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1. Overview of DCM 2



1. Closed-form vs Open-form 3

Multinomial Logit (MNL)

• Luce(1959), McFadden(1974)
• Not consider correlation of 
choice alternatives’ (IIA)
• Easy and fast estimation
• High operability                    
(easy evaluation for new additional choice 
alternative ⇒ benefit of IIA)
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多項ロジット（MNL）モデル（2）

ε～IIDガンベル分布
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z シェア型モデルであるため直感的にわかりやすい
z closed-formのため計算コストが安い
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Multinomial Probit (MNP)

• Thurstone(1927)
• Consider correlation of choice 
alternates’ based on Variance-
Covariance matrix
• Hard and slow estimation     
(need calculation of multi-dimensional 
interrelation depend on N of alternatives')
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多項プロビット（MNP）モデル（3）
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ε～多変量正規分布

z Open-formのため計算コストが高い
z Identificationの問題から推定可能なパラメータは限
られており解釈が困難
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GEV model (Closed-form) Non-GEV model (Open-form)

Non-GEV model has high power of expression, 
however parameter estimation cost is high.



1. Mixed Logit 4

Ui =Vi +ηi +ν i

Mixed Loigt (Train 2000)

High flexible model structure by two error term.
Utility function

• Error Component: approximate to any GEV model 
• Random Coefficient: Consider the heterogeneity

η dist.: basically assume “Normal dist.” 
In the case of normal distribution takes a non-realistic value, it can 
assume a variety of probability distribution (triangular distribution, cutting 
normal distribution, lognormal distribution, Rayleigh distribution, etc.).

v dist.: assume any G function 
・IID Gamble (Logit Kernel) ⇒ MNL
・any G function (GEV Kernel) ⇒ NL, PCL, CNL, GNL…



1. Error Component Model 5

Ucar = βXcar +                  +νcar
Ubus = βXbus +σ transitηtransit +νbus
Urail = βX rail +σ transitηtransit +ν rail

Approximation of Nested Logit (NL)
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ミックストロジット（MXL）モデル（5）
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ミックストロジット（MXL）モデル（5）
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IID Gamble ⇒ Logit

Describe the nest (covariance) using structured η.  
Ex: model choice

Car
Bus

Rail
Transit nest

Prail =
eVrail+σ transitηtransit

eVcar + eVbus+σ transitηtransit + eVrail+σ transitηtransitηtransit

∫ f ηtransit( )dηtransit

Prail =
1
N

eVrail+σ transitηtranist
N

eVcar + eVbus+σ transitηtranist
N

+ eVrail+σ transitηtranist
N

N
∑

Normal ⇒ nest

Choice prob.
(open-form) 

Choice prob.
(Simulated) 



1. Difficulty of Estimation 6

Why estimation methods is important ?

üAdvance GEV model (CNL, GNL, n-GEV…） has many parameter.
⇒ Convergence becomes unstable (Hessian passed away)

ünon-GEV model requires multiple integral calculations .
⇒ ML estimation cannot be used

ü Stricture of utility function (non-liner, complex distribution)

üDynamic choice behavior (Recursive choice)

ü Interaction between decision-maker (Endogeneity）

The analyst needs to select an appropriate estimation 
method corresponding to the model.



1. Overview of Estimation 7

Maximum Likelihood estimation  

Bayesian estimation 

To solve Integral 

Numerical method
ü Newton-Cotes rules
ü Simpson's rule

Analytical approximation
ü Series approximation
ü Clark approximation
ü MACML

Random approximation
ü Maximum Simulated Likelihood
（Monte Carlo integral, GHK…）

ü MCMC
（Gibbs, MH, HM…）

General method

Structural estimation
ü Heckman’s 2-step
ü Pseudo Likelihood
ü nested Fixed Point (NFXP）
ü Nestef Pseudo Likelihood …
ü MPEC

To Consider
Dynamics
Interaction

Machine Learning (ML)
Neural network, (reverse) Reinforcement learning, Sparse modeling, Gaussian Process…  
⇒ Several methodologies are useful for DCM parameter estimation !



2. Bayesian Estimation 8

vModel parameter estimation based on Bayes theory

π θ |D( )∝ f D |θ( ) ⋅π θ( )
Posterior Dist. Priori Dist.Likelihood

θ: Parameter dist.
D: Data

nCrθ r 1−θ( )
n−r

Ex: Estimate the average value of θ
• Likelihood: Binominal distribution
• Priori distribution: Exponential distribution. 

λe−λθ θ ⋅θ r 1−θ( )
n−r

0

1
∫ λe−λθdθ

θ r 1−θ( )
n−r

0

1
∫ λe−λθdθ

Likelihood× Priori Dist. = Posterior Dist. (Dist. of average θ) 

× =

Analytical formula is too complex !



