The $18^{\text {th }}$ Summer Course for Behavior Modeling in Transportation Networks 21 Sep. 2019 @ The Univ. of Tokyo

Advanced Estimation Methods and Machine Learning

Tokyo University of Science Hideki YAGINUMA yaginuma@rs.tus.ac.jp

Derived from the generalized G function

GEV model (Closed-form)

Multinomial Logit (MNL)

$$
P(i)=\frac{\exp \left(\mu V_{i}\right)}{\sum_{j \in C} \exp \left(\mu V_{j}\right)}
$$

- Luce(1959), McFadden(1974)
- Not consider correlation of choice alternatives' (IIA)
- Easy and fast estimation
- High operability
(easy evaluation for new additional choice alternative \Rightarrow benefit of IIA)

Non-GEV model (Open-form)

Multinomial Probit (MNP)

$$
\begin{aligned}
& P(i)=\int_{\varepsilon_{1}=-\infty}^{\varepsilon_{i}+V_{-}-\varepsilon_{1}} \cdots \int_{\varepsilon_{i}=-\infty}^{\infty} \cdots \int_{\varepsilon_{J}=-\infty}^{\varepsilon_{i}+V_{i}-\varepsilon_{j}} \phi(\varepsilon) d \varepsilon_{J} \cdots d \varepsilon_{1} \\
& \phi(\varepsilon)=\frac{1}{(\sqrt{2 \pi})^{1-1} \mid \Sigma \Sigma^{1 / 2}} \exp \left(-\frac{1}{2} \varepsilon \Sigma^{-1} \varepsilon^{\prime}\right)
\end{aligned}
$$

- Thurstone(1927)
- Consider correlation of choice alternates' based on VarianceCovariance matrix
- Hard and slow estimation (need calculation of multi-dimensional interrelation depend on N of alternatives')

Non-GEV model has high power of expression, however parameter estimation cost is high.

Mixed Loigt (Train 2000)

High flexible model structure by two error term.

Utility function

$$
U_{i}=V_{i}+\eta_{i}+v_{i}
$$

v dist.: assume any G function

- IID Gamble (Logit Kernel) \Rightarrow MNL
- any G function (GEV Kernel) \Rightarrow NL, PCL, CNL, GNL...
η dist.: basically assume "Normal dist."
- In the case of normal distribution takes a non-realistic value, it can assume a variety of probability distribution (triangular distribution, cutting normal distribution, lognormal distribution, Rayleigh distribution, etc.).
- Error Component: approximate to any GEV model
-Random Coefficient: Consider the heterogeneity

Approximation of Nested Logit (NL)

Describe the nest (covariance) using structured $\boldsymbol{\eta}$.
Ex: model choice

$$
\text { Normal } \Rightarrow \text { nest }
$$

Car	$U_{c a r}=\beta \mathbf{X}_{c a r}+\quad+v_{c a r}$
Bus	$U_{\text {bus }}=\beta \mathbf{X}_{\text {bus }}+\sigma_{\text {transit }} \eta_{\text {transit }}+v_{\text {bus }}$
Rail	$U_{\text {rail }}=\beta \mathbf{X}_{\text {rail }}+\sigma_{\text {trasit }} \eta_{\text {trensil }}+v_{\text {rail }}$
Transit nest	${ }_{\text {rail }} \quad \beta \mathbf{X}_{\text {rail }} \sigma_{\text {transit }} \eta_{\text {transit }} \square_{\text {rail }}$

IID Gamble \Rightarrow Logit
Choice prob. (open-form)

$$
\begin{array}{r}
P_{\text {rail }}=\int_{\eta_{\text {transit }}} \frac{e^{V_{\text {rail }}+\sigma_{\text {transit }} \eta_{\text {transit }}}}{e^{V_{\text {car }}}+e^{V_{\text {buss }}+\sigma_{\text {transit }} \eta_{\text {transit }}}+e^{V_{\text {rail }}+\sigma_{\text {transit }} \eta_{\text {transit }}}} f\left(\eta_{\text {transit }}\right) d \eta_{\text {transit }} \\
\eta_{\text {transit }} \approx N(0,1)
\end{array}
$$

