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Basic inference discrete choice modeling



When talking about policy, Size matters!

→ Ask not whether there is an effect, ask how big is it?

→ Is the effect big enough to make a policy successful? 

→ Is the effect big enough to make invest millions of dollars? 

→ 64.6% of studies in the transportation field report some sort of 

policy-relevant inference analysis  (Parady, Ory and Walker, 2021) 

Parady G., Ory, D., Walker, J. (2021）

Why is inference important ?



Why is inference important ?

Variable name Coefficient S.E. t statistic

Auto constant 1.45 0.393 3.70

In-vehicle time (min) -0.0089 0.0063 -1.42

Out-of-vehicle time (min) -0.0308 0.0106 -2.90

Auto out-of-pocket cost (c) -0.0115 0.0026 -4.39

Transit fare -0.0070 0.0038 -1.87

Auto ownership (specific to auto mode) -0.770 0.213 3.16

Downtown workplace (specific to auto mode) -0.561 0.306 -1.84

Number of observations 1476

Number of cases 1476

LL(0) -1023

LL(β) -347.4

-2[LL(0)-LL(β)] 1371

𝜌2 0.660

ҧ𝜌2 0.654

Table adapted from Ben-Akiva and Lerman (1985)

Magnitudes are not directly interpretable.

We can only interpret the effect direction, 

or use them to  calculate utilities, 

and choice probabilities

To make some sense of these

parameters we must calculate

elasticities or marginal effects



Basic Inference in discrete choice models

MNL: Logit Elasticities (Point elasticities)

• Direct elasticity: measures the percentage change in the probability of choosing a particular

alternative in the choice set with respect to a given percentage change in an attribute of that same

alternative.

• Cross-elasticity: measures the percentage change in the probability of choosing a particular

alternative in the choice set with respect to a given percentage change in a competing alternative.

𝐸𝑥𝑖𝑛𝑘
𝑃 𝑖

=
𝜕𝑃𝑛(𝑖)

𝜕𝑥𝑖𝑛𝑘
∙
𝑥𝑖𝑛𝑘
𝑃𝑛(𝑖)

= 1 − 𝑃𝑛 𝑖 𝑥𝑖𝑛𝑘 𝛽𝑘

𝐸𝑥𝑗𝑛𝑘
𝑃 𝑖

=
𝜕𝑃𝑛(𝑖)

𝜕𝑥𝑗𝑛𝑘
∙
𝑥𝑗𝑛𝑘
𝑃𝑛(𝑖)

= −𝑃𝑛 𝑗 𝑥𝑗𝑛𝑘 𝛽𝑘
Because of IIA, cross-

elasticities are uniform 

across all alternatives

Hensher, David A., John M. Rose, and William H. Greene (2015)



Basic Inference in discrete choice models

• The elasticities shown before are individual elasticities (Disaggregate)

• To calculate sample (aggregate) elasticities we use the probability weighted

sample enumeration method:

𝐸𝑥𝑖𝑛𝑘
𝑃(𝑖)

=
σ𝑛=1
𝑁 ෠𝑃𝑛 𝑖 𝐸𝑥𝑖𝑛𝑘

𝑃 𝑖

σ𝑛=1
𝑁 ෠𝑃𝑛 𝑖

Sample direct elasticity

𝐸𝑥𝑗𝑛𝑘
𝑃(𝑖)

=
σ𝑛=1
𝑁 ෠𝑃𝑛 𝑖 𝐸𝑥𝑗𝑛𝑘

𝑃 𝑖

σ𝑛=1
𝑁 ෠𝑃𝑛 𝑖

Sample cross-elasticity

• Also note that elasticities for dummy variables are meaningless!

Where 𝑃(𝑖) is the aggregate choice probability of alternative I, and ෠𝑃𝑖𝑛 𝑖 is an estimated choice probability 

• Uniform cross-elasticities do not necessarily hold at the aggregate level

MNL: Logit Elasticities (Point elasticities)

Hensher, Rose, and Greene (2015)



