

Behaviour Models, Machine Learning, and Psychology

Prateek Bansal

Presidential (Young) Assistant Professor National University of Singapore

UTILITY THEORY

Part 1: Machine Learning and Behavior Models

Motivation

Indirect Utility = Systematic Utility + Idiosyncratic Error Term

Flexible systematic utility?

(i) Non-linear effect of each alternative-specific attribute

(ii) Interaction effects of multiple alternative-specific attributes

(iii)Interaction effects of alternative- and individual-specific attributes (taste heterogeneity)

(iv)Non-linear effect of each individual-specific attribute and their interaction effect

	\sim			
($\underline{\circ}$		$\tilde{\mathbf{O}}$	
l		J	<i>l)</i> () –	
			Ш	

Individual attributes

Attributes	Individual
Income (INC)	3-5 million KRW
Full-time (FUL)	Yes

Alternative attributes

Attributes	Bus	Grab
Travel cost (TC)	\$1.5	\$12
Travel time (TT)	40 mins	20 mins
Waiting time (WT)	15 mins	5 mins

Interpretability vs Predictability

What exactly is 'interpretability'?

• The definition of interpretability is domain-dependent

Monotonicity Constraint: Example

Imposing monotonicity constraints in linear function with first-order alternativespecific interactions:

 $U(TT, TC) = \beta_0 + \beta_1 TT + \beta_2 TC + \beta_3 TT \times TC$ $\beta_1 + \beta_3 TC < 0; \beta_2 + \beta_3 TT < 0 \text{ for the entire domain of TT and TC.}$

Imagine the difficulty in case of non-linear function and multiple attributes.

Interpretability

Unreasonable attribute-specific effect of Discrete Choice Models with Deep Neural Network (DCM-DNN) at some attribute-level (Wang et al., 2021)

Wang, S., Mo, B., & Zhao, J. (2021). Theory-based residual neural networks: A synergy of discrete choice models and deep neural networks. *Transportation Research Part B: Methodological*, 146, 333-358

Interpretability of DNN (Wang et al., 2020)

Unreasonable Individual-level attribute-specific effect of DCM-DNN for some individuals

Wang, S., Wang, Q., & Zhao, J. (2020). Deep neural networks for choice analysis: Extracting complete economic information for interpretation. Transportation Research Part C: Emerging Technologies

Han, Y., Pereira, F.C., Ben-Akiva, M., Zegras, C., 2022. A neural-embedded discrete choice model: Learning taste representation with strengthened interpretability. Transportation Research Part B: Methodological 163, 166-186.

Summary of the Literature

Considerations in ideal systematic utility specification

(i) Non-linear effect of each alternative-specific attribute
(ii) Interaction effects of multiple alternative-specific attributes
(iii) Interaction effects of alternative- and individual-specific attributes (taste heterogeneity)
(iv) Non-linear effect of each individual-specific attribute and their interaction effect
(v) Population level trustworthiness of alternative-specific attributes
(vi) Individual level trustworthiness of alternative-specific attributes

Authors	(i)	(ii)	(iii)	(iv)	(v)	(vi)
Wang et al. (2020)	\checkmark	\checkmark	\checkmark	\checkmark		
Wang et al. (2021)	\checkmark	\checkmark	\checkmark	\checkmark		
Wong and Farooq (2021)	\checkmark	\checkmark	\checkmark	\checkmark		
Sifringer et al. (2020)			\checkmark	\checkmark	\checkmark	
Han et al. (2022)			\checkmark	\checkmark	\checkmark	\checkmark
Kim and Bansal (2023)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Han, Y., Pereira, F.C., Ben-Akiva, M., Zegras, C., 2022. A neural-embedded discrete choice model: Learning taste representation with strengthened interpretability. Transportation Research Part B: Methodological 163, 166-186. Sifringer, B., Lurkin, V., Alahi, A., 2020. Enhancing discrete choice models with representation learning. Transportation Research Part B: Methodological 140, 236-261. Wang, S., Mo, B., Zhao, J., 2020. Deep neural networks for choice analysis: Architecture design with alternative-specific utility functions. Transp Res Part C Emerg Technol 112, 234-251.

