The 21st Summer Course **"Behavior Modeling in Transportation Networks**" Lecture Series 1 (16:00-16:30 Sep. 23, 2022)

Recursive structure of decision making in networks: Modeling and estimation

Yuki Oyama

Shibaura Institute of Technology Activity Landscape Design Lab. oyama@shibaura-it.ac.jp

Sequential choice problem

Ex.) A trip is completed by using a **sequence of multiple modes**:

Travel behavior decisions often involve sequential choices

- Mode choice (Walk Train 1 Train 2 Bike)
- Activity pattern (Home Work Other Other Home)
- **Spatial movement** (Place 1 Place 3 Place 4 Place 9)
- **Timing decision** (Stay Stay Stay Action)

Challenges:

- 1. Hard/impossible to enumerate available sequences (**Computation**)
- Travelers may not perceive all elements in a sequence at once (Decision-making structure)

Sequential path choice in a state network

Define choice elements as *state*s and their **network**

- A sequential choice is described as a **path** in the network
- An elemental choice corresponds to a **substructure of network** whose choice set is tractable (easy to count)
 - E.g., the choice set available to S_2 is $\{S_4, S_5\}$

Sequential path choice in a state network

Define choice elements as *state*s and their **network**

Recursive structure of decision-making:

- Not direct choice of a sequence, but **sequential choices of states**
 - Elemental choice is the choice of next state given the current state
- When choosing a state, travelers **consider their possible future choices**
 - Trade-off between the current stage utility and the future expected utility

Sequential path choice in a state network

Define choice elements as **state**s and their **network**

Recursive logit (RL) model (i.e., deterministic MDP with i.i.d. Gumbel utilities)

$$V^{d}(k) \equiv \mathbb{E}\left[\max_{a \in A(k)} \{v(a|k) + V^{d}(a) + \mu \varepsilon(a|k)\}\right] \quad \Rightarrow \quad \frac{e^{\frac{1}{\mu}V^{d}(k)}}{z_{k}} = \sum_{a \in A(k)} \frac{e^{\frac{1}{\mu}\{v(a|k) + V^{d}(a)\}}}{M_{ka}z_{a}}$$

 $m{z} = m{M}m{z} + m{b} \Leftrightarrow m{z} = (m{I} - m{M})^{-1}m{b}$ System of linear equations

Dynamic decision-making description & Efficient computation

The value functions are the solution of a **fixed point problem**:

 $oldsymbol{z} = \mathcal{T}_eta(oldsymbol{z})$ where $\mathcal{T}_eta(oldsymbol{z}) \equiv oldsymbol{M}oldsymbol{z} + oldsymbol{b}$ is the Bellman operator

<u>1. Hawkins-Simon / spectral radius condition</u>

 $(\mathbf{I} - \mathbf{M})$ is **invertible** when the maximum absolute of eigenvalues of \mathbf{M} is strictly less than one $\rho(\mathbf{M}) < 1$

2. Utility condition (Mai and Frejinger, 2022)

 $\mathcal{T}_{\beta}(z)$ is a contraction mapping if:

 $\sum_{a \in A(k)} M_{ka} < 1, \forall k \in A \qquad \text{where } M_{ka} \equiv e^{\frac{1}{\mu}v(a|k)}$

(The nested RL (NRL) case)

$$\sum_{a\in A(k)}M_{ka}\phi_{ka}<1, orall k\in A$$
 where $\phi_{ka}\equiv \mu_a/\mu_k$

Model estimation with recursive structure

Nested Fixed Point (NFXP) algorithm (Rust, 1987)

Inner algorithm must be feasible for ALL parameter values $(\beta^{(0)}, \beta^{(1)}, ...)$ searched during the estimation

Why is the issue more critical during estimation?

Estimation problem of recursive models

- Even if the true and initial parameter values satisfy the feasibility condition, parameter values during the estimation process can often violate the condition (and the estimation fails).
- 2. Moreover, unknown true parameter does not necessarily satisfy the condition.