2. Parameter estimation 9

To estimate the model parameter based on Bayes statistic, 
should be considered method of approximation of multi-
dimensional integrals.

vConjugate distribution methods
Analytical approximations using property of conjugate dist..
• Model: change ( = approximate well-known distribution)
• Calculation cost: Low

vMarkov chain Monte Carlo(MCMC) methods 
Random approximations using computational technique.
• Model: not change ( = flexible distribution is available)    
• Calculation cost: High



2. Conjugate Distribution 10

vIf the posterior distributions are in the “same family” as the prior 
distribution, the prior and posterior are then called conjugate 
distributions, and the prior is called a conjugate prior for the 
likelihood function. 

vA conjugate prior is an algebraic convenience giving a closed-
form expression for the posterior. Otherwise a difficult numerical 
integration may be necessary. 

Example of conjugate distribution (Discrete distribution)

Likelihood Model Parameter Prior Dist. Prior parameter Posterior Dist.

Binomial p (probability) Beta α, β Beta

Poisson λ (rate) Gamma κ, θ Gamma

Categorical p, k (N of categories) Dirichlet α Dirichlet

Multinomial p, k (N of categories) Dirichlet α Dirichlet



2. MCMC 11

vMarkov chain Monte Carlo (MCMC) methods are a class of 
algorithms for sampling from a probability distribution based on 
constructing a Markov chain that has the desired distribution as 
its equilibrium distribution. 

² Gibbs sampling: Requires all the conditional distributions of 
the target distribution to be sampled exactly. It is popular 
partly because it does not require any 'tuning'.

² Metropolis–Hastings algorithm: Generates a random walk 
using a proposal density and a method for probabilistic 
rejecting some of the proposed moves.

² Other MCMC methods: Slice sampling, Multiple-try 
Metropolis, Reversible-jump, Hybrid Monte Carlo,
Hamiltonian Monte Carlo



2. Gibbs Sampling Algorithm 12

vGibbs sampling is that given a multivariate distribution it is 
simpler to sample from a conditional distribution than to 
marginalize by integrating over a joint distribution.

STEP0: Set initial values
• Iterator i = 0
• Maximum iteration number
• Period of “burn-in”

STEP1: Sampling 
• Iterator i := i + 1
• sample each variable  from the conditional distribution

• Initial value vector
X (0) = x1

(0) ,x2
(0) ,…,xn

(0)( )

x j
(i )

p x j | x1
(i ) ,…,x j−1

(i ) ,x j+1
(i−1) ,…,xn

(i−1)( ) sample each variable from the distribution of that 
variable conditioned on all other variables, making use 
of the most recent values and updating the variable 
with its new value as soon as it has been sampled.STEP2: Repeat 

• Repeat STEP1 until reach to max iteration
• If finish, cut the data include period of “burn-in”

Period of to stabilize calculation   



2. Example of Gibbs Sampling 13
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Ex: Sampling from Bivariate standard normal distribution 

X (0) = x1
(0) ,x2

(0)( )

x1
(i ) ~ N ρx2

(i−1) , 1− ρ2( )

x1

x2
x2
(i ) ~ N ρx1

(i ) , 1− ρ2( )

STEP0: Set initial values

STEP1: Sampling

y ~ N µ y + ρ
σ y
2

σ x
2
x −µx( ), 1− ρ2( )σ x

2
"

#
$
$

%

&
'
'x ~ N µx , σ x

2( )
*Random number based on Bivariate normal distribution 
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Ex: Sampling from Bivariate standard normal distribution 

x1

x2

X (0) = x1
(0) ,x2

(0)( )

x1
(i ) ~ N ρx2

(i−1) , 1− ρ2( )
x2
(i ) ~ N ρx1

(i ) , 1− ρ2( )

STEP0: Set initial values

STEP1: Sampling

y ~ N µ y + ρ
σ y
2

σ x
2
x −µx( ), 1− ρ2( )σ x

2
"

#
$
$

%

&
'
'x ~ N µx , σ x

2( )
*Random number based on Bivariate normal distribution 



2. Parameter Estimation 15

Example Data
• Data: Artificial  N(mean=3, SD=2)
• Estimate arguments (mean and Sigma) in 

Likelihood assumed Normal dist.
• Prior and Posterior use conjugate dist.
⇒ mean: Normal dist.  Sigma: Gamma dist.

µ ~ N µ0 ,κ0
2( ), σ 2 ~Gamma ν0

2
, 2
s0

!

