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Origin-destination (OD) demand estimation & calibration

• OD demand estimation  

Estimating general OD matrices for traffic planning and design 

• OD demand calibration  

Calibrating general OD matrices for a stochastic traffic simulator 
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• A tool to describe the complex interactions of many traffic components of the demand and 
supply sides  

• What is likely to occur quantitatively  

• Useful for policy makers to investigate the performance of the pre-determined policies

Stochastic traffic simulation
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OD demand calibration

• The input for simulation (e.g., traffic demand) is a key component  
• Reliability of simulations 
• Calibration 

• The general purpose algorithms (e.g., SPSA, GA, Kalman filter) 

• Applicable to a wide range of problems 

• The computational efficiency is not a priority  

• Dynamic OD calibration for large-scale network is challenging 

• Computational efficiency  

• Scalability  

• The lack of quantitatively methods to evaluate the calibration performance at large-scales 

• How to connect OD matrix with the complex traffic dynamics at aggregated levels

SPSA : Stochastic Perturbation Stochastic Approximation 
GA : Genetic Algorithm
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Macroscopic Fundamental Diagram (MFD)

• A traffic model at the network level 

• The MFD relates the network flow to the network density (Daganzo, 2007) 

• Some requirements for the well-defined MFD (Geroliminis and Daganzo, 2008) 

• Homogeneous congestion patter over space  

• Average trip length is constant over time
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Contributions

• Propose a novel OD matrix calibration framework for large-scaled networks 

• aggregated traffic flow dynamics  

• metamodel optimization approach 

• Utilize multiple data sources for deriving the ground-truth values  

• Demonstrate the scalability, accuracy and efficiency
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A simulation-based optimization with the MFD

• A simulation network is divided into  regions (e.g., Ji and Geroliminis, 2012) 

• Traffic demand from centroids are aggregated to representative regional centroids 

• Optimization problem for OD demand calibration 
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 : vector of the regional car OD matrix  
 : ground truth total accumulation in region  at time  

 : Car accumulation in region  at time  from simulation with demand  

 : Bus accumulation in region  at time  from simulation with demand  

 : Initial demand generated in region  with final destination  at time   

 : demand generated in region  with final destination  at time  

 : weight factor

D
Ni,t i t

nc
i,t(D) i t D

nb
i,t(D) i t D

D0
i, j(t) i j t

Di, j(t) i j t

δ1

MSE in the total accumulations Distance between initial and optimized demands 



• Dimension as the size of the problem is  

•  ,  : number of regions, time steps 

• Even for a small-scale network (e.g. 3 regions, 15 time steps), the dimension is 135 

• Calibration of the aggregated OD matrices is still high-dimensional problem  

• Running multiple replications of the simulation is expensive  

• An efficient algorithm that require a few iterations has to be developed

I × I × T

I T

High-dimensional problem 8



• A model of the models : simpler deterministic approximating function 

• The proposed metamodel optimization  

Simulation-based optimization  

Metamodel optimization          

• The objective function estimate is produced with low computational burden
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Metamodel optimization 

analytical model 

Metamodel parameter
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• Analytical macroscopic traffic flow model (Zheng and Geroliminis, 2013; Yildirimoglu et al., 2015) 
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Update of the metamodel parameters

• The heterogeneity exists in the trip lengths or congestion patterns over spaces  

(Buisson and Ladier, 2009; Mazloumian et al., 2010; Sun and Geroliminis, 2011) 

• Gaps between the simulated and the analytical accumulations 

• To fill the gaps, the metamodel parameters are adjusted 

 

Subject to  
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Calibration framework 12



Case studies 13

Sioux-falls (SF) network Melboune CBD network
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• The performance of the proposed approach and SPSA 

• A few iterations are needed to understand the direction of parameters’ adjustment 

• After 5th iteration, the objective function estimated becomes stable over iterations  

Validation with the SF network

The proposed approach SPSAObj. function estimated 



Validation with the SF network - link level comparison 15

The proposed approach at 10th iteration

SPSA at 10th iteration Aimsun at 10th iteration

Comparison at 10 iteration
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Sensitivity analysis on weight factor Sensitivity analysis on initial demand

Sensitivity analysis on number of regions

Sensitivity analysis with the SF network



• Data for grand-truth values 

• SCATS data 

• Bluetooth travel time  

• IC smart card (Myki data)
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Ground-truth (dotted) and simulated (solid) accumulations

Initial (blue) & simulated (red)  Obj. function estimated 

Case study - Melbourne CBD



Conclusions 

• Developed a computationally efficient metamodel optimization framework for the OD demand 
calibration of large-scaled networks  

• Utilized the region-based traffic dynamics as an analytical model of the metamodel  

• Tested the proposed approach with two case studies  

Future directions  

• Extend to other optimization problems such as dynamic congestion pricing
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