E.g., if there exist state pairs with **positive utilities**

$$M_{ka} = e^{v(a|k)} > 1$$
, if $v(a|k) > 0$

Then the following condition clearly does **NOT** hold:

$$\sum_{a\in A}M_{ka} < 1$$
, $orall k\in A$

What have been done

Ad hoc manipulation of utility function

To somehow satisfy the utility conditions, previous studies

- Include **ONLY negative attributes** (e.g., travel time, turn penalties)
- Add a fixed large penalty term
- Start estimation with a parameter value with large negative magnitude

Two problems:

- 1. Limit the practical applicability of RL models (cannot capture positive network attributes)
- 2. This manipulation does not ensure a solution or stable estimation.

This study proposes the use of

Prism-based approach (Oyama and Hato, 2019)

The idea of prism-based approach

To interpret, the value function can be viewed as:

$$V^{d}(k) = \mathbb{E}\left[\max_{r \in \mathcal{R}_{kd}} \{v(r) + \mu \epsilon(r)\}\right] = \ln \sum_{r \in \mathcal{R}_{kd}}^{\infty} e^{\frac{1}{\mu}v(r)}$$

Expectation of **ALL path utilities** connecting state *k* to destination *d*

$$\boldsymbol{z} = (\mathbf{I} - \mathbf{M})^{-1}\boldsymbol{b} = (\mathbf{I} + \mathbf{M} + \mathbf{M}^2 + \cdots)\boldsymbol{b}$$

Power series as **implicit calculation process of the path utilities**

ex.) Unrealistic cycles that explosively gain utilities

Prism-based approach **efficiently and behaviorally restricts unrealistic paths** that cause the numerical issue

Prism-based path set restriction

- 1. Define a state-extended network based on **choice-stage**
- 2. Define the **choice-stage constraint** *T*, and evaluate **state existence conditions** *I*(*t*,*k*) based on the minimum number of steps from *o* and to *d*
- **3.** States connection condition: $\Delta_t(a|k) = I(t,k)\delta(a|k)I(t+1,a)$
- 4. The reduced set of states **forms into a prism**.

Prism-constrained RL model

Redefine the value function V(t,k) for each state:

$$e^{\frac{1}{\mu}V^{d}(t,k)} = \sum_{a \in A(k)} \Delta_{t}^{d}(a|k) e^{\frac{1}{\mu}\{v(a|k) + V^{d}(t+1,a)\}} \quad \Leftrightarrow \quad z_{t}^{d} = \mathbf{M}_{t}^{'d} z_{t+1}^{d} + b^{d} \mathbf{M}_{t}^{'d} z_{t+1}^{d} + b^{d} \mathbf{M}_{t}^{'d} z_{t+1}^{d} + b^{d} \mathbf{M}_{t}^{'d} z_{t+1}^{'d} + b^{d} \mathbf{M}_{t}^{'d} z_{$$

- $V(t,k) \neq V(t',k)$ *ex) $V(0,k_1) \neq V(2,k_1)$
- Evaluation function of the prism for each state
- In upper stage, higher probability of actions leading to destination more efficiently

$$z_{t,k} \equiv e^{\frac{1}{\mu}V(t,k)}$$
$$M'_{t,ka} \equiv \Delta_t(a|k)e^{\frac{1}{\mu}v(a|k)}$$

$$(b)$$

Prism-constrained RL model

Solve the value function by **backward induction**

- Initialize: t = T, $z_{T,d} = 1$ and $z_{t,k} = 0$, $\forall (t,k) \neq (T,d)$
- Set t := t 1 and update the value function by

$$oldsymbol{z}_t \gets \mathbf{M}_t^{'}oldsymbol{z}_{t+1} + oldsymbol{b}$$

• If t = 0, finish the computation.