𝐸𝑥𝑗𝑛𝑘
𝑃 𝑗

= 1 − 𝑃𝑛 𝑗 𝑥𝑗𝑛𝑘 𝛽𝑘

𝐸𝑥
𝑗′𝑛𝑘

𝑃 𝑗
= −𝑃𝑛 𝑗′ 𝑥𝑗′𝑛𝑘 𝛽𝑘

Direct Elasticity

Cross Elasticity

𝐸𝑥𝑗𝑛𝑘
𝑃 𝑗

= 1 − 𝑃𝑛 𝑗 +
1

𝜏
− 1 1 − 𝑃 𝑗 𝑖 𝑥𝑗𝑛𝑘 𝛽𝑘

When alternative 𝑗 belongs to nest 𝑖When alternative 𝑗 does not belong to any 

nest

When alternatives 𝑗 and 𝑗’ belong to 

different nests

𝐸𝑥
𝑗′𝑛𝑘

𝑃 𝑗
= − 𝑃𝑛 𝑗′ +

1

𝜏
− 1 𝑃 𝑗′ 𝑖 𝑥𝑗′𝑛𝑘 𝛽𝑘

← NL RUM2 specification

When alternatives 𝑗 and 𝑗’ belong to the 

same nest

Basic Inference in discrete choice models

NL: Logit Elasticities (Point elasticities)

𝑃 𝑗 =
𝑒𝑉𝑗/𝜏

𝑒𝐼𝑉(𝑖)
∙

𝑒𝜏𝐼𝑉(𝑖)

σ𝑖=1
𝐼 𝑒𝜏𝐼𝑉(𝑖)



Perfectly 

inelastic

Relatively 

inelastic

Unit

elastic

Relatively

elastic

Perfectly 

elastic

𝑃

𝑥

𝑃 𝑃 𝑃 𝑃

𝑥 𝑥 𝑥 𝑥

1% increase in 𝑥𝑖 results in a 

0% decrease in 𝑃(𝑖)
1% increase in 𝑥𝑖 results in a 

less than 1% decrease in 𝑃(𝑖)
1% increase in 𝑥𝑖 results in a 

more than 1% decrease in 𝑃(𝑖)
1% increase in 𝑥𝑖 results 

in a ∞ decrease in 𝑃(𝑖)
1% increase in 𝑥𝑖 results in 

a 1% decrease in 𝑃(𝑖)

Direct elasticity:

1% increase in 𝑥𝑗 results in a 

0% increase in 𝑃(𝑖)

1% increase in 𝑥𝑗 results in a 

less than 1% increase in 𝑃(𝑖)

1% increase in 𝑥𝑗 results in a 

more than 1% increase in 𝑃(𝑖)

1% increase in 𝑥𝑗 results 

in a ∞ increase in 𝑃(𝑖)

1% increase in 𝑥𝑗 results in 

no percent change in 𝑃(𝑖)

Cross elasticity:

Relation between elasticity of demand, change in price and revenue

Basic Inference in discrete choice models

Adapted from Hensher, Rose, and Greene (2015)



Basic Inference in discrete choice models

MNL: Marginal Effects

• Direct marginal effect: measures the change in the probability (absolute change) of choosing a

particular alternative in the choice set with respect to a unit change in an attribute of that same

alternative.

• Cross-marginal effect: measures the change in the probability (absolute change) of choosing a

particular alternative in the choice set with respect to a unit change in a competing alternative.

𝑀𝑥𝑖𝑛𝑘
𝑃 𝑖

=
𝜕𝑃𝑛(𝑖)

𝜕𝑥𝑖𝑛𝑘
= 𝑃𝑛 𝑖 1 − 𝑃𝑛 𝑖 𝛽𝑘

𝑀𝑥𝑗𝑛𝑘
𝑃 𝑖

=
𝜕𝑃𝑛(𝑖)

𝜕𝑥𝑗𝑛𝑘
= 𝑃𝑛 𝑖 −𝑃𝑛 𝑗 𝛽𝑘

Hensher, Rose, and Greene (2015)



Basic Inference in discrete choice models

MNL: Marginal Effects

• We can also calculate sample (aggregate) marginal effects using the probability weighted 

sample enumeration method:

𝑀𝑥𝑖𝑛𝑘

𝑃(𝑖)
=
σ𝑛=1
𝑁 ෠𝑃𝑛 𝑖 𝑀𝑥𝑖𝑛𝑘

𝑃 𝑖

σ𝑛=1
𝑁 ෠𝑃𝑛 𝑖

𝑀𝑥𝑗𝑛𝑘

𝑃(𝑖)
=
σ𝑛=1
𝑁 ෠𝑃𝑛 𝑖 𝑀𝑥𝑗𝑛𝑘

𝑃 𝑖

σ𝑛=1
𝑁 ෠𝑃𝑛 𝑖

Sample direct marginal effect Sample cross-marginal effect

• Marginal effects for dummy variables do make sense as we are talking about unit changes, but a

different procedure is necessary to estimate marginal effects.