Wang, S., Mo, B., Zhao, J., 2021. Theory-based residual neural networks: A synergy of discrete choice models and deep neural networks. Transportation Research Part B: Methodological 146, 333-358.

Wong, M., Farooq, B., 2021. ResLogit: A residual neural network logit model for data-driven choice modelling. Transp Res Part C Emerg Technol 126, 103050.

Objectives

Theory-constrained data-driven methods

- Discrete choice model with Lattice network (DCM-LN) (Gupta et al., 2016).
 - ✓ Efficiently implementing the **monotonic constraints** at <u>individual-level</u>
 - ✓ Capturing attribute-wise non-linear effect using piece-wise linear specification \rightarrow <u>non-linearity</u>
 - ✓ Capturing complex interactions between the attributes \rightarrow <u>taste heterogeneity</u>

Gupta, M., Cotter, A., Pfeifer, J., Voevodski, K., Canini, K., Mangylov, A., Moczydlowski, W., & van Esbroeck, A. (2016). Monotonic Calibrated Interpolated Look-Up Tables. Journal of Machine Learning Research

Objectives

'Monotonicity' is critical in data-driven learning of systematic utility

- DCM-DNN overfits to the data (overly complex) while the MNL underfits to the data (overly simplified)
- Monotonicity constraints correct the <u>attribute-level abrupt changes and incorrect sign of effect</u>
 ✓ DCM-LN reduce the overfitting by theory-driven regularizations

How can Lattice Network Impose 'Monotonicity' constraints?

Compute lattice function value for any (x_1, x_2)

Consider 3 \times 2 lattice layer (i.e., 3 vertices on x_1 and 2 vertices on x_2 dimension)

 $\boldsymbol{\theta}_{Lat}^{LN} = \{ \theta_{Lat,1,1}^{LN}, \theta_{Lat,1,2}^{LN}, \theta_{Lat,2,1}^{LN}, \theta_{Lat,2,1}^{LN}, \theta_{Lat,3,1}^{LN}, \theta_{Lat,3,1}^{LN} \}$ are model parameters. $f(\mathbf{x}^*) = \boldsymbol{\theta}_{Lat}^{LN} \cdot \psi(\mathbf{x}^*) = \theta_{Lat,1,1}^{LN} \psi_{1,1}(\mathbf{x}^*) + \theta_{Lat,2,1}^{LN} \psi_{2,1}(\mathbf{x}^*) + \theta_{Lat,1,2}^{LN} \psi_{1,2}(\mathbf{x}^*) + \theta_{Lat,2,2}^{LN} \psi_{2,2}(\mathbf{x}^*)$

 $\psi(x^*)$ is a multi-linear interpolation weights for x^* which is function of corresponding vertex values v. Note that, it is NOT a parameter.

Monotonicity constraints can be achieved by imposing linear inequality constraints on θ_{Lat}^{LN} .

Lattice with monotonic constraints

- Hyper-parameters: lattice size (model complexity)
- Model parameters : edge values

Calibrator: piecewise linear function with monotonic constraints

- Hyper-parameters: number of change points (Model complexity)
- Model parameters: slope of each intervals

DCM-LN implemented by Lattice network

DCM-LN Estimation

Explainability: measuring attribute-wise effect (i.e., utility function)

• Partial dependence (PD) and Individual Conditional Expectation (ICE)

$$f_{S} = \mathbb{E}_{\boldsymbol{x}_{C}} \left[f(\boldsymbol{x}_{S}, \boldsymbol{x}_{C}) \right] = \int f(\boldsymbol{x}_{S}, \boldsymbol{x}_{C}) dP(\boldsymbol{x}_{C}) \\ f(\boldsymbol{x}_{S}, \boldsymbol{x}_{C}) dP(\boldsymbol{x}_{C}) \\ f(\boldsymbol{x}_{S}, \boldsymbol{x}_{C}) dP(\boldsymbol{x}_{C}) \\ f(\boldsymbol{x}_{S}, \boldsymbol{x}_{C}) \\ f(\boldsymbol{x$$

Simulation study

- True utility function is required to evaluate both interpretability and predictability
- Simulation choice data are generated to evaluate both utility function inference and choice prediction.
 - Alternative attributes: travel cost (TC), travel time (TT), waiting time (WT), and crowding (CR).
 - Individual attributes: income (INC), full-time (FUL), flexibility (FLX).