"
##

$

%
&&

Sample path 

Estimation results 



3. MACML (1) 16

vPropose a simple and fast method for estimating 
parameters of open-from models (c.f. MNP, MXL)

vMACML estimation consists of two techniques
• Analytic approximation method for MVNCD
• Parameter estimation by CML

vCompared with the normal estimation method (MSL), 
the calculation time is about 38 times faster (66.09 → 
1.96), and the bias of the estimated value is 7.3 points 
lower (9.8% → 2.5%).

Bhat, C.R.: The maximum approximate composite marginal likelihood (MACML) estimation 
of multinomial probit-based unordered response choice models, Transportation Research 
Part B: Methodological, Vol.45, No.7, pp.923-939, 2011.

※1 MVNCD: Multi-Variate standard Normal Cumulative Distribution
※2CML: Composite Marginal Likelihood 



3. MACML (2) 17

Analytic approximation method for MVNCD
⇒ Approximate a multivariate normal dist. by a product of univariate dist.

coefficients as well as choice occasion-specific normal random coefficients with panel or repeated unordered choice data. In
this case, the result is a double multivariate integral, with the dimensionality of the two multivariate normal integrals being
equal to the number of random coefficients in the individual-specific and occasion-specific cases (see Bhat and Castelar,
2002; Bhat and Sardesai, 2006; Hess and Rose, 2009). The explosion of the dimensionality of integration is rapid, making full
likelihood evaluation using simulation techniques all but impractical. Finally, in the case of global social interactions or spa-
tial interactions that lead to autoregressive error structures or spatial/social lag effects, the full likelihood is infeasible to esti-
mate using simulation methods in any reasonable time because of the extremely high dimensionality involved (the
dimensionality is of the order of the number of decision-makers times the number of alternatives in the multinomial choice
situation minus one; for example, with 2000 decision-makers and four alternatives, the dimensionality of integration is
6000). In all these cases and more, the proposed MACML approach offers a computationally convenient inference approach,
as we indicate in the rest of this paper. As importantly, the MACML inference approach is simple to code and apply using
readily available software for likelihood estimation. It also represents a conceptually and pedagogically simpler procedure
relative to simulation techniques.

The paper is structured as follows. The next section presents the two main and fundamental building blocks of the MAC-
ML approach. Section 3 presents the MACML inference approach for the cross-sectional MNP model, while Section 4 illus-
trates the approach for panel and dynamic MNP model structures. Section 5 presents the extension to accommodate
spatial/social effects. Section 6 discusses model selection issues in the CML estimation approach. Finally, Section 7 summa-
rizes the contributions of the paper.

2. The basics of the MACML approach to estimate unordered-response models

There are two fundamental concepts in the proposed MACML approach to estimate MNP models. The first is an
approximation method to evaluate the multivariate standard normal cumulative distribution (MVNCD) function
(discussed in Section 2.1). The second is the composite marginal likelihood (CML) approach to estimation (discussed
in Section 2.2).

2.1. Multivariate standard normal cumulative distribution (MVNCD) function

In the general case of an MNP model with I alternatives, the probability expression of an individual choosing a particular
alternative involves an (I ! 1) dimensional MVNCD function (more on this in Section 3). The evaluation of such a function
cannot be pursued using quadrature techniques due to the curse of dimensionality when the dimension of integration ex-
ceeds two (see Bhat, 2003). Consequently, the probability expression is approximated using simulation techniques in the
classical maximum simulated likelihood (MSL) inference approach, usually through the use of the Geweke–Hajivassiliou–
Keane (GHK) simulator or the Genz–Bretz (GB) simulator, which are among the most effective simulators for evaluating mul-
tivariate normal probabilities (see Bhat et al. (2010b) for a detailed description of these simulators). Some other recent
sparse grid-based techniques for simulating the multivariate normal probabilities have also been proposed by Heiss and
Winschel (2008), Huguenin et al. (2009), and Heiss (2010). In addition, Bayesian simulation using Markov Chain Monte Carlo
(MCMC) techniques (instead of MSL techniques) have been used in the literature (see Albert and Chib, 1993; McCulloch and
Rossi, 2000; Train, 2009). However, all these MSL and Bayesian techniques require extensive simulation, are time-consum-
ing, are not very straightforward to implement, and create convergence assessment problems as the number of dimensions
of integration increases.

In this paper, we apply an analytic approximation method to evaluate the MVNCD function that is quite accurate and very
fast even for 20 or more dimensions of integration. Further, unlike Monte Carlo simulation approaches, even two to three
decimal places of accuracy in the analytic approximation is generally adequate to accurately and precisely recover the
parameters and their covariance matrix estimates because of the smooth nature of the first and second derivatives of the
approximated analytic log-likelihood function. While several analytic approximations have been reported in the literature
for MVNCD functions (see, for example, Solow, 1990; Joe, 1995, 2008; Gassmann et al., 2002), the one we use here is based
on decomposition into a product of conditional probabilities. This approximation appears to have been first proposed by So-
low (1990) based on Switzer (1977), and then refined by Joe (1995). However, we are not aware of any earlier research effort
that applies this technique for the estimation of parameters in econometric models (such as discrete choice models) involv-
ing the evaluation of MVNCD functions. The reason we select this approximation approach is that it is fast and lends itself
nicely to combination with the composite marginal likelihood approach of MNP model estimation that we propose in this
paper.

