17
 Introduction of Dynamic Pricing in

Rail Transportation in The Post Pandemic Era

Behavioral Model Summer School 2022 2022/9/25

Background: Train Congestion in Tokyo Metropolitan Area

- Railway Passenger \& Revenue of the JR-East:

- Ridership \& revenue were reduced sharply by the COVID-19 pandemic

The Japan Times, 2020/07:

- JR-East considered to introduce a time-based fare system
The Japan News, 2022/03:
- Aim to introduce off-peak commuter pass in 2023 spring
- Peak hours: fare \uparrow; off-peak hours: fare \downarrow

Purposes of JR-EAST to impose such policy in the post-pandemic era:

- Reduce train congestion during peak hours
\rightarrow Continue to maintain social distance
- Generate sustainable revenue

Background: Train Congestion in Tokyo Metropolitan Area

Objective:

Compare people's changes in railway price elasticity between 2019 and 2021.
Apply the time-based fare system (increasing fare in peak hours).
Estimate and evaluate the policy's effectiveness.

Basic analysis

We applied Toyosu PP data because it includes data before and after covid19.

Mode Share in 2019

Mode Share in 2021

- Train \quad Bus ■ Car ■ Bike ■ Walk ■ Others

Basic analysis

2021 (After COVID-19)

Based on the departure time distribution of railway trips, we set " $7 \mathrm{am}-9 \mathrm{am}$ " and " $5 \mathrm{pm}-7 \mathrm{pm}$ " as peak hours for railway.

Basic analysis

During peak hours, most of the railway passenger are commuters. 2019 (Before COVID-19)
 2021 (After COVID-19)

Occupation of railway passengers during peak hours

Occupation of railway passengers during peak hours

Basic analysis

2019 (Before COVID-19)

2021 (After COVID-19)

Basic analysis

If the same group of people $(\mathrm{n}=150)$ is traced from 2019 to 2021:

2019 (Before COVID-19)

2021 (After COVID-19)

Multinomial Logit Model

Utility Function

$$
\begin{aligned}
& V_{\text {train }}=\beta_{1} T T_{\text {train }}+\beta_{2} \text { Fare }_{\text {train }}+\beta_{3} \delta_{\text {peak }} \text { Fare }_{\text {train }}+\beta_{4} \delta_{\text {commute }} \text { Fare }_{\text {train }}+\beta_{5} \delta_{\text {young }}+\beta_{6} \delta_{\text {mid }}+\beta_{7} \delta_{\text {weekday }} \\
& V_{\text {bus }}=\beta_{1} T T_{\text {bus }}+\beta_{0(\text { train })} \\
& V_{2} \text { Fare }_{\text {bus }}+\beta_{3} \delta_{\text {peak }} \text { Fare }_{\text {bus }}+\beta_{4} \delta_{\text {commute }} \text { Fare }_{\text {bus }}+\beta_{5} \delta_{\text {young }}+\beta_{6} \delta_{\text {mid }}+\beta_{7} T T_{\text {car }}+\delta_{\text {weekday }} \delta_{\text {young }}+\beta_{6} \delta_{\text {mid }}+\beta_{0(\text { car })} \\
& V_{\text {bike }}=\beta_{1} T T_{\text {bike }}+\beta_{5} \delta_{\text {young }}+\beta_{6} \delta_{\text {mid }}+\beta_{0(\text { bike })} \\
& V_{\text {walk }}=\beta_{1} T T_{\text {walk }}
\end{aligned}
$$

$$
\delta_{\text {peak }}=1 \text { if it's peak hour; } 0 \text { otherwise }
$$

$$
\delta_{\text {commute }}=1 \text { if individual has job(employee, wartime); } 0 \text { otherwise }
$$

$$
\delta_{\text {young }}=1 \text { if individual's age } \leq 29 ; 0 \text { otherwise }
$$

$$
\delta_{\text {mid }}=1 \text { if } 30 \leq \text { individual's age } \leq 59 ; 0 \text { otherwise }
$$

$$
\delta_{\text {weekday }}=1 \text { if it's weekday; } 0 \text { otherwise }
$$

Model result

2019

coefficient	Coefficient value	T-value	$\mathrm{N}=15148$ $\mathrm{~L}(0)=-19706.18$ $\mathrm{LL}=-12213.93$
ASC_rail	1.6504	16.7323	Rho-square $=0.3802$ Adjusted rho-square $=0.3797$
ASC_bus	-0.0932	-0.8501	-17.9950

Model result

2021

coefficient	Coefficient value	T-value	$\mathrm{N}=29900$ $\mathrm{~L}(0)=-37371.59$ $\mathrm{LL}=-26045.62$
ASC_rail	1.8037	25.6000	Rho-square $=0.3031$ Adjusted rho-square $=0.3028$
ASC_bus	0.8903	11.3000	-30.4886

Model result

Aggregated price sensitivity

Year	Multinomial Logit	
	Peak	Off-peak
2019	-0.1322	-0.2295
2021	-0.3943	-0.4933

Policy application

How much should rail company increase the fare after Covid-19?

share $=$ the average probability of choosing rail
revenue = the sum of rail fare of all individuals who chose rail

Policy application

Increasement in fare for peak trip (\%)	Change in rail share [Comparing to before policy] (\%)	Change in revenue [Comparing to before policy] $(\%)$
5	-0.77	1.40
10	-1.56	2.84
15	-2.37	4.18
20	-3.19	5.29
25	-4.02	5.87
30	-4.85	6.60
40	-6.53	7.40
50	-8.22	7.77

Policy application

Absolute Percent change due to increase in fare during peak hours

Discussion

- People are more sensitive to rail transportation's price after covid
- They prefer more safety modes such as walking, biking and driving
- Our results suggest that...
- price increment should be applied during peak hours
- The increasement in price should lesser than around 47% of current fare in order to gain revenue more than losing share
- However, our model's accuracy is low and simple
- more accurate model should be investigated
- use more advanced models to corporate unobserved heterogeneity \rightarrow Mixed logit

