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Tokyo Tech

➡ Queue Congestion

➡ Inventory Congestion

Background

(a) Queue by rationing 1)

(b) Inventory congestion 2)

2016 Kumamoto Earthquakes

Disaster Base
(DB)

Evacuation 
Center (EC)

Distribution 
Center (DC)

Relief Goods Transportation Network

affected area

 Humanitarian Organizations (HOs; e.g., 
governments) need to supply relief goods 
to ECs.

Bad Reports3) (Examples)

 Surge Demand

 Supply Constraints

causes

causes

Should rethink 
relief goods flow
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Tokyo TechHumanitarian Logistics (HL)
Definition
“ the process of planning, implementing and controlling the efficient, cost-effective flow and 
storage of goods and materials, as well as related information, from the point of origin to 
the point of consumption for the purpose of alleviating the suffering of vulnerable people. ”

Time

HL Strategy

HL with restoration process of Information Infrastructure

Information
Unreliable

Delay (almost) 
complete

Restoration

Kawase (2021) this research

Push*
Pull Pull**

**Supply corresponding 
to demand information

*Supply corresponding 
to predicted demand

Disaster

What preparations (e.g., staffing) should be done for the pull strategy?

What is the efficient, cost-effective flow and storage in the pull strategy?

Focus
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Tokyo TechChallenges of Pull Strategy
(Almost) Perfect Information but Supply Constrained

Supply Constrained

Direct Supply

 In the Kumamoto Earthquakes, direct 
supply was the solution alternative.

 However, a large-scale disaster would 
also disrupt direct supply.

Observation (in the Kumamoto Earthquakes)

 Some victims made trips to 
acquire food and essential goods. 

Suggest the potential for 
improvement through 
Demand-Supply Approach

Demand-Supply Approach

 Formulate an optimization problem 
for the demand-supply approach 

 Numerical evaluate the 
performance of the approach

Methodology
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Tokyo TechPrevious Research
Previous models of network flow optimization for humans and goods

 discard Queue Congestion and Inventory Congestion.

 are computationally inefficient.

Typical Assumptions in Logistics Optimization

Previous Models Considering Only Flow Congestion, not Queue Congestion

Previous Models Considering Queue Congestion

 Humans and Goods can move in free-flow travel time (FFTT).
 Humans/goods are serviced/consumed immediately on arrival.

 Muggy and Stamm (2020) formulate MPEC* s.t. congestion game.
 Gutjahr and Dzubur (2016) formulate BLPP s.t. optimal destination 

choice.

 Espejo-Díaz and Guerrero (2021), Fikar et al.(2018) present an 
agent-based simulation optimization framework.

 Limitation is computational efficiency.

*Mathematical Programming with 
Equilibrium Constraints
**Bilevel Programming Problems
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Tokyo TechPrevious Research
Previous models of network flow optimization for humans and goods

 discard Queue Congestion and Inventory Congestion.

 are computationally inefficient.

Typical Assumptions in Logistics Optimization

Previous Models Considering Only Flow Congestion, not Queue Congestion

Previous Models Considering Queue Congestion

 Humans and Goods can move in free-flow travel time.
 Humans/goods are serviced/consumed immediately on arrival.

 Muggy and Stamm (2020) formulate MPEC* s.t. congestion game.
 Gutjahr and Dzubur (2016) formulate BLPP** s.t. optimal 

destination choice. *Mathematical Programming with 
Equilibrium Constraints
**Bilevel Programming Problems

 Espejo-Díaz and Guerrero (2021), Fikar et al.(2018) present an 
agent-based simulation optimization framework.

 Limitation is computational efficiency.

Research Gap
 Optimal network flow for humans (traffic) and goods could 

attack HL problems, supply constraints.
 There is no optimization model to meet both computationally 

efficient and queue congestion considerations.

