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Recall the logit model

Choice probability:
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“Did you know ...

there are over 87,000 different

drink combinations at
Starbucks?”

is often

e.g., activity pattern (H, W, O), mode
choice (Maa$), tour planning...

Choice set can become huge
and is difficult to define...
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Espresso Beverages

Handcrafted Lattes, Cappuccinos, Macchiatos, Festive Favourites and
more.

Did you know there are over 87,000 different drink combinations at Starbucks. Why not try a syrup in your morning latte, or

try soy in your mocha? A drizzle of buttery caramel on the top of your cappuccino? The possibilities are endless....discover

your favourite.

Espresso Beverages

Caffé Americano Flat White Caffé Latte
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Cappuccino Espresso
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Iced Caffe Latte

IR
Iced Flavoured Latte

Iced Skinny Flavoured Skinny Flavored Latte White Chocolate Mocha
Latte



Route choice is a typical example
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k simple paths

1 2

2 12

3 184

4 8,512

5 1,262,816

6 575,780,564

7 789,360,053,252

8 3,266,598,486,981,640

9 41,044,208,702,632,496,804

10 1,568,758,030,464,750,013,214,100

11 182,413,291,514,248,049,241,470,885,236

12 64,528,039,343,270,018,963,357,185,158 482,118

13 69,450,664,761,521,361,664,274,701,548,907,358,096,488
14 227,449,714,676,812,739,631,826,459,327,989,863,387,613,323,440

2,266,745,568,862,672,746,374,567,396,713,008,934,866,324,885,408,319,028

way more than Starbucks...



What canwe do ?

Not combination but SEQUENCE of choices |

A=la,2,#,...]

©
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Choice Sequence of choices



How to model sequences ?
In the case of route choice, a route » can be described as:

r=lai,as,...,ay]

Route choice probability:

J—1

P(r) = || p(ajs1la;)

j=1

p(aj+1]a;) : Link choice probability conditional on the previous link

= Seems easy---, but what is link choice probability exactly?



What should be considered is ...

the outcome given by the product of link choice probabilities
should be consistent with the original model, ie,

J—1

P(r) =] plajsila;) = Progit(r)

j=1 "when assuming logit model

This is achieved by considering forward-looking mechanism




Value function

1. Myopic

Goal is modeling mechanisms of behavior

~—v(aj|aj1)— .
aj v :Link choice utility
- @ vd

vd<aj>=E[ max {v(aj+1\aj>+e<aj+1\aj>+vd<aj+l>}]

aj+1€A(a;)

Random utility

c.f. Shortest Path (SP) problem: / Generalization
Via) = max  {o(a;s1le;) + V¥ (a541)}
aj+1€A(a;)

Value function is the SP cost from a; to destination



Gumbel distribution has a nice property:
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Value function is the solution to:
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Let’s check the Consistency!
Link choice probability is given by:

e{v(azila;)+Ve(az11)} _ W(aj+1’aj)zd(aj+1)
| en{olagila)+Via0)} z4(a;)

p*(ajt1la;) = >

aj+1€A(a;
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New deterministic utility

Then we have:
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= Consistent with logit route choice model with the universal choice set



So, what's the point ?

Now you can model route choice behavior
without explicitly defining choice set

1. Decompose route choice into
sequential link choices:

k simple paths
1 2
2 12 J—1
3 184 — | | ) .
4 8,512 P(’I”) — p(aj—i—l’a])
5 1,262,816 j=1
6 575,780,564
7 780,360,053,252 ) )
© Nerhon 2. Describe forward-looking
9 01,044 208:702,632,196:804
10 1,568,758,030,464,750,013,214,100 b h ; l h ; b
11 182,413,201,514,248,049,241,470,885,236 enaviorat mecnanism y
12 64,528,039,343,270,018,963,357, 185,158,482, 118 . .
13 60,450,664,761,521,361,664,274,701,548,007,358,006,488 Va l ue fu N Ctl on.
14 297,449,714,676,812,739,631,826,450,327,080,863,387,613,323,440
15 2,266,745,568,862,672,746,374,567,396,713,098,934,866,324,885,408,319,028 1 d
Vé(a;) = =1In E eriv(az+ilag)+Ve(aj1)}
aj+1€A(;) Recursively
computed

This (efficient) computational method of modeling is called:



Modeling sequence is something more

than just dealing with the choice set problem.

