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A road network example

The planner who aims to maximize efficiency wants to answer:

« ifanewroad should be constructed
« where and how large parking spaces should be placed
« on which road and how much tolls should be charged

* efc

capacity

topology
control

These decisions will impact on travelers’ behavior



Let's generalize the framework

An example of pricing (on which road a toll is installed)

Planner (Supply)

Design variables y Objective function Z(y)

@ o] New toll installed Wants to minimize
" ]=| onroadA : total travel time

P X

' Drivers change : Alternative route
route choices — :1:.:‘} of using road A

to avoid road A : Is congested



Let's generalize the framework

An example of pricing (on which road a toll is installed)

Planner (Supply)

Design variables 'y Objective function Z(x(p(y)))

=| onroadA in the network
increased as a result

©|E| New toll installed QD Total travel time

P X

' Drivers change : Alternative route
route choices — :1:.:‘} of using road A

to avoid road A : Is congested



Network design

IS a demand-based planning of network topology & systems
Follows Magnanti and Wong (1984); Farahani et al. (2013)

Planner (Supply)

Design variables ¥y

the planner decides
under some constraints

[network topology
& conditions]

P

travelers decide/change
in reaction to the design
of network

4+

[review]

—_—

[aggregation]

How to predict the impact on
behavior in a network?

Objective function Z(x(p(y)))

the planner wants to maximize

What you (the planner) want
to achieve by the project

[indicators]

X

that appears as a collective
state



Modeling behavior in a network

Path choice model (logit) Traffic flow on paths
(in the static case)
etvr
P(r) = — Tr = qoaP(r) VYreR

ZT’E'R eror!

R (set of paths) Not as easy as it looks..



Networks are generally complex...

The path set R is almost impossible to define !!

k — k simple paths
©) i 2
P 12
‘R| =2 3 184
® 4 8,512

5 1,262,816
6 575,780,564

k=2 7 789,360,053,252
8 3,266,598,486,081,640

© ¢ * 9 41,044,208,702,632,496,804
10 1,568,758,030,464,750,013,214,100

: . . |R| — 19 11 182,413,201,514,248 049,241,470,885,236
12 64,528,039,343,270,018,963,357,185,158,482,118
13 69,450,664,761,521,361,664,274,701,548,007,358,06 488

° o ® 14 997,449,714,676,812,739,631,826,459,327,080,863,387,613,323,440
15 2,266,745,568,862,672,746,374,567,396,713,008,034,866,324,885.408,319,028

This is because a path is a combination of links in the network

* A description of more complex choices (e.g., time) needs additional
dimensions of network, which further increases the network size.



Not combination but SEQUENCE

An approach is modeling based on (RL)

that models sequential decisions of agents.

A=la,2,#,...]

c |

©

Choice Sequence of choices

This presentation shows a special case of RL for network path choice modeling



How to model a sequence ?

A path r can be described as:

r=lai,as,...,ay]

Path choice probability:

J—1

P(r) = ][ p(ajs1la;)

j=1

p(ajyilaj) : Link choice probability conditional on the previous link

= what is link choice probability exactly?



What should be considered Is ..

the outcome given by the product of link choice probabilities
to be consistent with the original model, i.e,

J—1

P(r) =] p(aj+ila;) = Progit(r)

g=1 *when assuming logit model

This is achieved by considering




Value function

1. Myopic

Goal I1s modeling mechanisms of behavior

~—v(ajlaji1)—~ ... . . .
y/ v :Link choice utility
— U (p) vd

V% a;) =E [ max  {v(ajt1la;) +e(ajiilag) + Vd(ajJrl)}]

aj+1€A(a;)

Random utility

c.f. Shortest Path (SP) problem: / Generalization
Via;) =  max  {v(ajrila;) + V(a41)}
aj+1€A(ay)

Value function is the SP cost from a; to destination



Gumbel distribution has a nice property:

ii 1
e, R Gumbel(0, u), V& = m]?X{nk +ert ~ Gumbel(; In E Vi)
k

Value function is the solution to:

Vila) =E| max foassale) +elasala) + V(as)}

_ 1 In Z eh{v(ajrila;)+V 9 (aj41)}

aj+1€A(a;)
N eMVd(aj) — Z eﬂv(aj+1|aj)€MVd(aj+1)
aj+1€A(a;)
(Recurrence relation)
= z¢ = Wz + e’
d _ v _ Ik d _ 1<d
2! = [V lier  W=["9]er el = [6ker

Value function Weight incidence matrix Unit vector



Let's check the consistency!