Research Objective
 Formulate an optimization problem that is (potentially)

computationally efficient and describes queue congestion.
 Propose BLPP

• Upper: Optimize preparations (e.g., staffing, stockpiles)
• Lower: Optimize dynamic network flow using 

Optimal Control Problem
 Numerical evaluate the performance of the demand-supply 

approach.
 Show preliminary results on a simple network.
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Tokyo TechModel Framework
 To minimize queue congestion and 

inventory congestion,
 (Upper) Determine preparation 

strategies {𝐼𝐼1 0 , 𝐼𝐼2 0 , 𝜅𝜅1, 𝜅𝜅2} and 
 (Lower) Determine demand and 

supply dynamics.

 (Supply) HOs supply DB, or supply 
EC via DB.
 Between DB and EC, relief 

goods can move in FFTT. 
 (Demand) Victims receive relief 

goods at DB or EC.
 Between DB and EC, victims 

can move in FFTT. 
 Total relief demand for victims 

is uncertain. Denote the 
stochastic process as 𝑄𝑄(𝑡𝑡) and 
the sample path as 𝑞𝑞(𝑡𝑡).

Relief Goods 

𝑡𝑡: FFTT

Relief Goods Transportation Network

Human (Traffic, Victim)

𝑂𝑂 𝐷𝐷

queue

𝑞𝑞(𝑡𝑡)
𝑡𝑡

A Parallel Link Network

𝐼𝐼1(𝑡𝑡) 𝐼𝐼2(𝑡𝑡)
inventory

𝜅𝜅1

𝜅𝜅2Service rate

One victim needs only one item.
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Tokyo TechVariables
Relief Goods (c.f. Kawase et al., 2019) 

𝐼𝐼1(𝑡𝑡) 𝐼𝐼2(𝑡𝑡)

𝑆𝑆1 𝑡𝑡
∈ [0, 𝑆𝑆1]

𝑆𝑆2 𝑡𝑡
∈ [0, 𝑆𝑆2]

𝑆𝑆2(𝑡𝑡 − 𝑡𝑡)

𝑡𝑡: FFTT

𝐼𝐼𝐼𝐼(𝑡𝑡)

𝜅𝜅1 𝑡𝑡 − 𝑡𝑡 𝜅𝜅2 𝑡𝑡

Stock (State Variables)

Flow (Control Variables)

𝐼𝐼1(𝑡𝑡), 𝐼𝐼2(𝑡𝑡) : Net inventory* at nodes

*an inventory if positive; 
a shortage otherwise

𝐼𝐼𝐼𝐼(𝑡𝑡) : In-transit inventory

𝑆𝑆1 𝑡𝑡 : Inflow per unit-time at DB
𝑆𝑆2 𝑡𝑡 : Outflow per unit-time at DB

: Inflow per unit-time at EC𝑆𝑆2(𝑡𝑡 − 𝑡𝑡)
𝜅𝜅1 𝑡𝑡 , 𝜅𝜅2(𝑡𝑡) : Demand per unit-time

Relief Goods Transportation Network

Human (c.f. Akamatsu and Nagae, 2007) 
Stock (State Variables)

Flow (Control Variables)
𝑂𝑂 𝐷𝐷

𝑥𝑥1(𝑡𝑡)

𝑞𝑞(𝑡𝑡)

𝜈𝜈 𝑡𝑡 ∈ [0, 𝑞𝑞(𝑡𝑡)]

𝑞𝑞 𝑡𝑡 − 𝜈𝜈(𝑡𝑡)

𝜅𝜅1

𝜅𝜅2

𝑥𝑥2(𝑡𝑡)
𝑡𝑡

A Parallel Link Network

𝑥𝑥1(𝑡𝑡), 𝑥𝑥2(𝑡𝑡) : Queue

𝜈𝜈 𝑡𝑡 : Inflow per unit-time to DB
𝜅𝜅1 𝑡𝑡 , 𝜅𝜅2(𝑡𝑡) : Outflow per unit-time

𝑂𝑂: Need relief goods 𝐷𝐷: Get relief goods

One victim needs only one item.
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Tokyo TechDynamics