Choice prob. (Simulated)

$$
P_{\text {rail }}=\frac{1}{N} \sum_{N} \frac{e^{V_{\text {rail }}+\sigma_{\text {transi }} \eta_{\text {tranist }}^{N}}}{e^{V_{\text {car }}}+e^{V_{\text {bus }}+\sigma_{\text {transil }} T_{\text {tranist }}^{N}}+e^{V_{\text {rail }}+\sigma_{\text {transit }} \eta_{\text {tranist }}^{N}}}
$$

Why estimation methods is important?

\checkmark Advance GEV model (CNL, GNL, n-GEV...) has many parameter. \Rightarrow Convergence becomes unstable (Hessian passed away)
\checkmark non-GEV model requires multiple integral calculations .
\Rightarrow ML estimation cannot be used
\checkmark Stricture of utility function (non-liner, complex distribution)
\checkmark Dynamic choice behavior (Recursive choice)
\checkmark Interaction between decision-maker (Endogeneity)
The analyst needs to select an appropriate estimation method corresponding to the model.

To solve Integral

Maximum Likelihood estimation

To Consider Dynamics Interaction

General method

Structural estimation

\checkmark Heckman's 2-step
\checkmark Pseudo Likelihood
\checkmark nested Fixed Point (NFXP)
\checkmark Nestef Pseudo Likelihood ...
\checkmark MPEC
 \square

Numerical method
\checkmark Newton-Cotes rules
\checkmark Simpson's rule

Random approximation
\checkmark Maximum Simulated Likelihood (Monte Carlo integral, GHK...)
(Gibbs, MH, HM...)

Analytical approximation

\checkmark Series approximation

\checkmark Clark approximation

\checkmark MACML
\checkmark MACMLRandom approximation\checkmark Maximum Simulated Likelihood(Monte Carlo integral, GHK...)

\checkmark MCMC(Gibbs, MH, HM...)

Machine Learning (ML)

Neural network, (reverse) Reinforcement learning, Sparse modeling, Gaussian Process... \Rightarrow Several methodologies are useful for DCM parameter estimation!

Model parameter estimation based on Bayes theory

$$
\begin{aligned}
& \text { Posterior Dist. Likelihood Priori Dist. } \\
& \pi(\theta \mid D) \propto f(D \mid \theta) \pi(\theta) \\
& \text { Ө: Parameter dist. } \\
& \text { D: Data }
\end{aligned}
$$

Ex: Estimate the average value of $\boldsymbol{\theta}$

- Likelihood: Binominal distribution
- Priori distribution: Exponential distribution.

Likelihood \times Priori Dist. $=$ Posterior Dist. (Dist. of average $\boldsymbol{\theta})$

$$
n C r \theta^{r}(1-\theta)^{n-r} \times \lambda e^{-\lambda \theta}=\frac{\int_{0}^{1} \theta \cdot \theta^{r}(1-\theta)^{n-r} \lambda e^{-\lambda \theta} d \theta}{\int_{0}^{1} \theta^{r}(1-\theta)^{n-r} \lambda e^{-\lambda \theta} d \theta}
$$

Analytical formula is too complex!

2. Parameter estimation

To estimate the model parameter based on Bayes statistic, should be considered method of approximation of multidimensional integrals.

* Conjugate distribution methods

Analytical approximations using property of conjugate dist..

- Model: change (= approximate well-known distribution)
- Calculation cost: Low
* Markov chain Monte Carlo(MCMC) methods

Random approximations using computational technique.

