

A novel metamodel-based framework for large-scale dynamic origin-destination demand calibration

Takao Dantsuji

Institute of Science and Engineering, Kanazawa University

(Joint work with Nam H. Hoang, Nan Zheng and Hai L. Vu at Monash University)

• OD demand estimation

Estimating general OD matrices for traffic planning and design

• OD demand calibration

Calibrating general OD matrices for a stochastic traffic simulator

- A tool to describe the complex interactions of many traffic components of the demand and supply sides
- What is **likely** to occur quantitatively
- Useful for policy makers to investigate the performance of the pre-determined policies

Zheng, <u>Dantsuji</u>, Wang and Geroliminis 2017, TRR <u>Dantsuji</u> et al. 2021, Transportation

- The input for simulation (e.g., traffic demand) is a key component
 - Reliability of simulations
 - Calibration
- The general purpose algorithms (e.g., SPSA, GA, Kalman filter)
 - Applicable to a wide range of problems
 - The computational efficiency is not a priority
- Dynamic OD calibration for large-scale network is challenging
 - Computational efficiency
 - Scalability
- The lack of quantitatively methods to evaluate the calibration performance at large-scales
 - How to connect OD matrix with the complex traffic dynamics at aggregated levels

SPSA : Stochastic Perturbation Stochastic Approximation GA : Genetic Algorithm

- A traffic model at the network level
- The MFD relates the network flow to the network density (Daganzo, 2007)
- Some requirements for the well-defined MFD (Geroliminis and Daganzo, 2008)
 - Homogeneous congestion patter over space
 - Average trip length is constant over time

- Propose a novel OD matrix calibration framework for large-scaled networks
 - aggregated traffic flow dynamics
 - metamodel optimization approach
- Utilize multiple data sources for deriving the ground-truth values
- Demonstrate the scalability, accuracy and efficiency

- A simulation network is divided into N regions (e.g., Ji and Geroliminis, 2012)
- Traffic demand from centroids are aggregated to representative regional centroids
- Optimization problem for OD demand calibration

- Dimension as the size of the problem is $I \times I \times T$
 - *I*,*T* : number of regions, time steps
- Even for a small-scale network (e.g. 3 regions, 15 time steps), the dimension is 135
- Calibration of the aggregated OD matrices is still high-dimensional problem
- Running multiple replications of the simulation is expensive
- An efficient algorithm that require **a few iterations** has to be developed

- A model of the models : simpler deterministic approximating function
- The proposed metamodel optimization

The objective function estimate is produced with low computational burden

Analytical macroscopic traffic flow model (Zheng and Geroliminis, 2013; Yildirimoglu et al., 2015)

The heterogeneity exists in the trip lengths or congestion patterns over spaces

(Buisson and Ladier, 2009; Mazloumian et al., 2010; Sun and Geroliminis, 2011)

Gaps between the simulated and the analytical accumulations

Real datasets

Input as ground-truth values

Sioux-falls (SF) network

Melboune CBD network

Longitude

- The performance of the proposed approach and SPSA
 - A few iterations are needed to understand the direction of parameters' adjustment
 - After 5th iteration, the objective function estimated becomes stable over iterations

SPSA at 10th iteration

The proposed approach at 10th iteration

Sensitivity analysis on initial demand

Sensitivity analysis on number of regions

Ground-truth (dotted) and simulated (solid) accumulations

17

iteration

Conclusions

- Developed a computationally efficient metamodel optimization framework for the OD demand calibration of large-scaled networks
- Utilized the region-based traffic dynamics as an analytical model of the metamodel
- Tested the proposed approach with two case studies

Future directions

• Extend to other optimization problems such as dynamic congestion pricing

- Zheng, N., Dantsuji, T., Wang, P., & Geroliminis, N. (2017). Macroscopic approach for optimizing road space allocation of bus lanes in multimodal urban networks through simulation analysis. *Transportation Research Record*, 2651(1), 42-51.
- Dantsuji, T., Fukuda, D., & Zheng, N. (2021). Simulation-based joint optimization framework for congestion mitigation in multimodal urban network: a macroscopic approach. *Transportation*, 48(2), 673-697.
- Geroliminis, N., & Daganzo, C. F. (2008). Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings. *Transportation Research Part B: Methodological*, 42(9), 759-770.
- Daganzo, C. F. (2007). Urban gridlock: Macroscopic modeling and mitigation approaches. Transportation Research Part B: Methodological, 41(1), 49-62.
- Gonzales, E. J., Chavis, C., Li, Y., & Daganzo, C. F. (2009). Multimodal transport modeling for Nairobi, Kenya: insights and recommendations with an evidencebased model.
- Ji, Y., & Geroliminis, N. (2012). On the spatial partitioning of urban transportation networks. Transportation Research Part B: Methodological, 46(10), 1639-1656.
- Yildirimoglu, M., Ramezani, M., & Geroliminis, N. (2015). Equilibrium analysis and route guidance in large-scale networks with MFD dynamics. *Transportation Research Part C*, (59), 404-420.
- Zheng, N., & Geroliminis, N. (2013). On the distribution of urban road space for multimodal congested networks. *Procedia-Social and Behavioral Sciences*, 80, 119-138.
- Buisson, C., & Ladier, C. (2009). Exploring the impact of homogeneity of traffic measurements on the existence of macroscopic fundamental diagrams. *Transportation Research Record*, 2124(1), 127-136.
- Mazloumian, A., Geroliminis, N., & Helbing, D. (2010). The spatial variability of vehicle densities as determinant of urban network capacity. *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368*(1928), 4627-4647.
- Geroliminis, N., & Sun, J. (2011). Properties of a well-defined macroscopic fundamental diagram for urban traffic. *Transportation Research Part B: Methodological*, *45*(3), 605-617.