→ Efficiently solved and a unique solution is always found regardless of parameter value and magnitude of utility

*As long as T is finite,

$$z_0 = \mathbf{M}'_0 z_1 + b = \mathbf{M}'_0 (\mathbf{M}'_1 z_2 + b) + b = \cdots = (\mathbf{I} + \sum_{r=0}^{T-1} \prod_{s=0}^r \mathbf{M}'_s) b.$$

is theoretically upper bounded by a real vector because, for finite t,

$$\prod_{s=0}^{t} \mathbf{M}_{s}^{'} = \mathbf{M}_{0}^{'} \mathbf{M}_{1}^{'} \cdots \mathbf{M}_{t}^{'} \le \mathbf{M}^{t} \le C$$

Prism-constrained RL model

Action choice probability

$$p_t^d(a|k) = \frac{\Delta_t^d(a|k)e^{\frac{1}{\mu}\{v(a|k)+V^d(t+1,a)\}}}{\sum_{a'\in A(k)}\Delta_t^d(a'|k)e^{\frac{1}{\mu}\{v(a'|k)+V^d(t+1,a')\}}}$$

Maximum likelihood estimation

Translation of path observations

Original:
$$\sigma_n = [k_0, \ldots, k_{J_n}]$$

Translated: $\sigma_n^* = [(0, k_0), \dots, (J_n, d_n), (J_n + 1, d_n), \dots, (T, d_n)]$

Stay at destination after the arrival (*Set T so that $T \ge \max_n J_n$)

Likelihood function

$$LL(\beta;\sigma^*) \equiv \log \prod_{n=1}^{N} P(\sigma_n^*)$$

= $\sum_{n=1}^{N} \sum_{t=0}^{T-1} \log p_t^{d_n}(k_{t+1}|k_t)$
= $\frac{1}{\mu} \sum_{n=1}^{N} \sum_{t=0}^{T-1} \left[v(k_{t+1}|k_t) + V^{d_n}(t+1,k_{t+1}) - V^{d_n}(t,k_t) \right]$

Numerical experiments

Questions

- 1. Can the Prism-RL model reproduce the true parameter of the RL model even when positive attributes are included ?
- 2. If yes, how stable is the estimation w.r.t. starting points ?

Experimental setup

- Sioux Falls network route choice
- Observations **simulated by the RL model with known true parameters** (24 OD x 1000 samples)
- Estimate both the RL and Prism-RL model using the same observations
- Prism-RL model
 - Define a state network for each destination
 - Set T = 15 (*did not affect the results)

Numerical experiments

$$v(a|k) = \beta_{\text{len}} \text{Length}_{a} + \beta_{\text{cap}} \text{Capacity}_{a} - 10\text{Uturn}_{a|k}$$
$$(\beta_{\text{len}} < 0; \beta_{\text{cap}} > 0)$$

Numerical experiments | Estimation Result

β*	RL	Prism-RL
(-2.5, 2.0)	N/A	(-2.493**, 2.002**) 3.36s / LL=-4919.0
(-2.5, 1.5)	(-2.505**, 1.509**) 0.99s / LL=-5420.5	(-2.505**, 1.509**) 2.87s / LL=-5420.5
(-1.5, 1.5)	N/A	(-1.511**, 1.522**) 2.99s / LL=-7778.3
(-1.5, 1.0)	N/A	(-1.492**, 0.994**) 2.64s / LL=-8366.9

* All true params are feasible solution to the RL model; estimation started with (-1, -1)

- **Prism-RL model reproduced the true values with high accuracy** even for the cases where RL model failed
- In the case where RL was successfully estimated, the estimation results of both models were consistent

Numerical experiments | Estimation Process

- RL model depends on starting point and often diverge during the estimation
- Prism-RL model converges to the true value regardless of starting point (*update to infeasible region was not observed)

Numerical experiments | Estimation Process

• Stably converged to the true parameter **even when starting point is outside the RL feasible region**

• No prior information on the true value is needed (you can set an initial point as you like)