Interactions between individual and alternative attributes (i.e., individual taste heterogeneity)

Parameter		True (50	True (50 trials)		MNL (50 trials)		DCM-DNN (50 trials) DCM-LN (50 trials)		
		Mean	Std.	Mean	Std.	Mean	Std.	Mean	Std.
Interpretability									
Recovery of	VOT (Median)	0.284	0.014	0.126	0.019	0.075	0.105	0.188	0.080
distribution	VOT (1%)	0.142	0.010	-0.026	0.029	-0.012	0.281	0.093	0.063
	VOT (25%)	0.216	0.013	0.066	0.021	0.040	0.085	0.135	0.072
	VOWT (Median)	0.480	0.019	0.258	0.148	0.146	0.210	0.322	0.134
	VOWT (1%)	0.252	0.011	-0.068	0.124	-0.114	0.797	0.153	0.082
	VOWT (25%)	0.372	0.017	0.118	0.141	0.086	0.159	0.244	0.127
Recovery of individual VOT (RMSE)				0.193	0.012	0.272	0.102	0.129	0.030
groups' value	VOWT (RMSE)			0.348	0.092	0.546	0.259	0.243	0.063
Predictability	Training accuracy			0.552	0.006	0.775	0.010	0.741	0.018
	Test accuracy			0.546	0.013	0.716	0.014	0.697	0.016

VOT: Value of Travel Time; VOWT: Value of Wait Time

Conclusions

- The DCM-LN ensures interpretability.
 - DCM-LN infers underlying utility function better than theory-driven DCM (MNL).
 - Non-linearity and interactions are captured even with monotonic constraints.
 - Trade-off between interpretability and predictability is demonstrated.
 - Monotonicity significantly enhances the interpretability (trustworthiness).
- Lattice network can be used to model inflextion points in prospect theory and semi-compensatory choice models

Working Paper: Kim, E. J., & Bansal, P. (2023). A New Flexible and Partially Monotonic Discrete Choice Model. Available at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4448172

Future Work

- Lattice network can be used to model inflextion points in prospect theory and semi-compensatory choice models
- Incorporating computer-vision-based Choice Models to use image data.

van Cranenburgh, S., & Garrido-Valenzuela, F. (2023). Computer vision-enriched discrete choice models, with an application to residential location choice. arXiv preprint arXiv:2308.08276.

Part 2: Behaviour Models, Psychology, and Process Data

Motivation

- Utility-based choice models are static.
- Difficult include process data and account for information acquisition process.
- Cannot handle decoy effect, i.e., violates regularity conditions

Adding a less attractive alternative (attraction decoy) can increase preference towards existing target alternative.

Which one do you prefer?

Which one do you prefer **now**?

Sequential Sampling Models (SSMs)

Popular Models

•

•

.

- Multi-alternative decision field theory (MDFT, Roe et al., 2001; Hancock et al., 2021) •
- Multiattribute linear ballistic accumulator model (MLBA, Trueblood et al., 2014) ٠
- Multi-alternative decision by sampling (MdBS, Noguchi & Stewart, 2018) •

Hancock, T. O., Hess, S., Marley, A. A., & Choudhury, C. F. (2021). An accumulation of preference: two alternative dynamic models for understanding transport choices. Transportation Research Part B: Methodological. Noguchi, T., & Stewart, N. (2018). Multialternative decision by sampling: A model of decision making constrained by process data. *Psychological review*, 125(4), 512. Roe, R. M., Busemeyer, J. R., & Townsend, J. T. (2001). Multialternative decision field theory: A dynamic connectionst model of decision making. Psychological review, 108(2), 370. Trueblood, J. S., Brown, S. D., & Heathcote, A. (2014). The multiattribute linear ballistic accumulator model of context effects in multialternative choice. Psychological review, 121(2), 179.