- Model: not change (= flexible distribution is available)
- Calculation cost: High

2. Conjugate Distribution

* If the posterior distributions are in the "same family" as the prior distribution, the prior and posterior are then called conjugate distributions, and the prior is called a conjugate prior for the likelihood function.
*A conjugate prior is an algebraic convenience giving a closedform expression for the posterior. Otherwise a difficult numerical integration may be necessary.

Example of conjugate distribution (Discrete distribution)

Likelihood	Model Parameter	Prior Dist.	Prior parameter	Posterior Dist.
Binomial	\boldsymbol{p} (probability)	Beta	$\boldsymbol{\alpha}, \boldsymbol{\beta}$	Beta
Poisson	λ (rate	Gamma	$\boldsymbol{\kappa}, \boldsymbol{\theta}$	Gamma
Categorical	$\boldsymbol{p}, \boldsymbol{k}$ (N of categories)	Dirichlet	$\boldsymbol{\alpha}$	Dirichlet
Multinomial	$\boldsymbol{p}, \boldsymbol{k}$ (N of categories)	Dirichlet	$\boldsymbol{\alpha}$	Dirichlet

Markov chain Monte Carlo (MCMC) methods are a class of algorithms for sampling from a probability distribution based on constructing a Markov chain that has the desired distribution as its equilibrium distribution.
\diamond Gibbs sampling: Requires all the conditional distributions of the target distribution to be sampled exactly. It is popular partly because it does not require any 'tuning'.
\diamond Metropolis-Hastings algorithm: Generates a random walk using a proposal density and a method for probabilistic rejecting some of the proposed moves.
\diamond Other MCMC methods: Slice sampling, Multiple-try Metropolis, Reversible-jump, Hybrid Monte Carlo, Hamiltonian Monte Carlo

Gibbs sampling is that given a multivariate distribution it is simpler to sample from a conditional distribution than to marginalize by integrating over a joint distribution.

STEPO: Set initial values

- Iterator $\boldsymbol{i}=0$
- Maximum iteration number
- Period of "burn-in"
- Initial value vector

$$
X^{(0)}=\left(x_{1}^{(0)}, x_{2}^{(0)}, \ldots, x_{n}^{(0)}\right)
$$

Period of to stabilize calculation

STEP1: Sampling

- Iterator $\boldsymbol{i}:=\boldsymbol{i}+1$
- sample each variable $x_{j}^{(i)}$ from the conditional distribution
$p\left(x_{j} \mid x_{1}^{(i)}, \ldots, x_{j-1}^{(i)}, x_{j+1}^{(i-1)}, \ldots, x_{n}^{(i-1)}\right)$

STEP2: Repeat

sample each variable from the distribution of that variable conditioned on all other variables, making use of the most recent values and updating the variable with its new value as soon as it has been sampled.

- Repeat STEP1 until reach to max iteration
- If finish, cut the data include period of "burn-in"

2. Example of Gibbs Sampling

Ex: Sampling from Bivariate standard normal distribution

STEPO: Set initial values

$$
X^{(0)}=\left(x_{1}^{(0)}, x_{2}^{(0)}\right)
$$

STEP1: Sampling

$$
\begin{aligned}
& x_{1}^{(i)} \sim N\left(\rho x_{2}^{(i-1)}, \sqrt{1-\rho^{2}}\right) \\
& x_{2}^{(i)} \sim N\left(\rho x_{1}^{(i)}, \sqrt{1-\rho^{2}}\right)
\end{aligned}
$$

*Random number based on Bivariate normal distribution

$$
x \sim N\left(\mu_{x}, \sqrt{\sigma_{x}^{2}}\right) \quad y \sim N\left(\mu_{y}+\rho \frac{\sigma_{y}^{2}}{\sigma_{x}^{2}}\left(x-\mu_{x}\right), \sqrt{\left(1-\rho^{2}\right) \sigma_{x}^{2}}\right)
$$

