

Agent-based freight simulation and its applications

Summer School of Behavior Modelling

September 18, 2021

Takanori Sakai

Tokyo University of Marine Science and Technology

Outline

- Introduction
- SimMobility
- SimMobility Freight
- Applications
- Conclusion

Freight transport

- An integral component of the transportation system.
- Historically, behind in modelling compared with passenger.
- Complexity makes agent-based simulation challenging.
 - Various decision makers
 - Shipments vs. vehicle flows
 - Diversity in commodity type
 (e.g., parcels vs. construction materials)

Freight entities – examples

Source: picjumbo.com

Source: publicdomainq.net

Source: publicdomainq.net

Source: publicdomainq.net

Source: publicdomainq.net

Freight entities – examples

Source: sg-reality.co.jp

Source: okinawayamato.co.jp

Source: picjumbo.com

Flows

- C : Consumer
- CP : Component producer
- DC : Distribution center
- P : Producer
- RMS: Raw material supplier
- S : Shop

Modified from Behrends et al. (2008) https://www.tandfonline.com/doi/full/10.1080/03081060802493247

Motivations for modelling

- Increasing commodity flows
- E-commerce
- Last-mile deliveries
- Technological innovations
- Passenger-freight interactions

Freight model classification

<u>Aggregate</u>

- Factoring method (Link or OD)
- Truck model
- Four-step commodity model

<u>Disaggregate</u>

- Vehicle touring model (without considering commodity flows)
- Logistics model
 - Buyer-seller matching, distribution channel, shipment size & inventory, mode choice, shipments-to-vehicle flows

Modified from Chow et al. (2010) https://link.springer.com/content/pdf/10.1007/s11116-010-9281-1.pdf

Aggregate

Vehicle touring model

SimMobility

Sakai et al. "SimMobility Freight: An Agent-Based Urban Freight Simulator for Evaluating Logistics Solutions", Travel Model Improvement Program (TMIP) Webinar - E-commerce Demand Analysis and Implementation in Urban/Regional Freight Transportation and Supply Chain Forecasting Models, October 29, 2020.

SimMobility: Overview

• SimMobility

An agent-based demand and supply urban transportation simulation platform including passenger and freight (B-to-B & E-commerce)

Key Features

- Temporal dimensions (long-term, mid-term, short-term)
- 'Smart' mobility services (e.g., on-demand and shared)
- Dynamic plan-action activity-based
- Supply agents (inc. fleet/infrastructure management)
- Open source

SimMobility agents

- Demand
- Individuals
- Households
- Establishments/firms (shippers, receivers)
- Supply
 - Transit operators
 - Fleet operators/managers

(on-demand services, taxis, freight carriers)

- Network regulators

(pricing, information, traffic control)

- E-commerce vendors
- Real-estate developers

SimMobility structure

SimMobility applications

- New modes and services
- Traffic management
- Last-mile solutions
- Post-pandemic scenarios
- Disruptions
- Land-use
- Infrastructure

Prototype cities

Urban Freight Modeling

Sakai et al. "SimMobility Freight: An Agent-Based Urban Freight Simulator for Evaluating Logistics Solutions", Travel Model Improvement Program (TMIP) Webinar - E-commerce Demand Analysis and Implementation in Urban/Regional Freight Transportation and Supply Chain Forecasting Models, October 29, 2020.

Freight models

B-to-B shipments

E-commerce demand

- E-commerce *shipments* to households
- Groceries, HH Goods, and Others
- Demand (frequency, expenditure) is sensitive to delivery options (speed, fee, home delivery/pickup)

Example of Home Delivery Options

Option	Speed	Fee	Window	Time
1	2-5 days	US\$0	No window	Daytime
2	One day	US\$12	No window	Daytime
3	Same day	US\$18	4 hr	Daytime and evening

E-commerce shipments

Freight Mid-term

Illustrative outputs

Industry-to-industry

Zone-to-zone

Delivery Locations

Duration of Vehicle Operation

Source: Alho et al. (2021) https://link.springer.com/chapter/10.1007%2F978-981-15-8983-6_12

Tokyo University of Marine Science and Technology

2021 Summer School of Behavior Modelling

Applications

Recent applications

- Overnight freight vehicle parking
- Freight consolidation centres
- Route restrictions
- Congestion pricing
- <u>Night/Off-peak deliveries</u>
- E-commerce growth
- Freight-on-Demand

Policy analysis: Off-peak deliveries

Sakai et al. (2020). SimMobility Freight: An agent-based urban freight simulator for evaluating logistics solutions. Transportation Research Part E: Logistics and Transportation Review, 141, 102017.

- Study area: Singapore
- Restrict deliveries at CBD during the morning peak (7-10am)

Passenger vehicles

Goods vehicles

Fig. 11. Change in Traffic (PCU) in Singapore CBD during Morning Peak (7-10am) in Scn. B.