Link choice probability is given by:

e{v(azila;)+Ve(az11)} _ W(aj+1’aj)zd(aj+1)
)eﬂ{v(aj+1|aj)+vd(aj+l)} z%(ay)

p*(ajt1la;) = >

aj+1€A(a;

*like log|t by assumiﬂg U(aj+1\aj) = Ej(aj—i—l‘aj) + Vd(aj+1)j+5(aj+1\aj)

-~

New deterministic utility

Then we have:

poi(yy _ Wlarlo)e"ta)  Wiasla)="%ws) W (dlas)="(d)"
z%(0) 23@1) zd\Cag)

A\

Path utility is
J J ‘ . : -
| |j:0 W(ajt1la;) et 2 5—0 v(aj+1lay) B e sum of link utilities
— _ —
Zd(o) et V(o) E :T‘/EROd MV,

— PLogit (T|R0d)

= Consistent with logit model with the universal path set



What's the point ?

Now you can model path choice behavior
without explicitly defining choice set

simple paths

2

12

184

8,512

1,262,816

575,780,564

789,360,053,252

3266998 486798 bl ()
1,044,208,702632,196:80 1
1,568,758,030,464,750,013,214,100
182,413,291,514,248,04¢ 70,8
64,528,039,343,270,018,963,357,185,158,482,118

69,450,664,761,521,361,66-

1,701,548,907,358,996,488
227,449,714,676,812,739,631,826,459,327,989,863,387,613,323,440
2,266,745,568,862,672,746,374,567,396,713,098,934,866,324,885,408,319,028

Decompose path choice into
sequential link choices:

J—1
P(r) = H plajtilay)

Describe forward-looking
behavioral mechanism by
value function:

Vd(aj) — l In Z eu{v(aj+1|aj)+Vd(aj+1)}

a5+1€A(a5) Recursively
computed

This (efficient) computational method of modeling is called:

Named by Fosgerau et al. (2013)



Markov Decision Process (MDP)

To more generalize, define

e Action: choice behavior (what agent does)
e State: situation (where agent is) that changes as result of action

|- <
O\ O \
O ¢ - ORN

e QO IO

State
transition

Action

Discount factor
Vis) = max {y: P(s'|s,a){v(s,a,s’) + ’}/V(S/>}}

S'State transition probability

*In path choice (recursive) modeling: Action is directly choice of State



Reinforcement Learning approaches

MDP Reinforcement

General modeling framework Learning

of sequential decisions Learn optimal action probability
by a number of trials & results

v

Stochastic ,
7 A
Dynamic Discrete L
. Boltzmann policy
Choice Model (temp. = 1/scale)
Action = State ,'/
Gumbel /’
v a Inverse Reinforcement
‘ Learning
Mﬁﬂzlé?gRicl\f\lgr;S%rr%b?% thy Parameter Learn utility (reward) function
P estimation from actions of experts

See also: Mai and Jaillet (2020)



Now, we have link transition probabilities {p(alk)}xacc

Given OD demand q, we compute network traffic flows

{za} (on a)

{gra} : transition flow (from link k to link a)

[1]

ke = plalk)xy
O\f;\
a
O _— O .
Taq = (Gaq + Z Gka
keB(a)

[1] and [2] reduces to:

Ta=¢+ »_ plak)r, o x=PTx+q
keB(a) ..
Can be efficiently computed!



Another dimension may be needed

e.g., a planner may expect changes of visitors’ time-use in a city center

Time-structured network

allows for

A path r = [s1,82,...,87] represents multiple activities

. A
Time
yr\\Q :Node — :Link
~ move
@ @ from 13 to 8

S~ move

R from 14 to 13

stay
at 14

move

from 9 to 14

move
from 8 to 9

Lq = Zwm : no. people who visited space a

l, = x,T : at space a



Calculate indicators based on traffic

Examples:

Z(aza x Time,)

a

Z(xa x Price,)

CZ(a:a x Length,,)

Z qodvd(())
od

Remark (again):

. total travel time experienced [min.]
. total revenue the manager gains [JPY]
. total CO, emission [g CO,]

. consumer surplus (welfare)

The choice of objective reflects
what you (the planner) want to achieve through the project

Minimizing negative indicators is enough? What is a better/ideal city you think?



