

September 23, 2022

Fundamentals and Applications of Weak Learners

Muhammad Awais Shafique

Centre d'Innovació del Transport (CENIT) Universitat Politècnica de Catalunya (UPC) Barcelona, Spain

• When predicting, the least one can do is Random Guessing

Weak Learner

• "A weak learner produces a classifier which is only slightly more accurate than random classification."

Pattern Classification Using Ensemble Methods, pg 21, 2010

- A popular example is Decision Tree.
- Weakness can be controlled by the depth of tree.
- Weakest tree: only one node and binary decision made on only one variable.

• Example: Your decision to participate in the summer school.

• Example: Your decision to participate in the summer school.

- Strong Learner
- A strong learner produces a classifier that achieves arbitrarily good accuracy, better than random guessing.
- For modeling tasks, we aim to develop a strong classifier that makes predictions with good accuracy with high confidence.
- For instance, applying Support Vector Machines directly to the dataset.

- In short
- Weak learners: Slightly better than random.
- Strong learners: Having good or even near-optimal accuracy.
- Are they equivalent?

Boosting

- A strong learner can be constructed from many weak learners.
- This became the basis for boosting methods

Boosting

- Develop a large number of weak learners for a predictive learning problem.
- Combine them in a way to achieve a strong learner.
- Weak learners: Easy to prepare but not desirable.
- Strong learners: Hard to prepare and highly desirable.

Bagging vs. Boosting

Boosting

- Start with one decision tree stump (weak learner) and "focus" on the samples it got wrong.
- Train another decision tree stump that attempts to get these samples right.
- Repeat until a strong classifier is developed.

Bagging vs. Boosting

Bagging

- Train a number (ensemble) of decision trees from bootstrap samples of your training set.
- After the decision trees are trained, we can use them to classify new data via majority rule.

"Improving ridership by predicting train occupancy levels"

Consider a Scenario

Leave now 👻	12:15 PM 🔹 🕩	📩 Wed, Feb 16 🔹 🔸	Route options 👻	×
		8:40 AM	9:00 AM	9:1
	32 AM • L3	8:52 AM · 20 mir	40%	
	8:35 AM 🔷 L3	8:55 AM	- 20 min 56%	
		39 AM • L3	8:59 AM · 20 min 89%	
		8:42 AM � L3	9:02 AM · 20 min 72 9	6
		8:45 AM	9:05 AM · 20 r	min 58%

Survey

• If future crowdedness levels are known 80% participants revealed that they will change their departure time and/or route to ensure less crowded transport.

Studied Train Route (NSW, Australia)

Train Occupancy (Nov 2018 – Feb 2019)

Addressing Imbalanced Data

Overall Accuracy

Sampling	Classifier			
Sampling	XGB	RF	SVM	
Normal	0.941	0.956	0.951	
Down Sampling	0.930	0.940	0.935	
Over Sampling	0.958	0.959	0.936	
Both	0.955	0.955	0.939	

Macro-averaged F1 Score

Sampling	Classifier			
Sampling	XGB	RF	SVM	
Normal	0.824	0.876	0.865	
Down Sampling	0.831	0.864	0.844	
Over Sampling	0.891	0.883	0.826	
Both	0.891	0.889	0.838	

Imbalanced Data: Biased learning leading to skewed results.

Attracted Occupancy: Predicted Crowdedness values would be affected by changed travel behavior.

Predicted Crowdedness Level

Actual Crowdedness Level

Centre d'Innovació del Transport (CENIT) C/ Jordi Girona, 1-3, C3, S120, 08034, Barcelona **www.cenit.es** A research group of:

Annex

• Precision = $\frac{\text{True Positive}}{\text{True Positive} + \text{False Positive}}$

- Recall = $\frac{\text{True Positive}}{\text{True Positive} + \text{False Negative}}$
- Accuracy = $\frac{\text{True Positive+True Negative}}{\text{True Positive+True Negative+False Positive+False Negative}}$
- F1 Score per class, $F1_c = 2 \times \frac{Precision \times Recall}{Precision + Recall}$
- Macro Averaged F1 Score = $\frac{F1_{High} + F1_{Medium} + F1_{Low}}{3}$