𝑑𝑑𝐼𝐼1/𝑑𝑑𝑡𝑡 = 𝑆𝑆1(𝑡𝑡) −𝑆𝑆2(𝑡𝑡) −𝜅𝜅1 𝑡𝑡 − 𝑡𝑡 , 𝐼𝐼1 0 = 𝐼𝐼01

*(t) is omitted.
𝑡𝑡

#

𝑡𝑡

𝐼𝐼𝐼𝐼

𝑥𝑥2

𝐼𝐼2 < 0

𝐼𝐼2 ≥ 0

Cumulative curve at EC

𝑡𝑡

#
𝑥𝑥1

𝐼𝐼1 ≥ 0

𝐼𝐼1 < 0

𝑡𝑡
Cumulative curve at DB

𝑑𝑑𝐼𝐼2/𝑑𝑑𝑡𝑡
𝑑𝑑𝐼𝐼𝐼𝐼/𝑑𝑑𝑡𝑡

= 𝑆𝑆2(𝑡𝑡 − 𝑡𝑡)

= 𝑆𝑆2(𝑡𝑡) −𝑆𝑆2 𝑡𝑡 − 𝑡𝑡 ,

−𝜅𝜅2 𝑡𝑡 , 𝐼𝐼2 0 = 𝐼𝐼02

𝐼𝐼𝐼𝐼 0 = 0

𝑑𝑑𝑥𝑥1/𝑑𝑑𝑡𝑡 = 𝜈𝜈(𝑡𝑡) −𝜅𝜅1(𝑡𝑡) , 𝑥𝑥1 0 = 0

𝜅𝜅1(𝑡𝑡) = �
𝜅𝜅1
𝜅𝜅1
𝜈𝜈(𝑡𝑡)

if 𝑥𝑥1 𝑡𝑡 > 0
if 𝑥𝑥1 𝑡𝑡 = 0 and 𝜈𝜈 𝑡𝑡 ≥ 𝜅𝜅1
if 𝑥𝑥1 𝑡𝑡 = 0 and 𝜈𝜈 𝑡𝑡 < 𝜅𝜅1

𝑑𝑑𝑥𝑥2/𝑑𝑑𝑡𝑡 = 𝑞𝑞 𝑡𝑡 − 𝜈𝜈(𝑡𝑡) −𝜅𝜅2(𝑡𝑡) , 𝑥𝑥2 0 = 0

𝜅𝜅2(𝑡𝑡) = �
𝜅𝜅2
𝜅𝜅2

𝑞𝑞 𝑡𝑡 − 𝜈𝜈(𝑡𝑡)

if 𝑥𝑥2 𝑡𝑡 > 0
if 𝑥𝑥2 𝑡𝑡 = 0 and 𝑞𝑞 𝑡𝑡 − 𝜈𝜈(𝑡𝑡) ≥ 𝜅𝜅2
if 𝑥𝑥2 𝑡𝑡 = 0 and 𝑞𝑞 𝑡𝑡 − 𝜈𝜈(𝑡𝑡) < 𝜅𝜅2

∫ 𝑆𝑆1 − 𝑆𝑆2 𝑑𝑑𝑡𝑡
∫ 𝜈𝜈𝑑𝑑𝑡𝑡

∫ 𝜅𝜅1𝑑𝑑𝑡𝑡
∫ 𝜅𝜅1 𝑡𝑡 − 𝑡𝑡 𝑑𝑑𝑡𝑡

∫ 𝑆𝑆2𝑑𝑑𝑡𝑡 ∫ (𝑞𝑞 − 𝜈𝜈)𝑑𝑑𝑡𝑡

∫ 𝜅𝜅2𝑑𝑑𝑡𝑡∫ 𝑆𝑆2 𝑡𝑡 − 𝑡𝑡 𝑑𝑑𝑡𝑡

(1)

(2)

(3)

(4)

(5)
(6)

(7)
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Tokyo TechCost

𝑐𝑐 𝑡𝑡 = 𝑐𝑐𝐼𝐼1 𝑡𝑡 + 𝑐𝑐𝐼𝐼2 𝑡𝑡 + 𝑐𝑐𝐼𝐼𝐼𝐼 𝑡𝑡 + 𝑐𝑐𝑥𝑥1 𝑡𝑡 + 𝑐𝑐𝑥𝑥2(𝑡𝑡)

Total Cost for a certain time horizon [0,𝐼𝐼] *

𝐶𝐶 = �
0

𝐼𝐼
𝑐𝑐 𝑡𝑡 𝑑𝑑𝑡𝑡 + 𝜙𝜙(𝐼𝐼)

Increase in Total Cost per unit-time, 𝑐𝑐 𝑡𝑡

* This study assumes that 
the terminal cost 𝜙𝜙(𝐼𝐼) is 0.