To describe the approximation, let (W1, W2, W3, . . . , WI) be a multivariate normally distributed random vector with
zero means, variances of 1, and a correlation matrix R. Then, interest centers on approximating the following orthant
probability:

PrðW < wÞ ¼ PrðW1 < w1;W2 < w2;W3 < w3; . . . ;WI < wIÞ: ð1Þ

The above joint probability may be written as the product of a bivariate marginal probability and univariate conditional
probabilities as follows (I P 3):
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Evaluate the expected value of I by univariate cumulative 
normal dist. Φ

PrðW < wÞ ¼ PrðW1 < w1;W2 < w2Þ $
YI

i¼3

PrðWi < wijW1 < w1;W2 < w2;W3 < w3; . . . ;Wi% 1 < wi% 1Þ: ð2Þ

Next, define the binary indicator ~Ii that takes the value 1 if Wi < wi and zero otherwise. Then Eð~IiÞ ¼ UðwiÞ, where U(.) is the
univariate normal standard cumulative distribution function. Also, we may write the following:

Covð~Ii;~IjÞ ¼ Eð~Ii
~IjÞ % Eð~IiÞEð~IjÞ ¼ U2ðwi;wj;qijÞ % UðwiÞUðwjÞ; i – j

Covð~Ii;~IiÞ ¼ Varð~IiÞ ¼ UðwiÞ % U2ðwiÞ ¼ UðwiÞ½1 % UðwiÞ';
ð3Þ

where qij is the ijth element of the correlation matrix R. With the above preliminaries, consider the following conditional
probability:

PrðWi < wijW1 < w1;W2 < w2;W3 < w3; . . . ;Wi% 1 < wi% 1Þ ¼ Eð~Iij~I1 ¼ 1;~I2 ¼ 1;~I3 ¼ 1; . . . ;~Ii% 1 ¼ 1Þ: ð4Þ

The right side of the expression may be approximated by a linear regression model, with ~Ii being the ‘‘dependent’’ random
variable and ~I<i ¼ ð~I1;~I2; . . .~Ii% 1Þ being the independent random variable vector.2 In deviation form, the linear regression for
approximating Eq. (4) may be written as:

~Ii % Eð~IiÞ ¼ a0½~I<i % Eð~I<iÞ' þ ~g; ð5Þ

where a is the least squares coefficient vector and ~gis a mean zero random term. In this form, the usual least squares esti-
mate of a is given by:

â ¼ X% 1
<i )Xi;<i;

where

X<i ¼ CovðI<i; I<iÞ ¼

Covð~I1;~I1Þ Covð~I1;~I2Þ Covð~I1;~I3Þ ) ) ) Covð~I1;~Ii% 1Þ
Covð~I2;~I1Þ Covð~I2;~I2Þ Covð~I2;~I3Þ ) ) ) Covð~I2;~Ii% 1Þ
Covð~I3;~I1Þ CovðI3; I2Þ Covð~I3;~I3Þ ) ) ) Covð~I3;~Ii% 1Þ

..

.

Covð~Ii% 1;~I1Þ Covð~Ii% 1;~I2Þ Covð~Ii% 1;~I3Þ ) ) ) Covð~Ii% 1;~Ii% 1Þ

2

66666664

3

77777775

; ð6Þ

and

Xi;<i ¼ CovðI<i; IiÞ ¼

Covð~Ii;~I1Þ
Covð~Ii;~I2Þ
Covð~Ii;~I3Þ

..

.

Covð~Ii;~Ii% 1Þ

2

66666664

3

77777775

: ð7Þ

Finally, putting the estimate of â back in Eq. (5), and predicting the expected value of ~Ii conditional on ~I<i ¼ 1 (i.e.,
~I1 ¼ 1;~I2 ¼ 1;~Ii% 1 ¼ 1Þ, we get the following approximation for Eq. (4):

PrðWi < wijW1 < w1;W2 < w2; . . . ;Wi% 1 < wi% 1Þ * UðwiÞ þ ðX% 1
<i )Xi;<iÞ0ð1 % Uðw1Þ;1 % Uðw2Þ . . . 1 % Uðwi% 1ÞÞ0 ð8Þ

This conditional probability approximation can be plugged into Eq. (2) to approximate the multivariate orthant probability in
Eq. (1). The resulting expression for the multivariate orthant probability comprises only univariate and bivariate standard
normal cumulative distribution functions.