2. Example of Gibbs Sampling

Ex: Sampling from Bivariate standard normal distribution

STEPO: Set initial values

$$
X^{(0)}=\left(x_{1}^{(0)}, x_{2}^{(0)}\right)
$$

STEP1: Sampling

$$
\begin{aligned}
& x_{1}^{(i)} \sim N\left(\rho x_{2}^{(i-1)}, \sqrt{1-\rho^{2}}\right) \\
& x_{2}^{(i)} \sim N\left(\rho x_{1}^{(i)}, \sqrt{1-\rho^{2}}\right)
\end{aligned}
$$

*Random number based on Bivariate normal distribution

$$
x \sim N\left(\mu_{x}, \sqrt{\sigma_{x}^{2}}\right) \quad y \sim N\left(\mu_{y}+\rho \frac{\sigma_{y}^{2}}{\sigma_{x}^{2}}\left(x-\mu_{x}\right), \sqrt{\left(1-\rho^{2}\right) \sigma_{x}^{2}}\right)
$$

Example Data

- Data: Artificial N(mean=3, SD=2)
- Estimate arguments (mean and Sigma) in Likelihood assumed Normal dist.
- Prior and Posterior use conjugate dist.
\Rightarrow mean: Normal dist. Sigma: Gamma dist.

$$
\mu \sim N\left(\mu_{0}, \kappa_{0}^{2}\right), \quad \sigma^{2} \sim \operatorname{Gamma}\left(\frac{v_{0}}{2}, \frac{2}{s_{0}}\right)
$$

Sample path

Estimation results

[1] 3.150161
$>\operatorname{var}(\mathrm{X})$
[1] 4.17942

Bhat, C.R.: The maximum approximate composite marginal likelihood (MACML) estimation of multinomial probit-based unordered response choice models, Transportation Research Part B: Methodological, Vol.45, No.7, pp.923-939, 2011.

* Propose a simple and fast method for estimating parameters of open-from models (c.f. MNP, MXL)
MACML estimation consists of two techniques
- Analytic approximation method for MVNCD
- Parameter estimation by CML

Compared with the normal estimation method (MSL), the calculation time is about 38 times faster ($66.09 \rightarrow$ 1.96), and the bias of the estimated value is 7.3 points lower ($9.8 \% \rightarrow 2.5 \%$).
※1 MVNCD: Multi-Variate standard Normal Cumulative Distribution ※2CML: Composite Marginal Likelihood

Analytic approximation method for MVNCD

\Rightarrow Approximate a multivariate normal dist．by a product of univariate dist．
【Setting1：decomposition of distribution】
$\operatorname{Pr}(\boldsymbol{W}<\boldsymbol{w})=\operatorname{Pr}\left(W_{1}<w_{1}, W_{2}<w_{2}, W_{3}<w_{3}, \ldots, W_{I}<w_{I}\right) . \quad \mathbf{W}$ ：multivariate normal dist．
Decompose joint probability into product of distributions as follows

$$
\operatorname{Pr}(\boldsymbol{W}<\boldsymbol{w})=\underline{\operatorname{Pr}\left(W_{1}<w_{1}, W_{2}<w_{2}\right)} \times \prod_{i=3}^{\mathrm{I}} \underline{\operatorname{Pr}\left(W_{i}<w_{i} \mid W_{1}<w_{1}, W_{2}<w_{2}, W_{3}<w_{3}, \ldots, W_{i-1}<w_{i-1}\right)} .
$$