Net Inventory Cost, 𝑐𝑐𝐼𝐼1 𝑡𝑡 + 𝑐𝑐𝐼𝐼2 𝑡𝑡

In-transit Inventory Cost, 𝑐𝑐𝐼𝐼𝐼𝐼 𝑡𝑡

Total Travel Time, 𝑐𝑐𝑥𝑥1 𝑡𝑡 + 𝑐𝑐𝑥𝑥2 𝑡𝑡

𝑐𝑐𝐼𝐼1 𝑡𝑡 = max 0, 𝐼𝐼1 𝑡𝑡 − min{0, 𝐼𝐼1(𝑡𝑡)}
𝑐𝑐𝐼𝐼2 𝑡𝑡 = max 0, 𝐼𝐼2 𝑡𝑡 − min{0, 𝐼𝐼2(𝑡𝑡)}

𝑐𝑐𝐼𝐼𝐼𝐼 𝑡𝑡 = 𝑆𝑆2 𝑡𝑡 ⋅ 𝑡𝑡

𝑐𝑐𝑥𝑥1 𝑡𝑡 = 𝑥𝑥1 𝑡𝑡 /𝜅𝜅1 + 𝑡𝑡 𝜈𝜈(𝑡𝑡)
𝑐𝑐𝑥𝑥2 𝑡𝑡 = 𝑥𝑥2 𝑡𝑡 /𝜅𝜅2(𝑞𝑞 𝑡𝑡 − 𝜈𝜈 𝑡𝑡 )

𝑐𝑐𝑥𝑥1 𝑡𝑡 𝑐𝑐𝑥𝑥2 𝑡𝑡

𝑐𝑐𝐼𝐼2 𝑡𝑡

𝑐𝑐𝐼𝐼1 𝑡𝑡

𝑐𝑐𝐼𝐼𝐼𝐼 𝑡𝑡

𝑥𝑥1
𝑡𝑡

𝜅𝜅1

𝑥𝑥1/𝜅𝜅1
𝑥𝑥2 𝜅𝜅2

𝑥𝑥2/𝜅𝜅2

𝑡𝑡
−min{0, 𝐼𝐼2(𝑡𝑡)}

max{0, 𝐼𝐼1(𝑡𝑡)} −m𝑖𝑖𝑖𝑖{0, 𝐼𝐼1(𝑡𝑡)}(8)

(9)

(10)
(11)

(12)

(13)
(14)
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Tokyo TechModified Cost
Problems involving delays are not easy to solve.
 Define modified cost �̂�𝐶 so that the problem does not include delays.
 When 𝐼𝐼1 𝑡𝑡 ≥ 0 and 𝐼𝐼2 𝑡𝑡 ≥ 0 ∀𝑡𝑡 ∈ [0,𝐼𝐼], 𝐶𝐶 = �̂�𝐶.

Modified Net Inventory Cost, �̂�𝑐𝐼𝐼1 𝑡𝑡 + �̂�𝑐𝐼𝐼2 𝑡𝑡

�̂�𝑐𝐼𝐼1 𝑡𝑡 = max 𝐼𝐼𝑁𝑁1 𝑡𝑡 , 0 − min{0, 𝐼𝐼𝑁𝑁1 𝑡𝑡 } + 𝑐𝑐𝑥𝑥1 𝑡𝑡
�̂�𝑐𝐼𝐼2 𝑡𝑡 = 𝐼𝐼𝑁𝑁2 𝑡𝑡 − 𝑐𝑐𝐼𝐼𝐼𝐼 𝑡𝑡