One remaining issue is that the decomposition of Eq. (1) into conditional probabilities in Eq. (2) is not unique. Further,
different permutations (i.e., orderings of the elements of the random vector W = (W1, W2, W3, . . . , WI)) for the decomposition
into the conditional probability expression of Eq. (2) will lead, in general, to different approximations. One approach to
resolve this is to average across the I!/2 permutation approximations. However, as indicated by Joe (1995), the average over
a few randomly selected permutations is typically adequate for the accurate computation of the multivariate orthant
probability. In the case when the approximation is used for model estimation (where the integrand in each individual’s

2 Note that, theoretically, this approximation can be viewed as a first-order approximation. The approximation can be continually improved by increasing the
order of the approximation. For instance, a second-order approximation would approximate the right side of Eq. (4) by the expectation from a linear regression
model that has ~Ii as the ‘‘dependent’’ random variable and ~I<i ¼ ð~I1;~I2; . . .~Ii% 1;~I12 ;~I13; . . . I1;i% 1 ;~I23;~I24 ; . . .~I2;i% 1; . . . Ii% 2;i% 1Þ as the independent random variable
vector, where ~Ii0 j0 ¼ ~Ii0

~Ij0 . Essentially this adds second-order interactions in the independent random variable vector (see Joe, 1995). However, doing so entails
trivariate and four-variate normal cumulative distribution function (CDF) evaluations (when I > 4) as opposed to univariate and bivariate normal CDF
evaluations in the first-order approximation, thus increasing computational burden. As we discuss later and show empirically in a companion paper (Bhat and
Sidharthan, forthcoming), the first-order approximation is more than adequate (when combined with the CML approach) for estimation of any MNP model.
Thus, in the rest of this paper, we will use the term approximation to refer to the first-order approximation evaluation of the MVNCD function.
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Decompose joint probability into product of distributions as follows

Bivariate marginal distribution Univariate conditional distribution （I>3）

【Setting1: decomposition of distribution】

【Setting 2：covariance matrix by indicator I】

Ii =
1 Wi < wi
0 otherwise

!
"
#

$#
PrðW < wÞ ¼ PrðW1 < w1;W2 < w2Þ $

YI

i¼3

PrðWi < wijW1 < w1;W2 < w2;W3 < w3; . . . ;Wi% 1 < wi% 1Þ: ð2Þ

Next, define the binary indicator ~Ii that takes the value 1 if Wi < wi and zero otherwise. Then Eð~IiÞ ¼ UðwiÞ, where U(.) is the
univariate normal standard cumulative distribution function. Also, we may write the following:

Covð~Ii;~IjÞ ¼ Eð~Ii
~IjÞ % Eð~IiÞEð~IjÞ ¼ U2ðwi;wj;qijÞ % UðwiÞUðwjÞ; i – j

Covð~Ii;~IiÞ ¼ Varð~IiÞ ¼ UðwiÞ % U2ðwiÞ ¼ UðwiÞ½1 % UðwiÞ';
ð3Þ

where qij is the ijth element of the correlation matrix R. With the above preliminaries, consider the following conditional
probability:

PrðWi < wijW1 < w1;W2 < w2;W3 < w3; . . . ;Wi% 1 < wi% 1Þ ¼ Eð~Iij~I1 ¼ 1;~I2 ¼ 1;~I3 ¼ 1; . . . ;~Ii% 1 ¼ 1Þ: ð4Þ

The right side of the expression may be approximated by a linear regression model, with ~Ii being the ‘‘dependent’’ random
variable and ~I<i ¼ ð~I1;~I2; . . .~Ii% 1Þ being the independent random variable vector.2 In deviation form, the linear regression for
approximating Eq. (4) may be written as:

~Ii % Eð~IiÞ ¼ a0½~I<i % Eð~I<iÞ' þ ~g; ð5Þ

where a is the least squares coefficient vector and ~gis a mean zero random term. In this form, the usual least squares esti-
mate of a is given by:

â ¼ X% 1
<i )Xi;<i;

where

X<i ¼ CovðI<i; I<iÞ ¼

Covð~I1;~I1Þ Covð~I1;~I2Þ Covð~I1;~I3Þ ) ) ) Covð~I1;~Ii% 1Þ
Covð~I2;~I1Þ Covð~I2;~I2Þ Covð~I2;~I3Þ ) ) ) Covð~I2;~Ii% 1Þ
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and
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Finally, putting the estimate of â back in Eq. (5), and predicting the expected value of ~Ii conditional on ~I<i ¼ 1 (i.e.,
~I1 ¼ 1;~I2 ¼ 1;~Ii% 1 ¼ 1Þ, we get the following approximation for Eq. (4):

PrðWi < wijW1 < w1;W2 < w2; . . . ;Wi% 1 < wi% 1Þ * UðwiÞ þ ðX% 1
<i )Xi;<iÞ0ð1 % Uðw1Þ;1 % Uðw2Þ . . . 1 % Uðwi% 1ÞÞ0 ð8Þ

This conditional probability approximation can be plugged into Eq. (2) to approximate the multivariate orthant probability in
Eq. (1). The resulting expression for the multivariate orthant probability comprises only univariate and bivariate standard
normal cumulative distribution functions.

