledge possessed by respondents
• Can we detect heterogeneity in respondent preferences and 
dishonest responses?

• Bayesian Truth Serum (Prelec, 2004)
• A kind of proper scoring rule. (Johnson et al, 1990)

• In this mechanism, responses are scored such that the highest score 
is obtained when the true subjective probability is answered.

• BTS can be used to
• Improve the accuracy of survey results
• Identification of superior respondents
• Behavioral change of respondents (truth-telling)

• We will apply the BTS to SP survey.
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Bayesian truth serum
• The original BTS is the mechanism design to make a survey to 
answer things that are difficult to answer under normal 
conditions.

• e.g., Have you ever shoplifted?, Are you racist?

• For example,
• Q1: Have you ever shoplifted?             Yes/No
• Q2: How many people do you think would answer Yes to Q1? ％
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Q1: Any category question
Q2: Questions that make you predict "how others will respond to Q1."



BTS Score
• Respondent i’s response of Q1 is denoted by 𝑥!" and the 
response of Q2 is denoted by 𝑦!" .

• The BTS score is defined as
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BTS Score
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Q1 Have you ever 
shoplifted?             

Q2 How many people do you 
think would answer Yes to Q1? 

BTS Score

Yes 20% +0.31

No 10% -0.18

Yes 5% +0.09

No 30% -0.09
・・・ ・・・ ・・・

No 25% +0.32

Percentage of Yes
25%

Predicted percentage of Yes
18%

“Good” response

“Poor” response



BTS Score

• Information score is
• If the "Actual Percentage" is higher than the "Predicted 
Average", those who chose the option will receive a high score.

• This is the rule that the majority gets a higher score compared 
to everyone else's prediction.

• Prediction score is
• The closer the prediction is to the actual percentage, the 
higher the score.
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The characteristics of BTS
• Scoring does not require an external ”ground truth”

• No need for verification that the person is a shoplifter.

• Scoring independent of response distribution
• Possibility of high scores even for minority opinions
• It is often the case that a small group of people with some 
expertise, or a group of actual criminals, know more about the 
real situation than the general public.

• Incentive compatibility
• Linking BTS scores to incentives can elicit desired behavior 
(truth-telling)

• To increase the BTS score, it is incentive compatible to answer 
honest choices and true subjective probabilities. 15



Research idea: BTS-SP + Latent class
• Detect dishonest spam respondents using both choice and 
predictive responses, and continuously separate spam 
respondents from those useful for model estimation.

• BTS scores accurately identify spam responses and 
responses due to preference heterogeneity.

• In doing so, we improve the predictive performance of the 
model and clarify the responses to the important variables.
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• Which transport mode will you use?

• What percentage of people do you think would make the 
same choice you did?

The difference from experimental design of 
SP survey

17Prediction 80 %
Just add this!

Subway Bus LRT

Total travel time 25 min 40 min 30 min

Fee 220 JPY 200 JPY 250 JPY

Access time 8 min 2 min 5 min

Egress time 5 min 1 min 4 min

Frequency 10 per hour 6 per hour 5 per hour

Choice



Approach of our analysis
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responses (𝑥"!, 𝑦"!), choice and predictionObserved data 
from BTS-SP survey

Make a choice model: 𝑃(𝑥!") from 𝑥!"

Calculate a pseudo BTS score (pseudo information score and 
pseudo prediction score) for each respondent: 𝐼𝑆", 𝑃𝑆"

Subject group
No-spam

Spam

choice model of class 1

choice model of class 2

random response model

membership function using 𝐼𝑆! , 𝑃𝑆!

membership function using 
socioeconomic characteristics

Two stage latent class model using pseudo BTS scores

Make a prediction model: 𝑃(𝑦!") from 𝑦!"



Pseudo BTS score
• BTS score

• Pseudo BTS score
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An example of BTS-SP survey
• Demand forecasting for mobile gym

• Attributes of each option
• Availability of personal trainer
• Monthly Fee
• Distance from home
• Business Hours
• Availability of swimming pools
• Availability of parking 20

VS online gym, gym



The result of pseudo BTS score
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IS

PS

• High IS = Users for whom 
models are "easy to guess".

• Low IS = Users for whom the 
model is "hard to guess".

• PS variation is significantly 
greater than IS variation.

• Low IS does not necessarily 
mean low PS.

• They are not easily correlated.



Detection of spam respondents
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Estimation of spam respondent probability 
for each user

• Spam respondent probability tends to increase with 
lower PS and decrease with higher PS.

𝑃!,#$%& =
exp(𝛽' ⋅ 𝑥!,() + 𝛽* ⋅ 𝑥!,+) + 𝛽,)

1 + exp(𝛽' ⋅ 𝑥!,() + 𝛽* ⋅ 𝑥!,+) + 𝛽,)

Membership function of spam respondents

Parameter estimates

IS 4.804

PS 0.0044

constant -0.824



• Model performance

• Number of model parameters is almost the same as the normal latent 
class model (+4), but model performance is greatly improved.
• The difference is created by the pseudo BTS score, which scores the 
responses of each subject in the population.
• Sort "honest respondents" who respond to attributes from "spam respondents" 
who do not.

Improvement of model performance
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MNL Latent MNL Pseudo BTS
Latent MNL

# of parameters 15 27 31

# of observations 7902 (1317) 7902 (1317) 7902 (1317)

Initial LL -5477.249 -5477.249 -5477.249

final LL -4456.009 -4384.219 -3935.282

likelihood ratio 0.184 0.195 0.276



Summary
• Demand forecasting for unknown goods and services 
remains an important challenge.

• We proposed a new experimental design, the BTS-SP 
survey, to overcome the problems of classical SP 
surveys and to detect dishonest responses.

• Two-level latent class model estimation using pseudo 
BTS score.

• Significantly improved model performance over naïve latent 
class models by identifying the preference heterogeneity and 
detecting spam respondents.
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