The University of Tokyo

Model 1: Multiattribute linear ballistic accumulator (MLBA)

Closed-form probability expression of joint choice and response time

The joint probability of choice i and response time $t + \tau_0$

 $MLBA_CRT(RC = i, RT = t + \tau_0) = f_i(t)\Pi_{j \neq i}(1 - F_j(t))$

 $f_i(t)$ is the probability density function(p.d.f.) of the time t taken for the accumulator i to reach the threshold and $F_i(t)$ is the cumulative density function (c.d.f.).

$$f_{i}(t) = \frac{1}{A} \left[-d_{i}\Phi\left(\frac{b-A-td_{i}}{ts}\right) + s\phi\left(\frac{b-A-td_{i}}{ts}\right) + v_{i}\Phi\left(\frac{b-td_{i}}{ts}\right) - s\phi\left(\frac{b-td_{i}}{ts}\right) \right]$$

$$d_{i} = max\{I_{0} + \zeta_{i} + \sum_{j \in \mathscr{C}, j \neq i} \sum_{k=1}^{K} \omega_{ijk}\beta_{k}(X_{ik} - X_{jk}), 0\}$$
Where
$$v_{i} \sim Norma$$

$$b: decision$$

$$\tau_{0}: non-decision$$

$$A: Start points$$

$$_{jk} = \begin{cases} exp\{-\lambda_{1}|\beta_{k}(X_{ik}-X_{jk})|\} & \beta_{k}(X_{ik}-X_{jk}) \ge 0\\ exp\{-\lambda_{2}|\beta_{k}(X_{ik}-X_{jk})|\} & \beta_{k}(X_{ik}-X_{jk}) < 0 \end{cases}$$

 $v_i \sim Normal(d_i, s^2)$: drift rate is b: decision threshold τ_0 : non-decision time is A: Start point upper bound I_0 : Drift rate mean constant ζ_i : Alternative specific constant

Hancock, T. O., Hess, S., Marley, A. A., & Choudhury, C. F. (2021). An accumulation of preference: two alternative dynamic models for understanding transport choices. *Transportation Research Part B: Methodological, 149*, 250–282.

 ω_i

Model 2: Multi-attribute decision by sampling (MDbS)

The accumulation process follows the random walk. Assumes pairwise comparison of alternatives on an attribute.

The probability of gaining 1 unit evidence in favour of alternative i in a time step by respondent n is:

 $p_{n,i} = \sum_{i=1}^{m} p(\text{evaluate alternative } i \text{ on attribute } k)p(\text{ alternative } i \text{ wins a comparison on attribute } k)$ *p*(alternative *i* win a comparison on attribute *k*) *p*(evaluate alternative *i* on attribute *k*) $w_{n,i,k} = \frac{\sum_{j=1}^{J_n} RS_{n,i,j,k}}{\sum_{i=1}^{J_n} \sum_{j=1}^{\bar{J_n}} \sum_{k=1}^{\bar{Q_n}} RS_{n,i,j,k}}$ $= \sum_{i=1}^{n} w_{n,i,j,k} p(\text{alternative } i \text{ is favored over alternative } j)$ p(alternative *i* is favored over alternative j) $RS_{n,i,j,k} = e^{-\alpha D_{n,i,j,k}}$ $= \begin{cases} \frac{1}{1 + \exp\left[-\beta_1\left(D_{n,i,j,k} - \beta_0\right)\right]} & \text{if } x_{n,i,k} > x_{n,j,k} \\ 0 & \text{otherwise} \end{cases}$ $D_{n,i,j,k} = \frac{|x_{n,i,k} - x_{n,j,k}|}{|x_{n,i,k}|}$ β_0 : the minimal relative difference that can be identified α : the larger α leads to stronger attraction effect β_1 : the maximum identifiable difference

SSM: Challenges

- 1. Decoy effect experiment have been conducted in <u>lab-based</u> settings
- 2. The value of response time is <u>unclear</u>
- 3. <u>Model selection</u> from behavioural perspective
- 4. Sensitivity to priors
- 5. <u>Small sample size</u> for lab-based studies studies

Eye-tracking + Online data

Challenge 1: Real-world Experiment Design

Experiment Design: Indifferentiable Line

- Alternatives on the indifferentiable line are **equally attractive** to respondents
- Baseline for decoy experiments design: mitigating the strong dislike or like toward the one alternative

Experiment Design: Attraction Decoy

Does Attraction Effect Exist in EV Rental Market?