Bivariate marginal distribution Univariate conditional distribution（I＞3）

【Setting 2 ：covariance matrix by indicator I】

$$
\tilde{\mathbf{I}}_{i}=\left\{\begin{array}{ccc}
1 & W_{i}<w_{i} & E\left(\tilde{I}_{i}\right)=\Phi\left(w_{i}\right) \\
0 & \text { otherwise } & \text { Evaluate the expected value of } \mathbf{I} \text { by univariate cumulative } \\
\text { normal dist. } \Phi
\end{array}\right.
$$

$$
\operatorname{Cov}\left(\tilde{I}_{i}, \tilde{I}_{i}\right)=\operatorname{Var}\left(\tilde{I}_{i}\right)=\Phi\left(w_{i}\right)-\Phi^{2}\left(w_{i}\right)=\Phi\left(w_{i}\right)\left[1-\Phi\left(w_{i}\right)\right],
$$

$$
\operatorname{Cov}\left(\tilde{I}_{i}, \tilde{I}_{j}\right)=E\left(\tilde{I}_{i} \tilde{I}_{j}\right)-E\left(\tilde{I}_{i}\right) E\left(\tilde{I}_{j}\right)=\Phi_{2}\left(w_{i}, w_{j}, \rho_{i j}\right)-\Phi\left(w_{i}\right) \Phi\left(w_{j}\right), i \neq j
$$

－Integrate Setting1 and 2

$$
\operatorname{Pr}\left(W_{i}<w_{i} \mid W_{1}<w_{1}, W_{2}<w_{2}, W_{3}<w_{3}, \ldots, W_{i-1}<w_{i-1}\right)=E\left(\tilde{I}_{i} \tilde{I}_{1}=1, \tilde{I}_{2}=1, \tilde{I}_{3}=1, \ldots, \tilde{I}_{i-1}=1\right) .
$$

【assume liner regression model】

\[

\]

$\hat{\boldsymbol{\alpha}}=\boldsymbol{\Omega}_{<\boldsymbol{i}}^{\boldsymbol{1}} \cdot \boldsymbol{\Omega}_{\mathbf{i},<\boldsymbol{i}}, \quad$ parameter

$$
\boldsymbol{\Omega}_{<i}=\operatorname{Cov}\left(\boldsymbol{I}_{i \boldsymbol{i}}, \boldsymbol{I}_{\boldsymbol{i}}\right)=\left[\begin{array}{ccccc}
\operatorname{Cov}\left(\tilde{I}_{1}, \tilde{I}_{1}\right) & \operatorname{Cov}\left(\tilde{I}_{1}, \tilde{I}_{2}\right) & \operatorname{Cov}\left(\tilde{I}_{1}, \tilde{I}_{3}\right) & \cdots & \operatorname{Cov}\left(\tilde{I}_{1}, \tilde{I}_{i-1}\right) \\
\operatorname{Cov}\left(\tilde{I}_{2}, \tilde{I}_{1}\right) & \operatorname{Cov}\left(\tilde{I}_{2}, \tilde{I}_{2}\right) & \operatorname{Cov}\left(\tilde{I}_{2}, \tilde{I}_{3}\right. & \cdots & \operatorname{Cov}\left(\tilde{I}_{2}, \tilde{I}_{i-1}\right) \\
\operatorname{Cov}\left(\tilde{I}_{3}, \tilde{I}_{1}\right) & \operatorname{Cov}\left(I_{3}, I_{2}\right) & \operatorname{Cov}\left(\tilde{I}_{3}, \tilde{I}_{3}\right) & \cdots & \operatorname{Cov}\left(\tilde{I}_{3}, \tilde{I}_{i-1}\right) \\
\vdots & & & & \\
\operatorname{Cov}\left(\tilde{I}_{i-1}, \tilde{I}_{1}\right) & \operatorname{Cov}\left(\tilde{I}_{i-1}, \tilde{I}_{2}\right) & \operatorname{Cov}\left(\tilde{I}_{i-1}, \tilde{I}_{3}\right) & \cdots & \operatorname{Cov}\left(\tilde{I}_{i-1}, \tilde{I}_{i-1}\right)
\end{array}\right], \quad \boldsymbol{\Omega}_{\mathbf{i}, \boldsymbol{i}}=\operatorname{Cov}\left(\boldsymbol{I}_{i \boldsymbol{i}}, \boldsymbol{I}_{\boldsymbol{i}}\right)=\left[\begin{array}{c}
\operatorname{Cov}\left(\tilde{I}_{i}, \tilde{I}_{1}\right) \\
\operatorname{Cov}\left(\tilde{I}_{1}, \tilde{I}_{2}\right) \\
\operatorname{Cov}\left(\tilde{I}_{i}, \tilde{I}_{3}\right) \\
\vdots \\
\operatorname{Cov}\left(\tilde{I}_{i}, \tilde{I}_{i-1}\right)
\end{array}\right] .
$$