Policy analysis: Off-peak deliveries

• Peak-hour traffic at CBD decrease; however, through traffic increase (both pax and freight).

	7-10 am	
	Without policy	With policy
PCU-km (Diff. from Scn. Base)	-	-4.7%
Average speed (km/hr.) ¹⁾	28.5	29.4 (+3.4%)
PCU-km (Diff. from Scn. Base)	-	-1.1%
Average speed (km/hr.)	39.8	40.6 (+1.9%)
	PCU-km (Diff. from Scn. Base) Average speed (km/hr.) ¹⁾ PCU-km (Diff. from Scn. Base) Average speed (km/hr.)	7-10Without policyPCU-km (Diff. from Scn. Base)Average speed (km/hr.) ¹⁾ 28.5PCU-km (Diff. from Scn. Base)-Average speed (km/hr.)39.8

1) The average of the trips to the CBD.

Demonstration: E-commerce demand

Sakai, T., Hara, Y. Seshadri, R., Alho, A., Hasnine, MS., Jing, P., Ben-Akiva, M. (2020) E-Commerce Delivery Demand Modeling Framework for An Agent-Based Simulation Platform. <u>http://arxiv.org/abs/2010.14375</u>

- Study area: Auto Innovative City (Boston, U.S.)
- Varying E-commerce adoption rate and pickup availability

Scenario setting	(parentheses:	change from Base)
------------------	---------------	------------------	---

	Indicator		Base	S1	S2
•	Adoption	Groceries	16.6	28.7 (+70%)	28.7 (+70%)
	rate (%)	Household goods	45.8	68.7 (+50%)	68.7 (+50%)
		Others	60.9	73.0 (+20%)	73.0 (+20%)
• Pic ava (%	Pickup availability	Groceries	7	40	60
	(%)	Household goods	7	30	45
		Others	7	20	30

Network in the Auto Innovative City

Demonstration: E-commerce demand

• Pickup availability curbs the delivery demand

Indicator			Base	S1	S2
•	No. of home	Groceries	15.4	22.6 (+47%)	20.1 (+31%)
	deliveries	Household goods	107.4	155.4 (+45%)	153.7 (+43%)
	(thousand)	Others	271.4	312.9 (+15%)	304.2 (+12%)
		Total	394.2	490.9 (+25%)	478.0 (+21%)
•	No. of pickup	Groceries	0.7	7.0 (+900%)	11.2 (+1500%)
	orders (thousand)	Household goods	2.8	20.7 (+639%)	34.7 (+1139%)
		Others	6.7	24.5 (+266%)	38.9 (+481%)
		Total	10.2	52.2 (+412%)	84.8 (+731%)

• Delivery traffic growth is not proportional to delivery growth

Indicator	Tour type	Base	S1	S2
VKT (mil.)	Only e-commerce shipments	1.86	2.21 (+18.5%)	2.13 (+14.2%)
	Mixed (e-commerce & other parcels)	0.24	0.25 (+5.4%)	0.26 (+10.8%)
	Others	6.44	6.44 (+0.0%)	6.44 (+0.0%)
	Total	8.54	8.90 (+4.2%)	8.83 (+3.3%)

Alho, A., Sakai, T., Oh, S., Cheng, C., Seshadri, R., Chong, WH., Hara, Y., Caravias, J., Cheah, L., Ben-Akiva, M. A Simulation-Based Evaluation of Impacts of Cargo-Hitching Applied to E-Commerce Using Mobility-on-Demand Vehicles. https://arxiv.org/abs/2010.11585

Coronavirus: Cabbies, private-hire car drivers turn to food and grocery deliveries APR 18, 2020

Mr Toh Kian Seng has spent almost 25 years as a cabby driving passengers across the island, but these days, what is in his backseat ...

- E-commerce deliveries
 - Increasingly on-demand
 - Smart solutions...leverage Mobility-On-Demand (MOD) capacity?

Taxi, private-hire drivers tapped to meet demand for food and grocery deliveries MAR 30, 2020

Taxi and private-hire car drivers can now help make grocery and food deliveries, said Transport Minister Khaw Boon Wan yesterday in a Facebook post. The ...

Source: https://www.straitstimes.com/

- Potential deliveries by MOD vehicles:
 - how many deliveries can be handled?
 - time gap between request and pickup/delivery?
- Impact on passenger trips: how service levels may change when adding freight demand?