One remaining issue is that the decomposition of Eq. (1) into conditional probabilities in Eq. (2) is not unique. Further,
different permutations (i.e., orderings of the elements of the random vector W = (W1, W2, W3, . . . , WI)) for the decomposition
into the conditional probability expression of Eq. (2) will lead, in general, to different approximations. One approach to
resolve this is to average across the I!/2 permutation approximations. However, as indicated by Joe (1995), the average over
a few randomly selected permutations is typically adequate for the accurate computation of the multivariate orthant
probability. In the case when the approximation is used for model estimation (where the integrand in each individual’s

2 Note that, theoretically, this approximation can be viewed as a first-order approximation. The approximation can be continually improved by increasing the
order of the approximation. For instance, a second-order approximation would approximate the right side of Eq. (4) by the expectation from a linear regression
model that has ~Ii as the ‘‘dependent’’ random variable and ~I<i ¼ ð~I1;~I2; . . .~Ii% 1;~I12 ;~I13; . . . I1;i% 1 ;~I23;~I24 ; . . .~I2;i% 1; . . . Ii% 2;i% 1Þ as the independent random variable
vector, where ~Ii0 j0 ¼ ~Ii0

~Ij0 . Essentially this adds second-order interactions in the independent random variable vector (see Joe, 1995). However, doing so entails
trivariate and four-variate normal cumulative distribution function (CDF) evaluations (when I > 4) as opposed to univariate and bivariate normal CDF
evaluations in the first-order approximation, thus increasing computational burden. As we discuss later and show empirically in a companion paper (Bhat and
Sidharthan, forthcoming), the first-order approximation is more than adequate (when combined with the CML approach) for estimation of any MNP model.
Thus, in the rest of this paper, we will use the term approximation to refer to the first-order approximation evaluation of the MVNCD function.
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The right side of the expression may be approximated by a linear regression model, with ~Ii being the ‘‘dependent’’ random
variable and ~I<i ¼ ð~I1;~I2; . . .~Ii% 1Þ being the independent random variable vector.2 In deviation form, the linear regression for
approximating Eq. (4) may be written as:

~Ii % Eð~IiÞ ¼ a0½~I<i % Eð~I<iÞ' þ ~g; ð5Þ

where a is the least squares coefficient vector and ~gis a mean zero random term. In this form, the usual least squares esti-
mate of a is given by:

â ¼ X% 1
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where
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Finally, putting the estimate of â back in Eq. (5), and predicting the expected value of ~Ii conditional on ~I<i ¼ 1 (i.e.,
~I1 ¼ 1;~I2 ¼ 1;~Ii% 1 ¼ 1Þ, we get the following approximation for Eq. (4):

PrðWi < wijW1 < w1;W2 < w2; . . . ;Wi% 1 < wi% 1Þ * UðwiÞ þ ðX% 1
<i )Xi;<iÞ0ð1 % Uðw1Þ;1 % Uðw2Þ . . . 1 % Uðwi% 1ÞÞ0 ð8Þ

This conditional probability approximation can be plugged into Eq. (2) to approximate the multivariate orthant probability in
Eq. (1). The resulting expression for the multivariate orthant probability comprises only univariate and bivariate standard
normal cumulative distribution functions.

One remaining issue is that the decomposition of Eq. (1) into conditional probabilities in Eq. (2) is not unique. Further,
different permutations (i.e., orderings of the elements of the random vector W = (W1, W2, W3, . . . , WI)) for the decomposition
into the conditional probability expression of Eq. (2) will lead, in general, to different approximations. One approach to
resolve this is to average across the I!/2 permutation approximations. However, as indicated by Joe (1995), the average over
a few randomly selected permutations is typically adequate for the accurate computation of the multivariate orthant
probability. In the case when the approximation is used for model estimation (where the integrand in each individual’s

2 Note that, theoretically, this approximation can be viewed as a first-order approximation. The approximation can be continually improved by increasing the
order of the approximation. For instance, a second-order approximation would approximate the right side of Eq. (4) by the expectation from a linear regression
model that has ~Ii as the ‘‘dependent’’ random variable and ~I<i ¼ ð~I1;~I2; . . .~Ii% 1;~I12 ;~I13; . . . I1;i% 1 ;~I23;~I24 ; . . .~I2;i% 1; . . . Ii% 2;i% 1Þ as the independent random variable
vector, where ~Ii0 j0 ¼ ~Ii0

