A novel metamodel-based framework for large-scale dynamic origin-destination demand calibration

Takao Dantsuji

Institute of Science and Engineering, Kanazawa University

(Joint work with Nam H. Hoang, Nan Zheng and Hai L. Vu at Monash University)
Origin-destination (OD) demand estimation & calibration

- OD demand estimation
 Estimating general OD matrices for traffic planning and design
- OD demand calibration
 Calibrating general OD matrices for a stochastic traffic simulator
Stochastic traffic simulation

- A tool to describe the complex interactions of many traffic components of the demand and supply sides
- What is likely to occur quantitatively
- Useful for policy makers to investigate the performance of the pre-determined policies

OD demand calibration

- The input for simulation (e.g., traffic demand) is a key component
 - Reliability of simulations
 - Calibration

- The general purpose algorithms (e.g., SPSA, GA, Kalman filter)
 - Applicable to a wide range of problems
 - The computational efficiency is not a priority

- Dynamic OD calibration for large-scale network is challenging
 - Computational efficiency
 - Scalability

- The lack of quantitatively methods to evaluate the calibration performance at large-scales
 - How to connect OD matrix with the complex traffic dynamics at aggregated levels

SPSA : Stochastic Perturbation Stochastic Approximation
GA : Genetic Algorithm
Macroscopic Fundamental Diagram (MFD)

- A traffic model at the network level
- The MFD relates the network flow to the network density (Daganzo, 2007)
- Some requirements for the well-defined MFD (Geroliminis and Daganzo, 2008)
 - Homogeneous congestion pattern over space
 - Average trip length is constant over time

(Geroliminis and Daganzo, 2008)
Contributions

- Propose a novel OD matrix calibration framework for large-scaled networks
 - aggregated traffic flow dynamics
 - metamodel optimization approach
- Utilize multiple data sources for deriving the ground-truth values
- Demonstrate the scalability, accuracy and efficiency
A simulation-based optimization with the MFD

- A simulation network is divided into \(N \) regions (e.g., Ji and Geroliminis, 2012)
- Traffic demand from centroids are aggregated to representative regional centroids
- Optimization problem for OD demand calibration

\[
\min_{\mathbf{D}} \sum_{i \in I} \sum_{j \in I} \left(N_{i,t} - E[n_{i,t}^c(\mathbf{D}) + n_{i,t}^b(\mathbf{D})] \right)^2 + \delta_1 \sum_{i \in I} \sum_{j \in I} (D_{i,j}^0(t) - D_{i,j}(t))^2
\]

MSE in the total accumulations

Distance between initial and optimized demands

D : vector of the regional car OD matrix
- \(N_{i,t} \) : ground truth total accumulation in region \(i \) at time \(t \)
- \(n_{i,t}^c(\mathbf{D}) \) : Car accumulation in region \(i \) at time \(t \) from simulation with demand \(\mathbf{D} \)
- \(n_{i,t}^b(\mathbf{D}) \) : Bus accumulation in region \(i \) at time \(t \) from simulation with demand \(\mathbf{D} \)
- \(D_{i,j}^0(t) \) : Initial demand generated in region \(i \) with final destination \(j \) at time \(t \)
- \(D_{i,j}(t) \) : demand generated in region \(i \) with final destination \(j \) at time \(t \)
- \(\delta_1 \) : weight factor
High-dimensional problem

- Dimension as the size of the problem is $I \times I \times T$
 - I,T: number of regions, time steps
- Even for a small-scale network (e.g. 3 regions, 15 time steps), the dimension is 135
- Calibration of the aggregated OD matrices is still high-dimensional problem
- Running multiple replications of the simulation is expensive
- An efficient algorithm that require a few iterations has to be developed
Metamodel optimization

- A model of the models: simpler deterministic approximating function
- The proposed metamodel optimization

Simulation-based optimization

\[
\min_D \sum_{i \in I} \sum_{j \in I} \left(N_{i,t} - E[n_{i,t}^c(D) + n_{i,t}^b(D)] \right)^2 + \delta \sum_{i \in I} \sum_{j \in I} (D_{i,j}(t) - D_{i,j}(t))^2
\]

Metamodel optimization

\[
\min_D f_1(D; \beta) + \delta_1 \sum_{i \in I} \sum_{j \in I} (D_{i,j}^0(t) - D_{i,j}(t))^2
\]

- The objective function estimate is produced with low computational burden
Metamodel Optimization