- Singapore 2030
- MOD algorithm in SimMobility
 Schedule solo and
 - shared passenger rides
- Assign e-commerce shipments to previously committed and/or idle MOD vehicles

Scenario	Freight in MOD	
MOD only (Base)	None	
A	MOD shared	
В	MOD shared and idle vehicles	

- Increase in requests handled by the MOD operator
 - Small change to MOD passenger service.
- Scenario
 - A: ~50% delivery demand with long waiting times
 - B: ~100% delivery demand with shorter waiting times
- Small reduction in total VKT observed
- Potential for emissions reduction by using electric MOD vehicles

Conclusion

- SimMobility is:
 - a comprehensive platform that jointly simulates passenger, Bto-B, and E-commerce flows
 - applicable to various types of policies, scenarios, & solutions
- Ongoing research:
 - Enhance E-commerce model (supply-side, trip/E-commerce interaction)
 - Post-pandemic scenarios
 - Application to other metropolitan areas

Thank you for listening

References

Overall

Takanori Sakai, André Alho, Peiyu Jing. "SimMobility Freight: An Agent-Based Urban Freight Simulator for Evaluating Logistics Solutions", Travel Model Improvement Program (TMIP) Webinar - E-commerce Demand Analysis and Implementation in Urban/Regional Freight Transportation and Supply Chain Forecasting Models, October 29, 2020.

SimMobility

- 1. Adnan, M., Pereira, F. C., Azevedo, C. M. L., Basak, K., Lovric, M., Feliu, S. R., ... Ben-Akiva, M. (2016). SimMobility: a multiscale integrated agent-based simulation platform. In: 95th Annual Meeting of the Transportation Research Board, Washington, DC
- 2. Oke, J. B., Aboutaleb, Y. M., Akkinepally, A., Azevedo, C. L., Han, Y., Zegras, P. C., ... & Ben-Akiva, M. E. (2019). A novel global urban typology framework for sustainable mobility futures. *Environmental Research Letters*, 14(9), 095006.
- 3. Oke, J. B., Akkinepally, A. P., Chen, S., Xie, Y., Aboutaleb, Y. M., Azevedo, C. L., ... & Ben-Akiva, M. (2020). Evaluating the systemic effects of automated mobility-on-demand services via large-scale agent-based simulation of auto-dependent prototype cities. *Transportation Research Part A: Policy and Practice*, 140, 98-126.
- 4. Oh, S., Seshadri, R., Azevedo, C. L., Kumar, N., Basak, K., & Ben-Akiva, M. (2020). Assessing the impacts of automated mobility-ondemand through agent-based simulation: A study of Singapore. *Transportation Research Part A: Policy and Practice*, *138*, 367-388.
- Basu, R., Araldo, A., Akkinepally, A. P., Nahmias Biran, B. H., Basak, K., Seshadri, R., ... & Ben-Akiva, M. (2018). Automated mobility-ondemand vs. mass transit: a multi-modal activity-driven agent-based simulation approach. *Transportation Research Record*, 2672(8), 608-618.

References

SimMobility Freight & Applications

- 1. Sakai, T., Alho, A. R., Bhavathrathan, B. K., Dalla Chiara, G., Gopalakrishnan, R., Jing, P., ... & Ben-Akiva, M. (2020). SimMobility Freight: An agent-based urban freight simulator for evaluating logistics solutions. *Transportation Research Part E: Logistics and Transportation Review*, 141, 102017.
- Sakai, T., Hara, Y. Seshadri, R., Alho, A., Hasnine, MS., Jing, P., Ben-Akiva, M. (2020) E-Commerce Delivery Demand Modeling Framework for An Agent-Based Simulation Platform. <u>http://arxiv.org/abs/2010.14375</u>
- 3. Sakai, T., Bhavathrathan, B. K., Alho, A., Hyodo, T., & Ben-Akiva, M. (2020). Commodity flow estimation for a metropolitan scale freight modeling system: supplier selection considering distribution channel using an error component logit mixture model. *Transportation*, *47*(2), 997-1025.
- 4. Sakai, T., Alho, A., Hyodo, T., & Ben-Akiva, M. (2020). Empirical Shipment Size Model for Urban Freight and its Implications. Transportation Research Record, 0361198120914890.
- 5. Chiara, G. D., Cheah, L., Azevedo, C. L., & Ben-Akiva, M. E. (2020). A policy-sensitive model of parking choice for commercial vehicles in urban areas. *Transportation Science*, 54(3), 606-630.
- 6. Gopalakrishnan, R., Alho, A. R., Sakai, T., Hara, Y., Cheah, L., & Ben-Akiva, M. (2020). Assessing overnight parking infrastructure policies for commercial vehicles in cities using agent-based simulation. *Sustainability*, *12*(7), 2673.
- Alho, A., Sakai, T., Oh, S., Cheng, C., Seshadri, R., Chong, WH., Hara, Y., Caravias, J., Cheah, L., Ben-Akiva, M. A Simulation-Based Evaluation of Impacts of Cargo-Hitching Applied to E-Commerce Using Mobility-on-Demand Vehicles. https://arxiv.org/abs/2010.11585