Real application to pedestrian route choice

- Kannai, Yokohama (a mile square centered on Kannai station)
 - 724 Nodes, 2398 Links, 8434 Link pairs
- **PP Survey** in H30 PT survey
 - 410 observed paths of 159 pedestrians, 164 destinations
 - Diverge walking paths including large detours

Real application | Definition of choice-stage constraint *T*

- Define *T* for each *d* based on **observed detour rate**:
 - $T_d \equiv \max_{n \in N_d} \{ \max(\underline{1.34} \times D^d(o_n), J_n) \}$
 - N_d : Set of observed paths for d
 - $D^{d}(o_{n})$: min. steps b/w observed OD pair
 - J_n : observed no. of steps of n
- **75 percentile value** (=1.34) to include diverse paths in the path set
- All observations satisfy the prism constraint

Real application | Utility specification

• Compare two different utility specifications:

$$(a|k) = \beta_{\text{len}} \text{Length}_a + \beta_{\text{cross}} \text{Crosswalk}_a - 10 \text{Uturn}_{a|k}, \quad (a)$$

 $v(a|k) = (\beta_{\text{len}} + \beta_{\text{green}} \text{Green}_a) \text{Length}_a + \beta_{\text{cross}} \text{Crosswalk}_a - 10 \text{Uturn}_{a|k},$ (b)

- *Length*: length of link (m/10)
- Crosswalk: 1 if the link is a crosswalk and 0 otherwise
- *Green*: <u>On-street green presence</u> (1/0; interacted with link length)

To clarify:

 \mathcal{U}

- Street greenery produces a positive effect on utility for pedestrian route choice? Can Prism-RL model capture it?
- 2. How different are the estimation results of RL/Prism-RL models?

Real application | Estimation result

	RL (a)	Prism-RL (a)	RL (b)	Prism-RL (b)
$\hat{\beta}_{\text{len}}$	-0.297	-0.245	-	-0.266
std.err.	0.008	0.007	-	0.020
t-test	-38.832	-37.264	-	-13.283
$\hat{\beta}_{cross}$	-0.924	-0.774	-	-0.791
std.err.	0.075	0.171	-	0.068
t-test	-12.237	-4.517	-	-11.638
$\hat{\beta}_{\text{green}}$			-	0.049
std.err.			-	0.010
t-test			-	4.817
LL	-1772.972	-1637.484	-	-1612.894
#paths	410	410	410	410

- For specification (a), **both RL and Prism-RL models obtained estimation results** with statistical significance
 - *Length, Crosswalk* are both negative → Pedestrians do not like paths with long distance and crosswalks
 - Prism-RL model fits better (details later)
- For (b), **ONLY Prism-RL model obtained the result** and **captured the positive utility** of green presence on streets
 - RL model failed with all the tested starting points
 - Adding the attribute improved goodness-of-fit (with 99% significance)

	NRL (a)	Prism-NRL (a)	NRL (b)	Prism-NRL (b)
$\hat{\beta}_{\text{len}}$	-0.460	-0.445	-0.485	-0.469
std.err.	0.030	0.039	0.082	0.062
t-test	-15.166	-11.304	-5.945	-7.568
$\hat{\beta}_{\rm cross}$	-1.262	-1.206	-1.281	-1.206
std.err.	0.163	0.120	0.280	0.201
t-test	-7.728	-10.021	-4.567	-5.993
$\hat{\beta}_{\text{green}}$	-	-	0.078	0.082
std.err.	-	-	0.021	0.014
t-test	-	-	3.690	5.855
ŵ	0.064	0.095	0.063	0.091
std.err.	0.006	0.013	0.012	0.010
t-test	9.942	7.402	5.459	8.769
LL	-1734.622	-1587.079	-1707.068	-1565.531
#paths	410	410	410	410

Real application | Estimation result - Nested models

* $\mu_k^d = e^{\omega \sqrt{\text{SP}_{kd}}}$ where SP_{kd} is the shortest path length between *k* and *d*

