Study on Travel Purpose Related Mode Choice Behavior in Yokohama City

Team A

Feliciano XIMENES Zhanhua SHI Yuanfang ZHU Siddharth DHINGRA

NUTREND

Nagoya University TRansport and ENvironment Dynamics

1. Introduction and Background

<u>Objective:</u> To ascertain the significant factors which influence transport mode choice, and propose specific mode uses according to travel purpose.

Target City: Yokohama City, Kanagawa Pref.

Dataset: PP data in Yokohama city recorded from 10/29~11/27 in 2009.

1. Introduction and Background

Mode split rate in the dataset:

	Mode	Rate(N=1522)
	Car	33.64%(512)
	Rail	34.69%(528)
	Bus	2.69%(41)
	Walk	15.11%(230)
	Bicycle	13.86%(211)

Variables related to mode choice: 1) <u>Demographics</u>

Gender is considered for the model and age is NOT considered due to some age related data being missing

Some users claim their

age to be 0 years.

Male

Female

Gender

Variables related to mode choice: 2) <u>Travel Purpose</u>

PURPOSE	Work-related	Leisure	Return Home	Other
Car	129	109	201	67
Bicycle	61	42	69	38
Walk	37	108	67	16
Rail	203	117	172	33
Bus	18	7	11	4
SUM	448	383	520	158
			1351	

Number of Trips: <u>1351</u>

Variables related to mode choice: 3) Road Network

Yokohama City Road Network

Link Info Link ID Link Info Max speed Motorcar_available Foot_available

Variables related to mode choice: 3) Road Network

Add link attributes to each trip

3. Model: Nested Logit Utility function Mode $U_n(Rail) = \beta_1 T_{Rail} + \beta_2 N_{change} + \beta_3 C_{Rail} + b_1$ Choice $+\beta_3C_{Rus}+\beta_4G+b_2$ $U_n(Bus) = \beta_1 T_{Bus}$ $U_n(Car) = \beta_1 T_{Car}$ $+\beta_5 S + b_3$ $U_n(Bike) = \beta_1 T_{Bike} + b_4$ Public Private $U_n(Walk) = \beta_1 T_{Walk}$ T_i , time for mode *i*, Nchange, transfer times of rail Rail Car Bike Walk Bus C_i, fare for mode *i*, G, gender, 1 if male, 0 if female. *S*, maximum speed of the link b_i , constant.

4. Estimation Results

Purpose	All		Work-related		Leisure		Return home	
	Estimation	t-value	Estimation	t-value	Estimation	t-value	Estimation	t-value
Cons1	-2.186	-3.548	1.414	4.265	0.585	0.297	4.918	3.305
Cons2	-0.665	-0.694	-0.907	-0.762	2.422	1.107	5.510	3.298
Cons3	-0.080	-0.735	0.391	0.817	0.320	1.707	0.390	1.326
Cons4	-0.304	-2.967	0.537	1.300	-0.556	-3.027	0.931	5.176
Time	-1.739	-10.942	-3.814	-2.398	-2.139	-7.093	-3.832	-6.875
Numberchanges	3.337	4.095	0.401	1.312	-4.540	-3.747	-1.892	-2.250
Gender	-0.428	-0.819	0.348	0.265	-6.084	-3.060	-3.558	-2.953
Maxspeed	0.024	15.219	0.021	6.549	0.026	8.690	0.036	7.382
Fare	0.674	0.351	-0.632	-0.778	7.903	2.198	-4.981	-2.219
βpublic	-0.476	-3.762	1.959	2.563	0.184	-	0.529	3.421
βprivate	2.710	12.398	1.756	6.258	1.972	7.150	1.885	9.382
LO	-2057	165	-561.	628	-541	972	-715.6	528
LL	-1065	.864	-271.	889	-303	261	-305.9	983
$ ho^2$	0.48	2	0.52	16	0.44	40	0.57	2
Adjusted $ ho^2$	0.47	7	0.49	96	0.42	20	0.55	7
Observation	145	6	43	0	37	0	504	1
Accuracy	77.0	6%	71.6	3%	73.7	8%	70.24	4%

5. Proposed Polices and Changes

According to different travel purposes:

6. Comparison: Before and After Policy

• Adjust the maximum speed to 70%

Car Bicycle Walk Rail Bus

	Work	Leisure	Return home
Car	-1.48%	-0.61%	-3.67%
Bus&Rail	0.56%	-0.21%	1.16%
Walk&Bike	0.92%	0.82%	2.51%

Leisure

Return home

7. Improvements

✓Improving the trip size and integrity of user information, considering carbon emission as an independent variable to get more accurate model.

✓Since some trips are not only involved in Yokohama city, larger road network is expected.

 Map matching method shows instability on highway section, which can be further improved.