Where 𝑃(𝑖) is the aggregate choice probability of alternative I, and ෠𝑃𝑖𝑛 𝑖 is an estimated choice probability 

Hensher, Rose, and Greene (2015)



Basic Inference in discrete choice models

MNL: Marginal Effects

Marginal effects as the slopes of the Tangent lines to the cumulative probability curve

𝑃(𝑖)

𝑥𝑖

𝜕𝑃𝑛(𝑖)

𝜕𝑥𝑖𝑛𝑘

Hensher, David A., John M. Rose, and William H. Greene (2015)



Basic Inference in discrete choice models

MNL: Marginal Effects

Calculating marginal effects for dummy variables

Calculated via simulation:

1. Set the values of the variable of interest to 0

2. Estimate base predictions (at the individual level)

3. Set the values of the variable of interest to 1

4. Estimate new predictions (at the individual level)

5. Calculate marginal effects by taking the mean of the difference in individual predictions



Validation practices in discrete choice 

modeling



A credibility crisis in science and engineering?

Baker and Penny (2016)

Image removed due to copyright issues

See original article here:

M. Baker, D. Penny (2016) Is there a reproducibility crisis? Nature, 533 

(7604) pp. 452-454

https://www.nature.com/articles/533452a


Most published research findings are likely to be false due to factors such as lack of 

power of the study, small effect sizes, and great flexibility in research design, definitions, 

outcomes and methods.

(Ioannidis, 2005)

A credibility crisis in science and engineering?

◼ Dependence on cross-section observational studies

◼ Classic scientific hypothesis testing is more difficult

◼ Impact evaluation of policies drawn based on model-based academic research is rarely conducted

◼ No feedback in terms of how right or how wrong are these models and the policy recommendations derived from them

◼ These issues underscore the need for proper validation practices

In the transportation field

Unlike the natural sciences

Focused on experimental studies



Predictive accuracy: The degree to which predicted outcomes match observed outcomes.

Predictive accuracy is a function of：

• Calibration: The degree to which predicted probabilities match the relative frequency of

observed outcomes.

• Discrimination ability: The ability of a model or system of models to discriminate between

those instances with and without a particular outcome.

Term definitions

Parady, Ory & Walker (2021)



Generalizability: The ability of a model, or system of models to maintain its predictive accuracy 

in a different sample. 

Term definitions

Generalizability of a model is a function of：

• Reproducibility: The extent to which a model or system of models maintains its predictive ability in

different samples from the same population.

• Transferability: The extent to which a model or system of models maintains its predictive ability in

samples from different but plausibly related populations or in samples collected with different

methodologies (sometimes called transportability.)

Parady, Ory & Walker (2021)



Model validation: The evaluation of the generalizability of a statistical model.

Types of model validation：

• Internal validation: The evaluation of the reproducibility of a model.

• Data splitting, resampling methods

• Different sample from the same population

• External validation: The evaluation of the transferability of a model.

• Temporal transferability

• Spatial transferability

• Methodological transferability

Term definitions

Parady, Ory & Walker (2021)



Parady, Ory & Walker (2021)



A brief introduction to internal validation 

• Internal validation: The evaluation of the reproducibility of a model.

• Due to the high costs of datal collection the most common approaches are

• Data splitting (Holdout validation, Cross validation)

• Resampling methods (Bootstrapping)

Parady, Ory & Walker (2021)



A brief introduction to internal validation (data splitting methods) 

Holdout validation: Dataset is randomly split into an estimation dataset and a validation dataset.

Estimation data Validation data

Q 𝑦𝑛, ො𝑦n = ቊ
0 𝑖𝑓 𝑦𝑛 = ො𝑦n
1 𝑖𝑓 𝑦𝑛 ≠ ො𝑦n

where is 𝑦𝑛 the observed outcome, and ො𝑦n is the predicted outcome for instance n. 

𝐻𝑂𝑉 =
1

𝑁𝑣
෍

𝑛𝑣=1

𝑁𝑣

𝑄[𝑦𝑛𝑣 , ො𝑦𝑛𝑣
𝑒 ]

For illustration purposes, let us define Q 𝑦𝑛 , ො𝑦n as a measure of prediction correctness for 

the 𝑛th instance, for the binary choice case as:

The holdout estimator is

where ො𝑦𝑛𝑣
𝑒 is the predicted outcome for instance 𝑛 in sample v, using the model estimated with sample 𝑒, and 𝑁𝑣 is the 

validation sample size. 