【approximation by univariate dist．】
$\quad>\operatorname{Pr}\left(W_{i}<w_{i} \mid W_{1}<w_{1}, W_{2}<w_{2}, \ldots, W_{i-1}<w_{i-1}\right) \approx \Phi\left(w_{i}\right)+\left(\mathbf{\Omega}_{<\boldsymbol{i}}^{-1} \cdot \mathbf{\Omega}_{\boldsymbol{i}, \boldsymbol{i}}\right)^{\prime}\left(1-\Phi\left(w_{1}\right), 1-\Phi\left(w_{2}\right) \ldots 1-\Phi\left(w_{i-1}\right)\right)^{\prime}$
Multivariate normal distribution expressed as univariate normal distribution with N of alternatives -1
\Rightarrow Calculation cost is greatly reduced！

3. Numerical Test

Model

Cross-section random coefficients model (Mixed MNP)

$$
\begin{aligned}
U_{q i} & =\boldsymbol{\beta}_{\boldsymbol{q}}^{\prime} \boldsymbol{x}_{\boldsymbol{q} i}+\varepsilon_{q i} \quad \boldsymbol{\beta}_{\boldsymbol{q}} \sim \operatorname{MVN}(\boldsymbol{b}, \boldsymbol{\Omega}) \\
L_{q} & =\int_{\boldsymbol{\beta}=-\infty}^{\infty}\left\{\int_{\lambda=-\infty}^{\infty}\left(\prod_{i \neq m}\left[\Phi\left\{\left[-\sqrt{2}\left(\boldsymbol{\beta}^{\prime} \boldsymbol{z}_{\boldsymbol{q i m}}\right)\right]+\lambda\right\}\right]\right) \phi(\lambda) d \lambda\right\} f(\boldsymbol{\beta} \mid \boldsymbol{b}, \boldsymbol{\Omega}) \boldsymbol{d} \boldsymbol{\beta},
\end{aligned}
$$

$$
\text { where } \boldsymbol{z}_{\boldsymbol{q} i \boldsymbol{m}}=\boldsymbol{x}_{\boldsymbol{q} i}-\boldsymbol{x}_{\boldsymbol{q} \boldsymbol{m}}
$$

q : individual
i : alternatives
ε : Error: IID Gumbel

True valule

$$
\boldsymbol{b}=(1.5,-1,2,1,-2) \quad \boldsymbol{\Omega}=\left[\begin{array}{ccccc}
1 & -0.50 & 0.25 & 0.75 & 0 \\
-0.50 & 1 & 0.25 & -0.50 & 0 \\
0.25 & 0.25 & 1 & 0.33 & 0 \\
0.75 & -0.50 & 0.33 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Create experimental data using random numbers of virtual data for 5000 people

3. Numerical Test (vs MSL)

Cross-sectional random coefficients model

- Estimate the lower triangle of the variance-covariance matrix
- time: About 33 times faster on average and stable
- bias: About 2.1 points lower on average than MSL method

Table 1b
Evaluation of the ability to recover true parameters for the cross-sectional non-diagonal case.

4. Possibility of ML

Estimation methods in the field of machine learning can be applied to DCM estimation.

Neural network (Back propagation)

Gaussian Process

Estimation considering complex nonlinear structures

Sparse modeling

Estimation considering parameter dimension reduction
Reinforcement learning
 complex and dynamic choice