𝑑𝑑𝐼𝐼𝑁𝑁1/𝑑𝑑𝑡𝑡 = 𝑆𝑆1(𝑡𝑡) −𝑆𝑆2(𝑡𝑡) −𝜈𝜈 𝑡𝑡 , 𝐼𝐼𝑁𝑁1 0 = 𝐼𝐼01
𝑑𝑑𝐼𝐼𝑁𝑁2/𝑑𝑑𝑡𝑡 = 𝑆𝑆2(𝑡𝑡) −𝜅𝜅2 𝑡𝑡 , 𝐼𝐼𝑁𝑁2 0 = 𝐼𝐼02

𝐼𝐼𝑁𝑁1(𝑡𝑡), 𝐼𝐼𝑁𝑁2(𝑡𝑡) : Potential Net inventory, including unarrived supply and demand

𝑐𝑐𝐼𝐼1 𝑡𝑡 𝑐𝑐𝑥𝑥1 𝑡𝑡 max 𝐼𝐼𝑁𝑁1 𝑡𝑡 , 0 min{0, 𝐼𝐼𝑁𝑁1 𝑡𝑡 }

= + −

(15)
(16)

(17)
(18)
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Tokyo TechBilevel Programming Problem
Lower-level: Linear Optimal Control Problem

min
𝑿𝑿,𝑼𝑼

[�̂�𝐶|𝐼𝐼01, 𝐼𝐼02, 𝜅𝜅1,𝜅𝜅2, {𝑞𝑞(𝑡𝑡)}]

�̂�𝐶 = �
0

𝐼𝐼
�̂�𝑐 𝑡𝑡 𝑑𝑑𝑡𝑡 �̂�𝑐 𝑡𝑡 = �̂�𝑐𝐼𝐼1 𝑡𝑡 + �̂�𝑐𝐼𝐼2 𝑡𝑡 + 𝑐𝑐𝐼𝐼𝐼𝐼 𝑡𝑡 + 𝑐𝑐𝑥𝑥1 𝑡𝑡 + 𝑐𝑐𝑥𝑥2(𝑡𝑡)

s. t. Eq. 1 − 7 , 12 − (18)

 Given preparation strategies {𝐼𝐼01, 𝐼𝐼02, 𝜅𝜅1,𝜅𝜅2} and a demand sample path 
{𝑞𝑞(𝑡𝑡)}, the optimal control is obtained numerically.

 Apply existing computationally efficient solution method (c.f. 
Chavanasporn and Ewald, 2012) for linear optimal control problem.

 Generate a finite number of sample paths 𝑞𝑞(𝑡𝑡) of stochastic process 𝑄𝑄(𝑡𝑡)
 Evaluate the expected total cost approximately
 Find the optimal 𝐼𝐼01, 𝐼𝐼02, 𝜅𝜅1, 𝜅𝜅2 in a brute-force fashion

𝑿𝑿: = {𝐼𝐼1(𝑡𝑡), 𝐼𝐼2 𝑡𝑡 , 𝐼𝐼𝑁𝑁1(𝑡𝑡), 𝐼𝐼𝑁𝑁2 𝑡𝑡 ,
𝐼𝐼𝐼𝐼 𝑡𝑡 , 𝑥𝑥1 𝑡𝑡 ,𝑥𝑥2(𝑡𝑡)|∀𝑡𝑡 ∈ 0,𝐼𝐼 }

𝑼𝑼 ≔ {𝑆𝑆1 𝑡𝑡 , 𝑆𝑆2 𝑡𝑡 , 𝜈𝜈 𝑡𝑡 ,
𝜅𝜅1 𝑡𝑡 , 𝜅𝜅2(𝑡𝑡)|∀𝑡𝑡 ∈ 0,𝐼𝐼 }

Upper-level
min

𝐼𝐼01,𝐼𝐼02,𝜅𝜅1,𝜅𝜅2
E[�̂�𝐶|𝑿𝑿,𝑼𝑼]

𝐼𝐼1 𝑡𝑡 ≥ 0, 𝐼𝐼2 𝑡𝑡 ≥ 0,
s. t. Lower-level Problem and

𝜅𝜅1 + 𝜅𝜅2 = 𝜅𝜅, {𝑄𝑄(𝑡𝑡)}
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Numerical Experiments
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Tokyo TechNumerical Experiments: Setting
 The number of sample paths 𝑞𝑞(𝑡𝑡) is 500. 