©

You can also try other sequences than route choice:

« Mode choice: unlinked trip choices
« Tour choice: sequential destination choices

« Timing choice: “action (do)/stay (don't)” choice at every period
« el



Activity path modeling

Introducing a fixed time-interval (1) for decision making yields:

Y|

Route choice can be interpreted as

C - \Q\ : Node — :Link

r=lai,as,...,ay]

. A
Time

move
from 13 to 8

move
from 14 to 13

stay
at 14

move
from 9 to 14

move
from 8 to 9

integrated modeling of route, activity place and duration choices.



Activity path modeling (ctd.)

(a) T = 60[min] (c) T = 120[min]
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(Appx.) Markov decision process (MDP)

To more generalize, define

« Action: choice behavior (what agent does)
« State:situation (where agentis in) that changes as result of action

State
transition
\

- O
o $\g0n

e O O SO NR

Action

Vis) = max {y: P(s'|s,a){v(s,a,s’) + ’)/V(S/>}}

8" State transition probability

"In route choice (recursive) modeling: Action is directly choice of State



(Appx.) Reinforcement Learning or Recursive Logit 7

MDP Reinforcement
General modeling framework > Learning
of sequential decisions Learn optimal action probability

. by a number of trials & results
Stochastic P
/ a
/
/

Dynamic Discrete Boltzmann policy

ChOICe MOdel <temp:1/sca[e)
Action = State e
Gumbel g
/
e Inverse Reinforcement
X Learning
Hegieling saiem prel el Parameter Learn utility (reward) function

dnigter RUI] Eesiim gaion estimation from observed actions



Tosummarize,

« is computationally efficient
« No need to explicitly define choice set

« describes dynamic sequential decisions
« Notonly for route choice modeling

« shares common mathematical foundations with
other state-of-the-art studies
« Including machine learning



Major problem

RL model assigns high probabilities to overlapping paths due to

 |IA property of logit model

- considering all feasible paths including cyclic paths

« assign flows (probabilities) on the same links many times
 often cause computational intractability

U

A solution is using:

based model
with time constraint



Network-GEV route choice model
Directly translate a (state) network to a GEV network:

State (node)

Multilevel cross-nested
structure

e(j]3) "5 Gumbel(0, y;), Vi € F(3)

Z aj; = 1,Vie S
i€B(j)

1

Vi) = B | e (oG10)+ VIG) + 210 + 5 o)
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"system of nonlinear equations



Time-space network representation

s inherently acyclic and describes more realistic network structures.

t+2
t+1
t—1
t—2
(a) Spatial network (b) Time-space network
State: Node (or link)
Connection: B(n) = {a,b} B(t,n) = {(t —1,a),(t —2,0);

F(n)={a,c,d} F(t,n)={({t+2,a),(t+2,¢),(t+1,d)}



Time-space network representation

is simply computable and restricts network states by terminal state.

t T Input: S ={(T,d)},2(T,d) =
Output: S,z € RIS # terminal state (T, d)
l. t=T
2. While True:
3. for s € S(t) #all states at t
4, for s € B(s) #allstates connectingtos
5. if s gé S  #ifappearingfor the first time
6. S:=8SUs
7. 2(s ) =0 # initialize the solution
8. 28') 1= 2(8)) + sy W (s]8') (25) 7o
9. end for
10. | endfor
11. t:=t—1
12. if t == 0: break




Logit with
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Counterclockwise way: more overlaps and logit overestimates the probability

Without time constraint: more probabilities assigned to cycles



Ran out of time...

but we recently proposed an efficient dual-type algorithm for
Network-GEV based SUE, which is also useful to:

« Parameter estimation
« forentropy-constrained formulation

« Dynamic pricing
« based on capacity-constrained assignment formulation

Markovian Traffic Equilibrium Assignment
based on Network Generalized Extreme Value Model
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Abstract

This study establishes a novel framework of Markovian traffic equilibrium assignment based on
the network generalized extreme value (NGEV) model, which we call NGEV equilibrium assign-
ment. The use of the NGEV model in traffic assignment has recently been proposed and enables

capturing the path correlation without explicit path enumeration. However, the NGEV equilib- * a \/ a | l a b I e a t a r>< | \/ |

rium assignment has never been investigated in the literature, which has limited the practical


https://arxiv.org/abs/2009.02033

Questions 7/

oyama@shibaura-it.ac.|p
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