Parady, Ory & Walker (2021)



Estimation dataValidation data

Estimation data

推定データ

Estimation data

Estimation data

Validation data

Validation data

Validation data

Validation data

Estimation data

Estimation data

Estimation dataEstimation data

𝑏 = 1

𝑏 = 2

𝑏 = 3

𝑏 = 4

𝑏 = 5

A 5-fold cross validation illustration

A brief introduction to internal validation (data splitting methods) 

Cross-validation: When the holdout process is repeated multiple times, thus generating a set of 

randomly split estimation-validation data pairs, we refer to the validation procedure as cross-

validation (CV). 

𝐶𝑉 =
1

B
෍

𝑏
𝐻𝑂𝑉𝑏

where B is the number of estimation-validation data pairs generated and is the holdout estimator for set b.

Parady, Ory & Walker (2021)



• Cross-validation methods differ from one another in the way the data is split.

• When the data splitting considers all possible estimation sets of size , the splitting is 

exhaustive, otherwise the splitting is partial. (Arlot and Celisse, 2009)。

• Leave-one-out : estimation set size is Ne = 𝑁 − 1, and B = N. The model is fitted leaving out one 

instance per iteration, and the outcome of that single instance is predicted based on the estimated 

model.

Exhaustive splitting methods

• Leave-p-out : Ne = 𝑁 − 𝑝. The model is fitted leaving out p-instances per iteration, and the 

outcome of the remaining instances is predicted based on the estimated model.

Cross-validation：Commonly used methods

𝐶𝑉 =
1

B
෍

𝑏
𝐻𝑂𝑉𝑏

Parady, Ory & Walker (2021)

A brief introduction to internal validation (data splitting methods) 



• Cross-validation methods differ from one another in the way the data is split.

• When the data splitting considers all possible estimation sets of size , the splitting is 

exhaustive, otherwise the splitting is partial. (Arlot and Celisse, 2009)。

Cross-validation：Commonly used methods

𝐶𝑉 =
1

B
෍

𝑏
𝐻𝑂𝑉𝑏

• Repeated learning-testing: a B number of randomly-split estimation-validation pairs are 

generated. This method is also called repeated holdout validation.

• K-fold cross-validation: data is partitioned into K mutually-exclusive subsets of roughly equal 

size, and B=K.

Partial splitting methods (lower calculation cost)

Parady, Ory & Walker (2021)

A brief introduction to internal validation (data splitting methods) 



Market share comparison

• Easy to execute

• Does not provide a quantitative 

measure to evaluate the level of 

agreement between predictions 

and observations

Performance measures

A brief introduction to internal validation (data splitting methods) 

Image removed due to copyright issues

See original article here:

Hasnine, M. S. and Habib, K. N. (2018) ‘What about the dynamics in 

daily travel mode choices? A dynamic discrete choice approach for 

tour-based mode choice modelling’, Transport Policy. Elsevier Ltd, 

71(August), pp. 70–80. doi: 10.1016/j.tranpol.2018.07.011.

Hasnine and Habib (2018)

https://doi.org/10.1016/j.tranpol.2018.07.011


Percentage of correct predictions: the alternative with the highest probability is defined as the 

predicted choice. However,

Model C：

• Alt. A: 0.90＊

• Alt. B: 0.05

• Alt. C: 0.05

Cannot discriminate differences in estimated probabilities. 

Model B：

• Alt. A: 0.50＊

• Alt. B: 0.30

• Alt. C: 0.20

A measures that accounts for “clearness” of prediction is necessary.

Model A：

• Alt. A: 0.34＊

• Alt. B: 0.33

• Alt. C: 0.33

＊Observed choice

Performance measures

A brief introduction to internal validation (data splitting methods) 



Clearness of prediction:

Percentage of clearly right choices: “the percentage of users in the sample whose observed 

choices are given a probability greater than threshold t by the model”

％CR =
100

𝑁𝑣
σ𝑛𝑣=1
𝑁𝑣 𝐶𝑅𝑛𝑣 𝑤ℎ𝑒𝑟𝑒 C𝑅𝑛𝑣 = ቊ

1 𝑖𝑓 ෠𝑃 𝑦𝑛𝑣
𝑒 > 𝑡

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

de Luca and Cantarella (2009) 

Percentage of clearly wrong choices: “the percentage of users in the sample for whom the model 

gives a probability greater than threshold t to a choice alternative differing form the observed one”

％CW =
100

𝑁𝑣
෍

𝑛𝑣=1

𝑁𝑣

𝐶W𝑛𝑣 𝑤ℎ𝑒𝑟𝑒 𝐶𝑊𝑛𝑣
= ቊ

1 𝑖𝑓 Ƹ𝑃 ! 𝑦𝑛𝑣
𝑒 > 𝑡

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

෠𝑃 ! 𝑦𝑛𝑣
𝑒 is the estimated choice probability of an alternative other than the chosen one.

