The 18th summer course of Behavior Modeling Final presentation

> マルコフ決定過程に基づく経路選択 行動のパラメータ推定 ―自動車・自転車交通施策の検討―

Evaluation of car/bicycle traffic measures with a link choice model

University of Tokyo team A

Takuya Iizuka (M1) Kenta Ishii (M1) Shoma Dehara (M1) Miho Yonezawa (M1)

1. Background

◆ Area: 松山市 Matsuyama city

Population: 512479 (2018.1.1.) Area: 429.06 m²

- Many people use private car.
- City projects are underway to increase activity in the central city.

http://udcm.jp/project/

2. Basic Analysis

- ♦ Mode Choice
 - Data: Matsuyama PP (2007 Feb.19 – Mar.23)
 - High rate of Car & Bicycle use
 - Car & Bicycle paths are overlapping.
 - →By providing bicycle lanes, traffic accidents can be suppressed !!

Representative Mode Choice in Matsuyama (n=7107)

2. Basic Analysis

Traffic Volume in the center of Matsuyama

- Most part of the center of Matsuyama, the car & bicycle trips are separated.
- At some roads, car & bicycle trips are overlapping!!

Bicycle Traffic Volume

2. Basic Analysis

Car & Bicycle traffic of each link

The smaller the traffic of the car, the more traffic of the bicycle.

On links with heavy car traffic, sidewalks are maintained, increasing bicycle traffic.

For Simulation

- Characteristics of each link (length, width, etc.) affect travelers' behavior.
- \rightarrow We adopt Link Base Route Choice Model for analysis.

♦ Our Goal

- To clarify what is important element in the route choice behavior of car & bicycle
- To simulate transport policy and to verify the sensitivity of each parameter

Estimation

Sequential Route Choice Model: **Recursive Logit model (RL)** (Fosgerau et al., 2013)

Graph:
$$G = (A, v)$$

A: set of linksν: set of nodes

Utility Maximization problem

 $v_n(a|k) + \mu \varepsilon_n(a) + \beta V_n^d(a)$

^L An instantaneous utility

At each current state k, a traveler chooses an action a (next link). $\varepsilon_n(a)$: error term (i.i.d. Gumbel distribution)

- μ : scale parameter
- β : discount rate

An expected downstream utility : value function

from the selected state a to the destination link d

The value function is defined by the **Bellman equation** (Bellman, 1957);

 $V_n^d(k) = E\left[\max_{a \in A(k)} \left(v_n(a|k) + \mu \varepsilon_n(a) + \beta V_n^d(a)\right)\right]$ $\forall k \in A$

Link choice probability

$$P_n^d(a|k) = \frac{e^{\frac{1}{\mu}(v_n(a|k) + \beta V_n^d(a))}}{\sum_{a' \in A(k)} e^{\frac{1}{\mu}(v_n(a'|k) + \beta V_n^d(a'))}}$$

4. Compared IRL with RL

Bellman equation

$$V^{\pi}(s) = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} | s_{t} = s \right\}$$

$$= E_{\pi} \left\{ r_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+2} | s_{t} = s \right\}$$

$$= \sum_{a} \pi(s, a) \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+2} | s_{t+1} = s' \right\} \right]$$

$$= \sum_{a} \pi(s, a) \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V^{\pi}(s') \right]$$

$$\varphi: \text{ discount rate } (0 < \gamma \le 1)$$

$$\mathcal{R}_{ss'}^{a}: \text{ expected reward}$$

$$(= E\{r_{t+1}|s_{t} = s, a_{t} = a, s_{t+1} = s'\})$$

$$q: \text{ discount rate } \{0 < \gamma \le 1\}$$

4. Compared IRL with RL

The estimation method : Recursive Logit model (RL) -NPL

<u>Reward (Instantaneous utility): $r_t = \theta^T X$ </u>

4. Compared IRL with RL

The estimation method : Max entropy - Inversed Reinforced Learning (IRL)

<u>Reward:</u> $r_t = \theta^T X$

X is the feature relating to link

5. Estimation Result

RL estimation (car)

 $\beta = 0.47$ (given)

Variables	Parameters	t-Value		
Link Length	-0.03	-1.33		
Right-Turn	-0.80	-6.49**		
Lanes	0.37	2.76**		
L(0)	-	-1179.29		
LL	-	-1147.00		
Rho-Square		0.03		
Adjusted Rho-Square		0.02		

♦ IRL estimation (car)

 $\beta = 0.47$ (given)

Variables	Parameters	t-Value	
Link Length	-0.07	-9.72**	
Right-Turn	-1.02 -8.53*		
Lanes	-0.37	-5.64**	
L(0)	-20	-2080.67	
LL	-1	-1117.10	
Rho-Squa	are	0.46	
Adjusted Rho-	Square	0.46	

13

Recursive Logit estimation (bicycle)

Variables	Parameters	t-Value
Link Length	-0.00	-6.21**
Right-Turn	-0.19	-3.67**
Car Traffic	-14.37	-0.14
β	0.00	15.15**

L(0)	-4093.90		
LL	-3861.56		
Rho-Square	0.06		
Adjusted Rho-Square	0.06		

5. Simulation and Evaluation

5. simulation

←Bicycle traffic

15

Policy

Reduce the lanes of large bicycle traffic links

Private car/bicycle user's logsum value with/without policy

	Without policy		With policy (rode lanes are reduced)		
Private car user	-2639			-2638	
Bicycle user	-9297			-1147	Increased!!

6. Future works

Policies decided by Two-stage optimization

To decide the policy by calculating the fixed point of demand of cars and bicycles

16

4. Frame & Model

Policy Simulation