 𝑑𝑑𝑞𝑞 𝑡𝑡 = 𝜎𝜎𝑞𝑞𝑑𝑑𝑑𝑑(𝑡𝑡), 𝑑𝑑 𝑡𝑡 ~𝑁𝑁(0, 𝑡𝑡), 𝑞𝑞(0) = {3,4,5,6,7}, 𝜎𝜎𝑞𝑞 = {0, 0.05, 0.1}

 𝐼𝐼 = 100

 FFTT, 𝑡𝑡 = {5,10,20}

 𝑆𝑆1 = 10, 𝑆𝑆2 = 3,5,7

 𝜅𝜅 = 5, 𝜅𝜅1 = {0,1,2,3,4,5}

500 Sample Paths (𝑞𝑞(0) = 5, 𝜎𝜎𝑞𝑞 = 0.05, then 𝑞𝑞 𝑡𝑡 ~𝑁𝑁(𝑞𝑞 0 ,𝜎𝜎𝑞𝑞2𝑡𝑡))
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Tokyo TechNumerical Experiments: Result

Optimal 𝜅𝜅1 when FFTT 𝑡𝑡 = 5 (left: 𝑆𝑆2 = 3, center: 𝑆𝑆2 = 5, right: 𝑆𝑆2 = 7)

E
𝑞𝑞
𝑡𝑡

=
𝑞𝑞

0

𝜎𝜎𝑞𝑞 𝜎𝜎𝑞𝑞

E[
𝑞𝑞
𝑡𝑡

]

Optim
al𝜅𝜅

1

𝜎𝜎𝑞𝑞

E[
𝑞𝑞
𝑡𝑡

]

 The larger mean E 𝑞𝑞 𝑡𝑡 and variance 𝜎𝜎𝑞𝑞2𝑡𝑡 of demand increase optimal 𝜅𝜅1.

 When supply constraint is relaxed (𝑆𝑆2 = 7), optimal 𝜅𝜅1 is likely to be 0.

Suggest that in a typical disaster situation
(𝐄𝐄 𝒒𝒒 𝒕𝒕 , 𝝈𝝈𝒒𝒒𝟐𝟐𝒕𝒕 are large, supply constraint is tight),
optimal 𝜿𝜿𝟏𝟏 > 𝟎𝟎 (i.e., demand-supply approach is effective).
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Optim

al𝜅𝜅
1

𝜎𝜎𝑞𝑞

E[
𝑞𝑞
𝑡𝑡

]

Optimal 𝜅𝜅1 when 𝑆𝑆2 = 7(left: FFTT 𝑡𝑡 = 5, center:𝑡𝑡 = 10, right:𝑡𝑡 = 20)

𝜎𝜎𝑞𝑞

E[
𝑞𝑞
𝑡𝑡

]

𝜎𝜎𝑞𝑞

E[
𝑞𝑞
𝑡𝑡

]

 FFTT 𝑡𝑡 between DB and EC increases, then
 optimal 𝜅𝜅1 tends to increase, and
 the ratio of users’ cost (total travel time for victims) increase.
 Non-negative constraints on 𝐼𝐼1 𝑡𝑡 and 𝐼𝐼2 𝑡𝑡 could be causing supply-

side costs to be greater than optimum.
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 Formulation
 Formulate BLPP to evaluate the performance of demand-

supply approach
• Upper: Optimize preparations (e.g., staffing, stockpiles)
• Lower: Optimize dynamic network flow for humans and 

goods
 Reformulate lower-level one as a (non-delayed) optimal 

control problem by modifying net inventory cost

 Numerical Experiments
 Demand-supply approach would be effective in a 

typical disaster situation.
 However, the proposed model is likely to overestimate 

supply-side costs. The optimality of the reformulated 
problem, optimal control problem, should be evaluated.
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