The $18^{\text {th }}$ summer course of Behavior Modeling Final presentation

マルコフ決定過程に基づく経路選択行動のパラメータ推定
 —自動車•自転車交通施策の検討—

Evaluation of car／bicycle traffic measures with a link choice model

University of Tokyo team A

Takuya lizuka（M1）
Kenta Ishii（M1）
Shoma Dehara（M1）
Miho Yonezawa（M1）

1．Background

－Area：松山市 Matsuyama city
Population： 512479 （2018．1．1．）
Area： 429.06 m 2
－Many people use private car．
－City projects are underway to increase activity in the central city．

http：／／udcm．jp／project／

2. Basic Analysis

- Mode Choice
- Data: Matsuyama PP (2007 Feb. 19 - Mar.23)
- High rate of Car \& Bicycle use
- Car \& Bicycle paths are overlapping.
\rightarrow By providing bicycle lanes, traffic accidents can be suppressed !!

Representative Mode Choice in
Matsuyama ($\mathrm{n}=7107$)

2. Basic Analysis

- Traffic Volume in the center of Matsuyama

Car Trip

- Most part of the center of Matsuyama, the car \& bicycle trips are separated.
- At some roads, car \& bicycle trips are overlapping!!

Bicycle Trip

2. Basic Analysis

Car \& Bicycle traffic of each link

The smaller the traffic of the car, the more traffic of the bicycle.

On links with heavy car traffic, sidewalks are maintained, increasing bicycle traffic.

- For Simulation
- Characteristics of each link (length, width, etc.) affect travelers' behavior.
\rightarrow We adopt Link Base Route Choice Model for analysis.

- Our Goal

- To clarify what is important element in the route choice behavior of car \& bicycle
- To simulate transport policy and to verify the sensitivity of each parameter
- Estimation

4. Model

- Sequential Route Choice Model: Recursive Logit model (RL) (Fosgerau et al., 2013)

Graph: $G=(A, v)$
A: set of links
v : set of nodes

- Utility Maximization problem

$$
v_{n}(a \mid k)+\mu \varepsilon_{n}(a)+\beta V_{n}^{d}(a)
$$

An instantaneous utility

At each current state k, a traveler chooses an action a (next link).
$\varepsilon_{n}(a)$: error term (i.i.d. Gumbel distribution)
μ : scale parameter
β : discount rate
An expected do
:value function
from the selected state a to the destination link d

The value function is defined by the Bellman equation (Bellman, 1957);

$$
\begin{aligned}
& V_{n}^{d}(k)=E\left[\max _{a \in A(k)}\left(v_{n}(a \mid k)+\mu \varepsilon_{n}(a)+\beta V_{n}^{d}(a)\right)\right] \\
& \forall k \in A
\end{aligned}
$$

Link choice probability

$$
P_{n}^{d}(a \mid k)=\frac{e^{\frac{1}{\mu}\left(v_{n}(a \mid k)+\beta V_{n}^{d}(a)\right)}}{\sum_{a \prime \in A(k)} e^{\frac{1}{\mu}\left(v_{n}\left(a^{\prime} \mid k\right)+\beta V_{n}^{d}\left(a^{\prime}\right)\right)}}
$$

4. Compared IRL with RI

- Bellman equation

$$
\begin{aligned}
& V^{\pi}(s)=E_{\pi}\left\{\sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \mid s_{t}=s\right\} \\
&=E_{\pi}\left\{r_{t+1}+\gamma \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+2} \mid s_{t}=s\right\} \\
&=\sum_{a} \pi(s, a) \sum_{s^{\prime}} \mathcal{P}_{s s^{\prime}}^{a}\left[\mathcal{R}_{s s^{\prime}}^{a}+\gamma E_{\pi}\left\{\sum_{k=0}^{\infty} \gamma^{k} r_{t+k+2} \mid s_{t+1}=s^{\prime}\right\}\right] \\
&=\sum_{a} \pi(s, a) \sum_{s^{\prime}} \mathcal{P}_{s s^{\prime}}^{a}\left[\mathcal{R}_{s s^{\prime}}^{a}+\gamma V^{\pi}\left(s^{\prime}\right)\right] \\
& \begin{aligned}
\gamma: \text { discount rate }(0<\gamma \leq 1)
\end{aligned} \\
& \begin{array}{l}
\mathcal{R}_{s \prime^{\prime}}^{a}: \text { expected reward } \\
\left(=E\left\{r_{t+1} \mid s_{t}\right.\right.
\end{array}\left.\left.=\mathrm{s}, a_{t}=a, s_{t+1}=\mathrm{s}^{\prime}\right\}\right)
\end{aligned}
$$

4. Compared IRL with R I

- The estimation method : Recursive Logit model (RL) -NPL

Reward (Instantaneous utility): $r_{t}=\boldsymbol{\theta}^{\boldsymbol{T}} \boldsymbol{X}$

4. Compared IRL with RI

- The estimation method : Max entropy - Inversed Reinforced Learning (IRL)

Reward: $r_{t}=\boldsymbol{\theta}^{\boldsymbol{T}} \boldsymbol{X}$
Reinforced Learning

\boldsymbol{X} is the feature relating to link

5. Estimation Result

- RL estimation (car)

$$
\beta=0.47 \text { (given) }
$$

Variables	Parameters	t-Value
Link Length	-0.03	-1.33
Right-Turn	-0.80	$-6.49^{* *}$
Lanes	0.37	$2.76^{* *}$

L(0)	-1179.29
LL	-1147.00
Rho-Square	0.03
Adjusted Rho-Square	0.02

- IRL estimation (car)

$$
\beta=0.47 \text { (given) }
$$

Variables	Parameters	t -Value
Link Length	-0.07	$-9.72^{* *}$
Right-Turn	-1.02	$-8.53^{* *}$
Lanes	-0.37	$-5.64 * *$

L(0)	-2080.67
LL	-1117.10
Rho-Square	0.46
Adjusted Rho-Square	0.46

5. Estimation Result

- Recursive Logit estimation (bicycle)

Variables	Parameters	t -Value
Link Length	-0.00	$-6.21^{* *}$
Right-Turn	-0.19	$-3.67^{* *}$
Car Traffic	-14.37	-0.14
β	0.00	$15.15^{* *}$

L(0)	-4093.90
LL	-3861.56
Rho-Square	0.06
Adjusted Rho-Square	0.06

5. Simulation and Evaluation

Network Policy

$$
G=(\text { link, node }, \text { lane })
$$

Car Assignment

$$
v_{\text {car }}=\theta_{1} \cdot \text { Length }+\theta_{2} \cdot \text { Rightturn }+\theta_{3} \cdot \text { Lanes }
$$

Bicycle Assignment

$$
v_{\text {bicycle }}=\theta_{4} \cdot \text { Length }+\theta_{5} \cdot \text { Rightturn }+\theta_{6} \cdot \text { CarTraffic }
$$

5. simulation

\leftarrow Bicycle traffic

Policy

Reduce the lanes of large bicycle traffic links

Private car/bicycle user's logsum value with/without policy

Without policy

With policy
(rode lanes are reduced)

Private car user
 -2639
 -2638

Bicycle user
-9297

- Policies decided by Two-stage optimization

To decide the policy
by calculating the fixed point of demand of cars and bicycles

4. Frame \& Model

- Estimation

Link based route choice model

Different Estimation method
Behavior model; RL model
compare
Inverse Reinforcement Learning (IRL)

- Policy Simulation

Upper Problem: traffic network

- reduction of vehicle lanes (pedestrian/bicycle only)

Lower Problem: route choice behavior
Bicycle
Assign each OD volume