- Analytical macroscopic traffic flow model (Zheng and Geroliminis, 2013; Yildirimoglu et al., 2015)

\[
f_i(\mathbf{D}, \beta) = \sum_{i \in I} \sum_{t \in T} \left(N_{i,t} - \left(n^c_{i,t}(t) + n^b_{i,t}(t) \right) \right)^2
\]

\[
n^c_{i,t}(t) = \beta_{i,t} \sum_{j \in J} n^c_{i,j}(t)
\]

\[
n^c_{i,t}(t + 1) = \begin{cases} n^c_{i,i}(t) + D_{i,i}(t) + \sum_{k \in V_i} \hat{M}^k_{i,k}(t) - O_{i,i}(t) & \text{if } i = j \\ n^c_{i,j}(t) + D_{i,j}(t) + \sum_{k \in V_i} \hat{M}^k_{i,j}(t) - \sum_{k \in V_i} \hat{M}^k_{j,i}(t) & \text{if } i \neq j \end{cases}
\]

\[
\hat{M}^k_{i,j}(t) = \min[M^k_{i,j}(t), C_{i,k}(n^c_{i,k}(t), n^b_{i,k}(t))]
\]

\[
M^k_{i,j}(t) = \sum_{r \in R} P_r(t) O_{i,j}(t)
\]

\[
O_{i,j}(t) = \frac{n^c_{i,j}(t)v_i(t)}{L_i}
\]

\[
P_r(t) = \frac{e^{\theta T T_i(t)}}{\sum_{l \in L} e^{\theta T T_i(t)}}
\]

\[
T T_i(t) = \frac{L_i}{v_i(t)}
\]

\[
v_i(t) = a_i + a^c n^c_i(t) + a^b n^b_i(t)
\]
Update of the metamodel parameters

- The heterogeneity exists in the trip lengths or congestion patterns over spaces

 (Buisson and Ladier, 2009; Mazloumian et al., 2010; Sun and Geroliminis, 2011)

- Gaps between the simulated and the analytical accumulations

 To fill the gaps, the metamodel parameters are adjusted

 \[
 \min_{\eta^h} \sum_{s \in S} w_h(D_s) \sum_{i \in I} \sum_{t \in T} \left(\eta^h_{i,t} \beta_i^{h-1} n^c_{i,s}(t) - E[n^c_{i,t}(D_s)] \right)^2 + w_0 \sum_{i \in I} \sum_{t \in T} (\eta^h_{i,t} - 1)^2
 \]

 Subject to

 \[
 \beta^l_{i,t} \leq \eta^h_{i,t} \beta_i^{h-1} \leq \beta^u_{i,t}
 \]

 . Weight \(w_h(D_s) \)

 \[
 w_h(D_s) = \frac{1}{1 + c \left| ||D_s - D_h|| \right|}
 \]
Calibration framework

Real datasets
- Bluetooth travel speed data
- Traffic volume data
- IC card transaction data

Calibration datasets
- Initial profile
 - OD matrix
 - Route choice parameter
- Estimation
 - Bi-modal MFD model
 (i.e. free-flow speed and marginal effects of car and bus accumulations on travel speeds a^c_t, a^b_t and a^b_t in Eq.(11)))
 - Ground-truth traffic conditions (i.e. car accumulation $N^{c}_{i,t}$ in Eq. (3))

Input
- Metamodel optimization
 (i.e. Eq. (2)-(11))

Output
- OD matrix

Input
- Stochastic traffic simulation

Output
- Traffic conditions in regions

Input
- Metamodel parameter update
 (i.e. Eq. (12)-(13))

Storing

MSE below predetermined threshold?

Yes
- finish

No

Input as ground-truth values
Case studies

Sioux-falls (SF) network

Melbourne CBD network
The performance of the proposed approach and SPSA

- A few iterations are needed to understand the direction of parameters’ adjustment
- After 5th iteration, the objective function estimated becomes stable over iterations

Obj. function estimated

The proposed approach

SPSA
Validation with the SF network - link level comparison

Comparison at 10 iteration

The proposed approach at 10th iteration

SPSA at 10th iteration

Aimsun at 10th iteration
Sensitivity analysis with the SF network

Sensitivity analysis on weight factor

- Delta
 - 0.00001
 - 0.001
 - 0.1

Sensitivity analysis on initial demand

- High demand
- Middle demand
- Low demand

Sensitivity analysis on number of regions

- Number of regions
 - 1
 - 2
 - 3
 - 4
 - 5

Objective function vs Iteration graphs for each scenario.
Case study - Melbourne CBD

- Data for grand-truth values
 - SCATS data
 - Bluetooth travel time
 - IC smart card (Myki data)

Ground-truth (dotted) and simulated (solid) accumulations

Initial (blue) & simulated (red) Obj. function estimated
Conclusions & future directions

Conclusions

- Developed a computationally efficient metamodel optimization framework for the OD demand calibration of large-scaled networks
- Utilized the region-based traffic dynamics as an analytical model of the metamodel
- Tested the proposed approach with two case studies

Future directions

- Extend to other optimization problems such as dynamic congestion pricing
References