• Prism-based approach also suited the NRL model as well

- Same signs as RL models; Prism-NRL fits better than NRL
- Captured correlation: scale (variance) decreases on links close to destination
- NRL could be estimated for spec. (b) but depended on starting point
 - Prism-NRL was successfully estimated with all initial points tested
 - Prism-based approach can also be viewed as **a good approximation to provide a nice starting point** for original RL models

Real application | Model validation

- Compare model performance of out-of-sample prediction
 - 10 sets of randomly split estimation and validation samples (8:2)
- Prism-RL model shows a higher prediction performance for all samples
 - Universal set (RL/NRL) vs Prism-based path set (Prism-RL/NRL)
 - Inclusion of positive attribute & nesting also improved the performance

Real application | Impact of *T* (Prism-RL results)

Test **different detour rates** γ in $T_d \equiv \max\left[\max_{n \in N_d} \{\gamma D^d(o_n), J_n\}\right]$

Sm	all				
Path set size	$rac{\gamma}{1.25} \\ 1.34 \\ 1.50 \\ 2.00$	β _{len} -0.265 -0.266 -0.271 -0.284	$\hat{\beta}_{cross}$ -0.785 -0.791 -0.796 -0.817	$\hat{eta}_{ m green}$ 0.049 0.049 0.050 0.052	<i>LL</i> -1605.104 -1612.894 -1632.277 -1661.690
Lar	ge *Correspo when T go	nds to RL bes to infinity			

- The signs and scales of the estimates **remained unchanged**
- The ratio of negative parameters systematically increased as γ grew
 - Prism-RL model adjusted the parameter to keep little probability of detour/cyclic paths
- Model fits better with smaller y values (i.e., tighter constraints)
 - Due to the exclusion of behaviorally unrealistic paths
 - Trade-off with out-of-sample prediction (choice set consistency)

Conclusion

- Recursive model describes the decision-making structure and is a computationally efficient method in a dynamic/sequential choice context
- Recursive model entails a **numerical issue with respect to the value function** which is **critical during the estimation**
- Prism-based approach solves the issue and stably captures positive network attributes
- Expanded the practical applicability of recursive models

Thank you for your attention!

Cite/more details: "Capturing positive network attributes during the estimation of recursive logit models: A prism-based approach" <u>arXiv:2204.01215 [econ.EM]</u>

References

RL model and its numerical issues

- Fosgerau, M., Frejinger, E., Karlstrom, A. (2013). A link based network route choice model with unrestricted choice set. *Transportation Research Part B: Methodological* 56: 70–80.
- Oyama, Y., Hato, E., (2017) A discounted recursive logit model for dynamic gridlock network analysis. *Transportation Research Part C: Emerging Technologies* 85: 509–527.
- Mai, T., Frejinger, E. (2022). Undiscounted recursive path choice models: Convergence properties and algorithms. *Transportation Science*.

Prism-constrained RL model

- Oyama, Y. (2022) Capturing positive network attributes during the estimation of recursive logit models: A prism-based approach. arXiv: 2204.01215 [econ.EM].
- Oyama, Y., Hato, E. (2019) Prism-based path set restriction for solving Markovian traffic assignment problem. *Transportation Research Part B: Methodological* 122: 528-546.
- 大山雄己, 羽藤英二 (2017) 時間構造化ネットワーク上の確率的交通配分. 土木学会 論文集 D3(土木計画学) 73(4): 186-200.
- 大山雄己, 羽藤英二 (2016) 時空間制約と経路相関を考慮した歩行者の活動配分問 題. 都市計画論文集 51(3): 680-687.

Appendix | CPU time for estimation

Average CPU time (s) over 10 samples in validation

	RL	RL NRL		Prism-RL		Prism-NRL	
v(a k)	(a)	(a)	(b)	(a)	(b)	(a)	(b)
CPU time (s)	36.40	1096.82	1282.22	386.24	768.89	781.48	900.17

- RL model is very fast due to the linear system
- Advantage of prism-constrained models is independence of the model linearity: the scale of required CPU time does not change very much between Prism-RL and Prism-NRL models