Performance measures

A brief introduction to internal validation (data splitting methods) 



• To be meaningful, the threshold t must be “considerably larger” 

than c−1, where c is the choice set size.

• Values used in the literature:

➢ Binary model： 𝑡 = 0.9 (de Luca and Di Pace, 2015)

➢ Trinary model： 𝑡 = 0.5 (Glerum, Atasoy and Bierlaire , 2014)

Clearness of prediction: defining threshold t

Performance measures

A brief introduction to internal validation (data splitting methods) 

See appendix for a list of commonly used indicators

Image removed due to copyright issues

See original article here:

de Luca, S. De and Cantarella, G. E. (2009) 

‘Validation and comparison of choice 

models’, in Saleh, W. and Sammer, G. (eds) 

Travel Demand Management and Road 

User Pricing: Success, Failure and 

Feasibility. Ashgate publications, pp. 37–58. 

https://www.researchgate.net/profile/Stefano-De-Luca-7/publication/260751857_Validation_and_comparison_of_choice_models/links/55e033e008aede0b572c1497/Validation-and-comparison-of-choice-models.pdf


Validation and reporting practices in the transportation academic literature

226 articles reviewed by Parady, Ory and Walker (2021)

92% reported a goodness of fit statistics

64.6% reported a policy-related inference

Marginal effects, elasticities, odds ratios, value of time estimates, 

marginal rates of substitution, and policy scenario simulations

18.1% reported a validation measure



Towards better validation practices in the field

◼ Make model validation mandatory:

• Non-negotiable part of model reporting and peer-review in academic journals for any

study that provides policy recommendations.

• Cross-validation is the norm in machine learning studies.

◼ Share benchmark datasets:

• A fundamental limitation in the field is the lack of benchmark datasets and a general

culture of sharing code and data.

◼ Incentivize validation studies:

• Lot of emphasis on theoretically innovative models.

• Encourage submissions that focus on proper validation of existing models and theories.

◼ Draw and enforce clear reporting guidelines:

• In addition to detailed information of survey characteristics such as sampling method,

discussion on representativeness of the data, validation reporting is required.

• Efforts to improve reporting are well documented in other fields

(i.e. STROBE statement (von Elm et al., 2007))



Wait a minute…

“I’m not validating my model because I’m not trying to build a predictive 

framework. I’m trying to learn about travel behavior”

The more orthodox the type of analysis conducted (such as the dimensions of travel 

behavior covered in this study), the stronger the onus of validation.



Wait a minute…

“Does every study that uses a discrete choice model 

should be conducting validation?”

In short, yes. At the very least, any article that makes policy recommendations should be

subject to proper validation given the dependence of the field on cross-section

observational studies, and the lack of a feedback loop in academia.



“Is what we learn about travel behavior from 

coefficient estimation less valuable if not conducted?”

Wait a minute…

There is a myriad of reasons why some skepticism is warranted against any particular

model outcome. the most obvious one being model overfitting.



Finally

Better validation practices will not solve the credibility crisis in the field, but it’s a step in

the right direction.

Model validation is no solution to the causality problem in the field, but we want to underscore that

the reliance on observational studies inherent to the field demands more stringent controls to

improve external validity of results.
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Index Type Formula Notes

Mean absolute percentage error 

平均絶対誤差率
MAPE Absolute

100

𝑀
෍

𝑚=1

𝑀
Ƹ𝑠𝑒𝑣,𝑚 − 𝑠𝑣,𝑚

𝑠𝑣,𝑚

M is the number of alternatives in the 

choice set.

𝑠𝑣,𝑚 is an aggregate outcome measure 

in sample v, such as the market share 

of alternative m (i.e. modal market 

share), choice frequency, etc.

