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Introduction

• When predicting, the least one can do is Random Guessing

• Weak Learner
• “A weak learner produces a classifier which is only slightly more accurate than

random classification.”
Pattern Classification Using Ensemble Methods, pg 21, 2010
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Introduction

• A popular example is Decision Tree.
• Weakness can be controlled by the depth of 

tree.
• Weakest tree: only one node and binary

decision made on only one variable.
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Introduction

• Example: Your decision to participate in the summer school.
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Introduction

• Example: Your decision to participate in the summer school.
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Introduction

• Strong Learner
• A strong learner produces a classifier that achieves arbitrarily good accuracy,

better than random guessing.

• For modeling tasks, we aim to develop a strong classifier that makes
predictions with good accuracy with high confidence.
• For instance, applying Support Vector Machines directly to the dataset.
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Introduction

• In short

• Weak learners: Slightly better than random.
• Strong learners: Having good or even near-optimal accuracy.

• Are they equivalent?

YES
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Boosting

• A strong learner can be constructed from many weak learners. 
• This became the basis for boosting methods
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AdaBoost

XGBoost,
LightGBM



Boosting

• Develop a large number of weak learners for a predictive learning problem.
• Combine them in a way to achieve a strong learner. 

• Weak learners: Easy to prepare but not desirable.
• Strong learners: Hard to prepare and highly desirable.
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Bagging vs. Boosting

Boosting
• Start with one decision tree stump (weak learner) and “focus” on the samples it

got wrong.
• Train another decision tree stump that attempts to get these samples right.
• Repeat until a strong classifier is developed.
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Bagging vs. Boosting

Bagging
• Train a number (ensemble) of decision trees from bootstrap samples of your

training set.
• After the decision trees are trained, we can use them to classify new data via

majority rule.
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"Improving ridership by predicting 
train occupancy levels"
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Consider a Scenario
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Survey

• If future crowdedness levels are known 80% participants revealed that they will
change their departure time and/or route to ensure less crowded transport.

17



Studied Train Route (NSW, Australia)
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Illawarra Line
From Central Station 

to Cronulla Station



Train Occupancy (Nov 2018 – Feb 2019) 
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Addressing Imbalanced Data
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Sampling
Classifier

XGB RF SVM

Normal 0.941 0.956 0.951

Down Sampling 0.930 0.940 0.935

Over Sampling 0.958 0.959 0.936

Both 0.955 0.955 0.939
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Overall Accuracy



Sampling
Classifier

XGB RF SVM

Normal 0.824 0.876 0.865

Down Sampling 0.831 0.864 0.844

Over Sampling 0.891 0.883 0.826

Both 0.891 0.889 0.838

22

Macro-averaged F1 Score



Challenges

Imbalanced Data: Biased learning leading to skewed results.

Attracted Occupancy: Predicted Crowdedness values would be affected by
changed travel behavior.
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Annex

• Precision = !"#$ %&'()(*$
!"#$ %&'()(*$+,-.'$ %&'()(*$

• Recall = !"#$ %&'()(*$
!"#$ %&'()(*$+,-.'$ /$0-)(*$

• Accuracy = !"#$ %&'()(*$+!"#$ /$0-)(*$
!"#$ %&'()(*$+!"#$ /$0-)(*$+,-.'$ %&'()(*$+,-.'$ /$0-)(*$

• F1 Score per class, F11 = 2× %"$1('(&2×4$1-..
%"$1('(&2+4$1-..

• Macro − Averaged F1 Score =
,5!"#$+,5%&'"()+,5*+,
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