~Ij0 . Essentially this adds second-order interactions in the independent random variable vector (see Joe, 1995). However, doing so entails
trivariate and four-variate normal cumulative distribution function (CDF) evaluations (when I > 4) as opposed to univariate and bivariate normal CDF
evaluations in the first-order approximation, thus increasing computational burden. As we discuss later and show empirically in a companion paper (Bhat and
Sidharthan, forthcoming), the first-order approximation is more than adequate (when combined with the CML approach) for estimation of any MNP model.
Thus, in the rest of this paper, we will use the term approximation to refer to the first-order approximation evaluation of the MVNCD function.
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Next, define the binary indicator ~Ii that takes the value 1 if Wi < wi and zero otherwise. Then Eð~IiÞ ¼ UðwiÞ, where U(.) is the
univariate normal standard cumulative distribution function. Also, we may write the following:

Covð~Ii;~IjÞ ¼ Eð~Ii
~IjÞ % Eð~IiÞEð~IjÞ ¼ U2ðwi;wj;qijÞ % UðwiÞUðwjÞ; i – j
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where qij is the ijth element of the correlation matrix R. With the above preliminaries, consider the following conditional
probability:

PrðWi < wijW1 < w1;W2 < w2;W3 < w3; . . . ;Wi% 1 < wi% 1Þ ¼ Eð~Iij~I1 ¼ 1;~I2 ¼ 1;~I3 ¼ 1; . . . ;~Ii% 1 ¼ 1Þ: ð4Þ

The right side of the expression may be approximated by a linear regression model, with ~Ii being the ‘‘dependent’’ random
variable and ~I<i ¼ ð~I1;~I2; . . .~Ii% 1Þ being the independent random variable vector.2 In deviation form, the linear regression for
approximating Eq. (4) may be written as:

~Ii % Eð~IiÞ ¼ a0½~I<i % Eð~I<iÞ' þ ~g; ð5Þ

where a is the least squares coefficient vector and ~gis a mean zero random term. In this form, the usual least squares esti-
mate of a is given by:

â ¼ X% 1
<i )Xi;<i;

where

X<i ¼ CovðI<i; I<iÞ ¼

Covð~I1;~I1Þ Covð~I1;~I2Þ Covð~I1;~I3Þ ) ) ) Covð~I1;~Ii% 1Þ
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Finally, putting the estimate of â back in Eq. (5), and predicting the expected value of ~Ii conditional on ~I<i ¼ 1 (i.e.,
~I1 ¼ 1;~I2 ¼ 1;~Ii% 1 ¼ 1Þ, we get the following approximation for Eq. (4):

PrðWi < wijW1 < w1;W2 < w2; . . . ;Wi% 1 < wi% 1Þ * UðwiÞ þ ðX% 1
<i )Xi;<iÞ0ð1 % Uðw1Þ;1 % Uðw2Þ . . . 1 % Uðwi% 1ÞÞ0 ð8Þ

This conditional probability approximation can be plugged into Eq. (2) to approximate the multivariate orthant probability in
Eq. (1). The resulting expression for the multivariate orthant probability comprises only univariate and bivariate standard
normal cumulative distribution functions.

One remaining issue is that the decomposition of Eq. (1) into conditional probabilities in Eq. (2) is not unique. Further,
different permutations (i.e., orderings of the elements of the random vector W = (W1, W2, W3, . . . , WI)) for the decomposition
into the conditional probability expression of Eq. (2) will lead, in general, to different approximations. One approach to
resolve this is to average across the I!/2 permutation approximations. However, as indicated by Joe (1995), the average over
a few randomly selected permutations is typically adequate for the accurate computation of the multivariate orthant
probability. In the case when the approximation is used for model estimation (where the integrand in each individual’s

2 Note that, theoretically, this approximation can be viewed as a first-order approximation. The approximation can be continually improved by increasing the
order of the approximation. For instance, a second-order approximation would approximate the right side of Eq. (4) by the expectation from a linear regression
model that has ~Ii as the ‘‘dependent’’ random variable and ~I<i ¼ ð~I1;~I2; . . .~Ii% 1;~I12 ;~I13; . . . I1;i% 1 ;~I23;~I24 ; . . .~I2;i% 1; . . . Ii% 2;i% 1Þ as the independent random variable
vector, where ~Ii0 j0 ¼ ~Ii0