Ƹ𝑠𝑒𝑣,𝑚 is an aggregate outcome measure 

in sample v, such as the market share 

of alternative m, predicted from model 

estimated on sample e. 

෠𝑃 𝑦𝑛𝑣 ,𝑚
𝑒 is the predicted probability that 

individual n chooses alternative m,

predicted from model estimated on 

sample e.

ynm is the actual outcome variable 

valued 0 or 1. 

Root sum of square error

二乗平方根誤差和
RSSE Relative ෍

𝑚=1

𝑀

Ƹ𝑠𝑒𝑣,𝑚 − 𝑠𝑣,𝑚
2

Mean absolute error 

平均絶対誤差
MAE

Aggregate: Relative 

Disaggregate: Absolute

1

𝑀
෍

𝑚=1

𝑀

Ƹ𝑠𝑒𝑣,𝑚 − 𝑠𝑣,𝑚

Mean squared error 

平均二乗誤差
MSE

Aggregate: Relative 

Disaggregate: Absolute

1

𝑀
෍

𝑚=1

𝑀

Ƹ𝑠𝑒𝑣,𝑚 − 𝑠𝑣,𝑚
2

Root mean square error

二乗平均平方根誤差
RMSE

Aggregate: Relative 

Disaggregate: Absolute
1

𝑀
෍

𝑚=1

𝑀

Ƹ𝑠𝑒𝑣,𝑚 − 𝑠𝑚𝑣,
2

Brier Score

ブライアスコア
BS Absolute

1

𝑁𝑣
෍

𝑛𝑣=1

𝑁𝑣

෍

𝑚=1

𝑀

෠𝑃 𝑦𝑛𝑣,𝑚
𝑒 − 𝑦𝑛𝑣,𝑚

2
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Index Type Formula Notes

Log-likelihood

対数尤度
LL Relative 𝐿𝐿𝑣 ෡𝜷𝑒

𝐿𝐿𝑣,𝑟 ෡𝜷𝑒 is log-likelihood of the model 

estimated on data e applied to the 

validation data vr.

𝑁𝑣,𝑟 is the size of the validation 

(holdout) sample r, and R is number of 

validation samples generated.

𝐿𝐿𝑣 𝟎 is log-likelihood of the model 

when all parameters are zero for data v.

𝐿𝐿𝑣 ෡𝜷𝑣 is the likelihood of the model 

estimated on the  validation data v.

𝐿𝐿𝑣 𝑴𝑺𝒗 is a base model estimated on 

validation data v (i.e. market share 

model.)

𝜌𝑙𝑜𝑐𝑎𝑙
2 is the local rho-square of the 

model.

Log-likelihood loss

対数尤度損失
LLL Absolute

1

R
෍

𝑟

−
1

𝑁𝑣,𝑟
෍

𝑛𝑣,𝑟

𝐿𝐿𝑣,𝑟 ෡𝜷𝑒

∀ 1 ≤ 𝑟 ≤ 𝑅

Rho-square

𝜎2
RHOSQ Absolute 𝜌2 = 1 −

𝐿𝐿𝑣 ෡𝜷𝑒

𝐿𝐿𝑣 𝟎

Transfer rho-square 

移転 𝜎2
T-

RHOSQ
Relative 𝜌𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

2 = 1 −
𝐿𝐿𝑣 ෡𝜷𝑒

𝐿𝐿𝑣 𝑴𝑺𝒗

Transfer index

移転指標
TI Pass/Fail 𝐿𝐿𝑣 ෡𝜷𝑒 − 𝐿𝐿𝑣 𝑴𝑺𝒗

𝐿𝐿𝑣 ෡𝜷𝑣 − 𝐿𝐿𝑣 𝑴𝑺𝒗

Transferability test statistic

移転性検定統計量
TTS Relative −2 𝐿𝐿𝑣 ෡𝜷𝑣 − 𝐿𝐿𝑣 ෡𝜷𝑒

χ2 test CHISQ Pass/Fail ෍

𝑚=1

𝑀
𝑓𝑚 − 𝐸 𝑓𝑣,𝑚

𝑒
2

𝐸 𝑓𝑣,𝑚
𝑒

𝑓𝑚 is the observed choice frequency of 

alternative m in sample v, and 𝐸 𝑓𝑣,𝑚
𝑒 is 

the expected choice frequency 

predicted from model estimated on 

sample e. 
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Appendix: Validation and reporting practices in the transportation academic literature

Heuristic to select validation method given available resources and recommended performance measures to report

, Brier Score
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