A public project entails trade-offs of goals

Barcelona superblock
@Bcomu Global

A road closure may increase But the space can be utilized as a park that is
travel time of the network.

Of course, it requires a large capital cost,
and the budget is limited.

Weighted sum is enough 7
Z =011 +aslds +as3hs+ -

« Often, there is a clear trade-off between two objectives
« Weight selection may lead to a biased policy decision






Case study | A pedestrian activity network design

City center of Matsuyama city

; @ « Design: expansion of walking

L T h

i space on each street [m.]
B—o : - Expectation: resistance decreases,

and more places are visited
fp E— ®
i“, Park
19— ! a
g Dcpm\'rtylyl‘len‘t‘ store]}
18 Y _t 21
| City fhall Sl i @
Blepartment store Gintengai mall I~ : @ : Node for move/stay
N  100m N (1) : Node for only move
A : @ : Start/End node




Case study | A pedestrian activity network design

. Total area of widened sidewalk [m?]

Z2

10000 20000 30000 40000 50000

0

Goal I
Sojourn time maximization

| o Accepted
Rejected
8
8
| 5
8
o & g\
g o o ° © A
_ o o © (82.60, 6000)
T T T T T T T
78.0 79.0 80.0 81.0 82.0 83.0 84.0

Z1.1 + Average sojourn time [*60s]

Total area of widened sidewalk [m?]

Z9

10000 20000 30000 40000 50000

0

Goal II:
Expected utility maximization

| o Accepted g
Rejected Dég
g F
% N
g 8
. 5
8-
&£ B
4o (105.30, 6000)
T T T T T T
104 105 106 107 108 109

Z21.2 ¢ Total expected utility

Clear trade-offs between goals and budget are observed.
Pareto frontier offers a variety of policies based on the investment level



Case study | A pedestrian activity network design

Goal I: Goal Il
Sojourn time Expected utility

[Upper level problem]

+4

Network (solution)

+x : increased width [m]

[Lower level problem]

Link flow

: 100
1250
: 500
: 1000

:diff. > +10
: diff. <-10

Activity duration |5 _____[
[*60sec./person]

] :diff. >+0.5 10===1-1

1 :diff.<-0.5 5 ---1-1{

1 4 7 131517 18 19 20 21 1 4 7 131517 18 19 20 21 14713151718192021-
(1) Original network (2) Solution A (3) Solution B

Staying node number —



summary & Remarks

IS a general framework of
modeling sequential decisions In networks.

* You can model any “state-action network”
« “State = action = space” is just an example

IS @ mathematical problem of
behavior (in a network) based planning
« Be thoughtful when you set an objective
« Multi-objective design may fit in public projects



Questions ?

oyama@shibaura-it.ac.|p



mailto:oyama@shibaura-it.ac.jp
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Appendix | Design levels and examples

Determining the Orientation
of One-way Streets
Allocating Exclusive Bus
Lanes
Determining the Allocation
of Lanes in Two-way Streets
Determining Transit Service
Frequency

Tactical

( Building New Streets
( Designing Bus Routes

pranding Existing Streets

Strategic

Gcheduling Traffic Lights

Determining Transit
Schedule

Scheduling of Repairs on
Urban Streets

Operational

Figure 1in Farahani et al. (2013)



Appendix | Solution algorithms (metaheuristics)

10 1
mCNDP
9 - @DNDP
. O MNDP
" O MMNDP
g 7 _ @ TNDP
= QTNDFSP |,
B
B 5 -
<«
S 41 B
=
7 37 L
2 7 — ||
i
0 il /7 ’ Y . . '.’v/v r T r
SA GA TS AS, AC PSO SS H

Methods

Figure2 in Farahani et al. (2013)

SA: Simulated Annealing; GA: Genetic Algorithm; TS: Tabu Search; AC: Ant Colony; PSO: Particle
Swarm Optimization; SS: Scatter Search; H: Hybrid metaheuristics



