for Transport

Fundamentals and Applications of Weak Learners

Muhammad Awais Shafique

Centre d'Innovació del Transport (CENIT)
Universitat Politècnica de Catalunya (UPC)
Barcelona, Spain

Introduction

- When predicting, the least one can do is Random Guessing
- Weak Learner
- "A weak learner produces a classifier which is only slightly more accurate than random classification."

Introduction

- A popular example is Decision Tree.
- Weakness can be controlled by the depth of tree.
- Weakest tree: only one node and binary decision made on only one variable.

Introduction

- Example: Your decision to participate in the summer school.

Introduction

- Example: Your decision to participate in the summer school.

Introduction

- Strong Learner

- A strong learner produces a classifier that achieves arbitrarily good accuracy, better than random guessing.
- For modeling tasks, we aim to develop a strong classifier that makes predictions with good accuracy with high confidence.
- For instance, applying Support Vector Machines directly to the dataset.

Introduction

- In short
- Weak learners: Slightly better than random.
- Strong learners: Having good or even near-optimal accuracy.
- Are they equivalent?

> YES

Boosting

- A strong learner can be constructed from many weak learners.
- This became the basis for boosting methods

Boosting

- Develop a large number of weak learners for a predictive learning problem.
- Combine them in a way to achieve a strong learner.
- Weak learners: Easy to prepare but not desirable.
- Strong learners: Hard to prepare and highly desirable.

Bagging vs. Boosting

Boosting

- Start with one decision tree stump (weak learner) and "focus" on the samples it got wrong.
- Train another decision tree stump that attempts to get these samples right.
- Repeat until a strong classifier is developed.

Bagging vs. Boosting

Bagging

- Train a number (ensemble) of decision trees from bootstrap samples of your training set.
- After the decision trees are trained, we can use them to classify new data via majority rule.

More
overfitting

Less
overfitting

Bagging

"Improving ridership by predicting train occupancy levels"

Consider a Scenario

Survey

Pakistan: 40
Spain: 16
Sri Lanka:
Japan: 3
Canada: 2
Qatar: 2
Germany: 1
China: 1
Azerbaijan: 1
Philippines: 1
Vietnam: 1

- If future crowdedness levels are known 80% participants revealed that they will change their departure time and/or route to ensure less crowded transport.

Studied Train Route (NSW, Australia)

Train Occupancy (Nov 2018 - Feb 2019)

Addressing Imbalanced Data

Sampling	Classifier		
	XGB	RF	SVM
Normal	0.941	0.956	0.951
Down Sampling	0.930	0.940	0.935
Over Sampling	0.958	$\mathbf{0 . 9 5 9}$	0.936
Both	0.955	0.955	0.939

Macro-averaged F1 Score

Sampling	Classifier		
	XGB	RF	SVM
Normal	0.824	0.876	0.865
Down Sampling	0.831	0.864	0.844
Over Sampling	$\mathbf{0 . 8 9 1}$	0.883	0.826
Both	$\mathbf{0 . 8 9 1}$	0.889	0.838

Challenges

Imbalanced Data: Biased learning leading to skewed results.
Attracted Occupancy: Predicted Crowdedness values would be affected by changed travel behavior.

Predicted Crowdedness Level

Actual Crowdedness Level

Attracted Occupancy

Centre d'Innovació del Transport (CENIT)

C/ Jordi Girona, 1-3, C3, S120, 08034, Barcelona www.cenit.es

A research group of:
CIMNE ${ }^{\text { }}$

Annex

- Precision $=\frac{\text { True Positive }}{\text { True Positive }+ \text { False Positive }}$
- Recall $=\frac{\text { True Positive }}{\text { True Positive }+ \text { False Negative }}$
- Accuracy $=\frac{\text { True Positive }+ \text { True Negative }}{\text { True Positive+True Negative+False Positive+False Negative }}$
- F1 Score per class, F1 $=2 \times \frac{\text { Precision } \times \text { Recall }}{\text { Precision }+ \text { Recall }}$
- Macro - Averaged F1 Score $=\frac{\mathrm{F}_{\mathrm{High}}+\mathrm{F} 1_{\text {Medium }+\mathrm{F} 1_{\text {Low }}}}{3}$