Main Results

	MNL	MDFT	Original MDbS	Revised MDbS				
In-sample estimation								
BIC	799.96	787.24	891.99	923.75				
PRST -RST	0.01	0.01	-0.02	-0.06				
Out-of-sample prediction								
BIC	286.31	371.39	327.28	337.05				
PRST -RST	-0.09	-0.05	0.07	0				

PRST: predicted relative choice share of the target: $\frac{P(T|T,C,D)}{P(T|T,C,D)+P(C|T,C,D)}$ Lower **PRST-RST**, the model is better in capturing substitution effect.

T: Target; C: Competitior; D: Decoy

Optimal deployment of attraction decoy

The optimal range of attribute levels of the decoy models is **10%–18% lower** in **monthly renting cost** and **17%–25% lower in driving range**.

- ✓ (x-axis and y-axis) Relative change: Proportional difference compared to the target EV.
- ✓ (z-axis) Predicted relative choice share of the target (PRST): higher PRST indicate stronger attraction effects: PRST= $\frac{P(T|T,C,D)}{P(T|T,C,D)+P(C|T,C,D)}$

Challenge 2: Value of Response Time

(i) selecting alternative *i* from the choice set \mathscr{C} at response time *t*:

 $P_CRT_{\theta}(RC = i, RT = t), i \in \mathcal{C}, t \ge 0$

(ii) selecting alternative *i* from the choice set \mathscr{C} conditional on the given RT = t:

$$P_RTG_{\theta}(RC = i | RT = t) = \frac{P_CRT_{\theta}(RC = i, RT = t)}{\sum_{i \in \mathscr{C}} P_CRT_{\theta}(RC = i, RT = t)}, \quad i \in \mathscr{C}$$

(iii) selecting alternative *i* from the choice set \mathscr{C} after marginalizing over RT:

$$P_CO_{\theta}(RC=i) = \int_0^{\infty} P_CRT_{\theta}(RC=i, RT=t)dt, \quad i \in \mathscr{C}$$

Asymptotic Results: MLBA (Choice and Response Time)

$$\sqrt{n}(\tilde{\theta}_{CRT} - \theta_0) \xrightarrow{d} N(0, I_{CRT}(\theta_0)^{-1})$$

$$I_{CRT}(\theta) = -\sum_{i \in \mathscr{C}} \int_0^\infty \frac{\partial^2 \log MLBA_CRT(RC = i, RT = t)}{\partial \theta \theta^T} MLBA_CRT(RC = i, RT = t) dt$$

$$\sqrt{n}(\tilde{\theta}_{RTG} - \theta_0) \xrightarrow{d} N(0, I_{RTG}(\theta_0)^{-1})$$

$$I_{RTG}(\theta) = -\sum_{i \in \mathscr{C}} \int_0^\infty \frac{\partial^2 \log MLBA_RTG(RC = i|RT = t)}{\partial \theta \theta^T} MLBA_CRT(RC = iRT = t)]dt$$

$$\sqrt{n}(\tilde{\theta}_{CO} - \theta_0) \xrightarrow{d} N(0, I_{CO}(\theta_0)^{-1})$$

$$I_{CO}(\theta) = -\sum_{i \in \mathscr{C}} \int_0^\infty \frac{\partial^2 \log MLBA_CO(RC = i)}{\partial \theta \theta^T} MLBA_CRT(RC = i, RT = t) dt$$

Key Result: Lowest Asymptotic Variance of CRT

The intuition is that the chain rule of the Fisher Information Matrix for two jointly distributed random variables *X* and *Y* implies that:

 $I_{XY}(\theta) = I_{X|Y}(\theta) + I_X(\theta)$

Hence, the Fisher Information matrix of three types of distribution follows:

 $I_{CRT}(\theta_0) = I_{CO}(\theta_0) + I_{RT|RC}(\theta_0)$ $I_{CRT}(\theta_0) = I_{RTG}(\theta_0) + I_{RT}(\theta_0)$

