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Introduction

A Background
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The development of social networking services such as Twitter has made it easier to acquire text data linked to
its location data.
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The strength of Tweet data is that features of the text data can be connected to a spatial network and incorporate
into a time-series model through the their location data.
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. Real time behavior prediction
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It is expected to be applied to readime prediction of people's behavior based on the content of Twitter text data
in the event of a disaster.

Extracting the transformation of universal values
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Through tweets about "congestion” and their letegm accumulated text data and user location information, we

can extract universal changes in values about "congestion" by comparing them before and after thel@OVID
epidemic.



Text data and Feature vector

A Relationship between text data and Feature vector

Relationship between time spent
in the location and Tweet
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supervised machine learning
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Extract features from text to describe behavior.
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PCA( )
Principal Component Analysis
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Framework
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Completing
the number of data
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Network Data
Grid network with the centroid C S S| G dzNB

SE (NI 0u)\2y

| ]

TextDatas

of each mesh as node
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Spatial configuration
restaurant, shop ...

Route Behavior Data

Two pathways and unlinked
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Extract features
from text data

Route Choice
by dRLModel

Estimation of parameters fc
explanatory variables and
Assign the flow
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RL model andbtate Quantity
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Tweeting at a certain time step is described as a transition to Tweet Node.
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When one is ab8Y, the transition option is
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When one is ab 8, the transition option is
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The shape of formulation @b can be divided into
several forms depending on the pattern of the transiti




Formulation

Features Features that predict the Constant term
of the Grid probability of a Tweet for Tweeting
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Estimation Result

Basic RL Model

Estimation 1

Estimated Parameter t-Test

the Width of Road -6.61 *

the Number of Shop 3.53

the Number of Restaurant -6.59 *

the Number of Sample 103

Initial LL -835.69

Final LL -821.72

LL Ratio 0.016

Adjusted LL Ratio 0.013

AIC (FRitfE R ETLHE) 1649

B 0.53
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Without tweet-related features, LL is low. The width
estimate is also counterintuitive.

RL Model usingstimated evaluation

Estimation 2

Estimated Parameter t-Test

the Number of Tweet 2.74
Eval58 292
the Number of Restaurant -3.26 *
Constant Term (for Tweet) -12.12 **
the Number of Sample 103
Initial LL -835.69
Final LL -629.14
LL Ratio 0.24
Adjusted LL Ratio 0.24
AIC (fRit iR HE) 1270
B 0.97
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The negative parameter for the number of restaurants is
thought to be due to the small number of trips to eat out.
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We succeeded to get high LL ratio-8atue.




Estimation Result

Basic RL Model w[ az2RSAS@m2ANOEl SR GSEU [RI
Estimation 1 - -
Estimated Parameter t-Test Estimation 3
Estimated Parameter t-Test
Evaluation 1.79 398 *
the Number of Tweet 0.62 3.09 *
the Width of Road -6.61 * 0 *
the Number of Shop 3.53 PCAL 0.94 26
the Number of Restaurant -6.59 *
the Number of Sample 103
Initial LL -835.69
Final LL 821.72 the Number of Restaurant -0.11 -3.74 *
LL Ratio 0.016 Constant Term (for Tweet) -3.55 -12.14 **
Adjusted LL Ratio 0.013 the Number of Sample 103
AIC (FRith s ERHE) 1649 .
8 0.53 Initial LL -835.69
Sl E 1% E Final LL -629.14
LL Ratio 0.25
" . Adjusted LL Ratio 0.24
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Without tweet-related features, LL is low. The width *SUHE *I%HE
estimate is also counterintuitive.
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Although the contribution of the first principal component
of the vectorized text data was not high, we got high LL
ratio and tvalues.



Scenario Simulation
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We distributed tweets (2021) in Matsuyaraéty to nodes, depending on their implying emotion
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Do you see behavioral changes when the tweet sentiment at the node changes?
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Scenario Simulation Result
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Most tweeted/person

Traffic Flow high
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The number of tweets increased in the vicinity of the node that gave good tweets
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