Behavioral Changes between the Two Time Periods in Yokohama and Toyosu

Sep. 23, 2019
Tokyo University of Science Team B

Takanori Kondo, Gaku Sasaki, Yu Jinno, Yuki
Terazono, Kotaro Yamada(JR East)

Innovation in Work Style（働き方改革）
－Jisa－Biz（時差Biz）
－Began in 2017 by the Japanese government
－Encourages the shift in the departure time of commuting trips to alleviate the congestion in the morning peak period
－Encourages tele－working as well
－Have perhaps affected workers＇behavior in recent years

Other Changes in work style
－Increase in women＇s participation rate
－Departure from prolonged work
－Promoting elders＇participation

1．2Actual Changes（実際の変化）

■ピークの分散が見られた駅（4日間平均）の出場者割合の分布

東京メ卜口有楽町線 豊洲駅

Objective

－To identify changes in behavioral pattern between two different time periods，especially considering possible changes in work style
－To model travel－activity patterns from two different data sets

Data

－Two trip data sets from probe－person surveys in Yokohama in 2008 and Toyosu in 2018

Methodology
－Tour－based analysis focusing on tour patterns
－Tour＝Home－based trip chain

1．4Aggregation Results（基礎集計結果）

1．5Aggregation Results（基礎集計結果）

Standard deviations of departure／arrival times of tours

Yokohama， 2008

Toyosu， 2018

We use multiple regression model
－We would like to compare the estimation result of two data sets（Toyosu and Yokohama）

$$
\begin{aligned}
& y_{\text {dep_time }}=\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\cdots \cdot \cdot \beta_{20} x_{20} \\
& y_{\text {arr_time }}=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\alpha_{3} x_{3}+\cdots \cdot \cdot \alpha_{20} x_{20}
\end{aligned}
$$

出発時間と到着時間を目的変数に，性別，，年齢層，行動パター ン，トリップ数，距離，トリップ時間をダミ一変数を交えてモ デル作成を試みる
パラメータを比較することで，時代変化の影響を捉える

2．2 Model estimation result（モデル推定結果）

－推定結果の表 出発時間

推定表		出発時間（Depart time）		
	変数（Variable）	Parameter	t䛧	p 值
	（Intercept）	$3.30 \mathrm{E}+04$	55	＊＊＊
		－414	－2．3	＊
	男性（Man）	－1815	－3．5	＊＊＊
	20代（20s）	－1063	－2．1	＊
	40代（40s）	－3043	－6．4	＊
	HOWH	$1.07 \mathrm{E}+04$	5.3	＊＊＊
	HOWOH	$4.94 \mathrm{E}+03$	3.1	＊＊
	50代豊洲（50stoyosu）	－3588	－7．5	＊＊＊
	豊洲男性（ToyosuMan	1967	4.1	＊＊＊
	50\％距離（Distance50	－0．1	－6．2	＊＊＊

Spare slide

Data Cleaning Procedure

1. Remove trips without OD location redord.
2. Combine two consecutive trips with the same purpose and less than one minute in between.
3. Order trips of each user in departure time and define a trip chain ending a return-to-home trip as a tour.
4. Remove all trips belonging to a tour whose origin and destination are at different locations.
5. Remove all trips belonging to a tour any two consecutive trips of which are unconnected (destination and origin are distant more than 400m).
6. Remove trips which consists an entire tour (i.e one-trip tour).
7. Remove trips belonging to a more than 24-hour-long tour.

Result of Data Cleaning - Number of Valid Records $\pi / 11$

Toyosu, 2018

- Trips: 4,733 / 17,600 (27\% of the original)
- Tours: 1,872
- Participants: 136 / 304 (45\% of the original)

Yokohama, 2008

- Trips: 3,070 / 13,808 (22\% of the original)
- Tours: 1,219
- Participants: 62 / 133 (47\% of the original)

Attributes of Participants

Yokohama, 2008

Toyosu, 2018

Aggregation Results

Yokohama, 2008
Trip distance

Toyosu, 2018

1. Classify trips by their purpose into three categories:

- H: Return to home
- W: Commute or return to the office or school or business
- O: Other

2. Represent a tour pattern as a string of the purpose classification

- Ex. Working - Shopping - Return-to-home -> HWOH

3. Classify the tour pattern into six categories:

- HWH: starts with HW ends with WH
- HOH: has only Os between H...H
- HWOH: starts with HW and ends with OH.
- HOWH: starts with HO and ends with WH.
- HOWOH: starts with HO, has at least one W and ends with OH.

Aggregation Results

Yokohama. 2008
男性

- HOH
- HOWH
- HOWOH
- HWH
- HWOH

- HOH
- HOWH
- HOWOH
- HWH
- HWOH

Toyosu, 2018