Given all Fisher Information Matrices above are non-negative definite,

 $I_{CRT}(\theta_0) \ge I_{CO}(\theta_0)$ $I_{CRT}(\theta_0) \ge I_{RTG}(\theta_0)$

Simulation: Validation of Asymptotic Result (MLBA)

Challenge 3: Model Selection from Behavioral Perspective

Fixation duration/count: attribute non-attendance

Model selection

Eye-tracking Trajectory

	Your conventional vehicle	Electric vehicle (Nodel B)	Electric vehicle (Model A)
Monthly renting cost	S\$ 2700	S\$ 2900	S\$ 3100
Daily operating cost	S\$ 50	S\$ 19	S\$ 17
Driving range with full fuel tank	550 km (refuel 12.0 times/month	350 km (recharge19.0 times/ month	350 km (recharge 19.0 times/ month)

Challenge 4 & 5: Prior Sensitivity and Small Sample Size (Fusing Lab & Online Data)

The 22nd Behavior Modeling Summer School

Fusing Lab & Online Data: Simulation Results

Posterior simulation result is sensitive to the prior.

A good prior leads a less biased, smaller variance posterior.

Pink area for posterior density;

Green area for prior density;

Blue line for posterior median;

Purple line for true value;

Ξf

non

Ð,

non

Empirical Application: Similarity in Lab & Online Data

	The savings in operatir	ng costs due to renting electric	
	vehicle	are insufficient	
Lab data	Not a big concern	A big concern	
Driving long distance	12 (80%)	3 (20%)	
Driving short distance	13 (52%)	12 (48%)	
Online data			Decoy type
Driving long distance	66 (74%)	23 (26%)	0.5 · Attraction_online
Driving short distance	129 (60%)	87 (40%)	- Attraction_lab
			0.4
	The chargers in my neig	hbourhood areas are insufficient	
Lab data	Not a big concern	A big concern	>03
working long hours	5 (22%)	18 (78%)	tise (
working short hours	8 (47%)	9 (53%)	
Online data			0.2
working long hours	64 (33%)	128 (67%)	
working short hours	64 (57%)	49 (43%)	0.1
	The maintenance co	sts of electric vehicles are high	
Lab data	Not a big concern	A big concern	
Old	13 (62%)	8 (38%)	Response time (Secona)
Young	11 (58%)	8 (42%)	
Online data			
Old	145 (55%)	118 (45%)	
Young	24 (57%)	18 (43%)	
			—

Fusing Lab & Online Data: Model Fit (Empirical Study)

Better fitting performance with data fusion method scenario-level predicted choice proportion-to-portion plot

WITH data fusion method

WITHOUT data fusion method

The 22nd Behavior Modeling Summer School

Fusing Lab & Online Data: Convergence (Empirical Study)

Faster convergence with data fusion method

WITH data fusion method

WITHOUT data fusion method

Fusing Lab & Online Data: Lower Std Error (Empirical Study)

Blue points are the mean and median of posterior

Half length of error bar is the std dev of posterior

Challenges 3,4,5: Model Selection, Sample Size, & Priors (Fusing Choice-RT Data with and without Eye-tracking)

Conclusions

Sequentional Sampling Models (SSMs) have a future (Bansal et al., 2023):

- 1. **Response time** is easily obtainable and should be utilized to improve statistical inference.
- 2. Fusing lab and online data is a way forward.
- 3. Computationally-efficient estimators need to be developed (e.g., variational inference).
- 4. There is potential of webcam-based eye-tracking, but still at early stages (Yang & Krajbich, 2021).

Bansal, P., Ozdemir, S., & Kim, E. J. (2023). Discrete Choice Experiments with Eye-tracking: How Far We Have Come and A Way Forward: <u>https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4324231</u> Yang, X., & Krajbich, I. (2021). Webcam-based online eye-tracking for behavioral research. Judgment and Decision making, 16(6), 1485–1505.

Conclusions

Mutual benefits of combining reinforcement learning with SSMs (Miletić et al., 2020).

Miletić, S., Boag, R. J., & Forstmann, B. U. (2020). Mutual benefits: Combining reinforcement learning with sequential sampling models. *Neuropsychologia*, *136*, 107261.

Thank you !

prateekb@nus.edu.sg