~Ij0 . Essentially this adds second-order interactions in the independent random variable vector (see Joe, 1995). However, doing so entails
trivariate and four-variate normal cumulative distribution function (CDF) evaluations (when I > 4) as opposed to univariate and bivariate normal CDF
evaluations in the first-order approximation, thus increasing computational burden. As we discuss later and show empirically in a companion paper (Bhat and
Sidharthan, forthcoming), the first-order approximation is more than adequate (when combined with the CML approach) for estimation of any MNP model.
Thus, in the rest of this paper, we will use the term approximation to refer to the first-order approximation evaluation of the MVNCD function.
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PrðWi < wijW1 < w1;W2 < w2;W3 < w3; . . . ;Wi% 1 < wi% 1Þ: ð2Þ

Next, define the binary indicator ~Ii that takes the value 1 if Wi < wi and zero otherwise. Then Eð~IiÞ ¼ UðwiÞ, where U(.) is the
univariate normal standard cumulative distribution function. Also, we may write the following:

Covð~Ii;~IjÞ ¼ Eð~Ii
~IjÞ % Eð~IiÞEð~IjÞ ¼ U2ðwi;wj;qijÞ % UðwiÞUðwjÞ; i – j

Covð~Ii;~IiÞ ¼ Varð~IiÞ ¼ UðwiÞ % U2ðwiÞ ¼ UðwiÞ½1 % UðwiÞ';
ð3Þ

where qij is the ijth element of the correlation matrix R. With the above preliminaries, consider the following conditional
probability:

PrðWi < wijW1 < w1;W2 < w2;W3 < w3; . . . ;Wi% 1 < wi% 1Þ ¼ Eð~Iij~I1 ¼ 1;~I2 ¼ 1;~I3 ¼ 1; . . . ;~Ii% 1 ¼ 1Þ: ð4Þ

The right side of the expression may be approximated by a linear regression model, with ~Ii being the ‘‘dependent’’ random
variable and ~I<i ¼ ð~I1;~I2; . . .~Ii% 1Þ being the independent random variable vector.2 In deviation form, the linear regression for
approximating Eq. (4) may be written as:

~Ii % Eð~IiÞ ¼ a0½~I<i % Eð~I<iÞ' þ ~g; ð5Þ

where a is the least squares coefficient vector and ~gis a mean zero random term. In this form, the usual least squares esti-
mate of a is given by:

â ¼ X% 1
<i )Xi;<i;

where

X<i ¼ CovðI<i; I<iÞ ¼
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Finally, putting the estimate of â back in Eq. (5), and predicting the expected value of ~Ii conditional on ~I<i ¼ 1 (i.e.,
~I1 ¼ 1;~I2 ¼ 1;~Ii% 1 ¼ 1Þ, we get the following approximation for Eq. (4):

PrðWi < wijW1 < w1;W2 < w2; . . . ;Wi% 1 < wi% 1Þ * UðwiÞ þ ðX% 1
<i )Xi;<iÞ0ð1 % Uðw1Þ;1 % Uðw2Þ . . . 1 % Uðwi% 1ÞÞ0 ð8Þ

This conditional probability approximation can be plugged into Eq. (2) to approximate the multivariate orthant probability in
Eq. (1). The resulting expression for the multivariate orthant probability comprises only univariate and bivariate standard
normal cumulative distribution functions.

One remaining issue is that the decomposition of Eq. (1) into conditional probabilities in Eq. (2) is not unique. Further,
different permutations (i.e., orderings of the elements of the random vector W = (W1, W2, W3, . . . , WI)) for the decomposition
into the conditional probability expression of Eq. (2) will lead, in general, to different approximations. One approach to
resolve this is to average across the I!/2 permutation approximations. However, as indicated by Joe (1995), the average over
a few randomly selected permutations is typically adequate for the accurate computation of the multivariate orthant
probability. In the case when the approximation is used for model estimation (where the integrand in each individual’s

2 Note that, theoretically, this approximation can be viewed as a first-order approximation. The approximation can be continually improved by increasing the
order of the approximation. For instance, a second-order approximation would approximate the right side of Eq. (4) by the expectation from a linear regression
model that has ~Ii as the ‘‘dependent’’ random variable and ~I<i ¼ ð~I1;~I2; . . .~Ii% 1;~I12 ;~I13; . . . I1;i% 1 ;~I23;~I24 ; . . .~I2;i% 1; . . . Ii% 2;i% 1Þ as the independent random variable
vector, where ~Ii0 j0 ¼ ~Ii0

~Ij0 . Essentially this adds second-order interactions in the independent random variable vector (see Joe, 1995). However, doing so entails
trivariate and four-variate normal cumulative distribution function (CDF) evaluations (when I > 4) as opposed to univariate and bivariate normal CDF
evaluations in the first-order approximation, thus increasing computational burden. As we discuss later and show empirically in a companion paper (Bhat and
Sidharthan, forthcoming), the first-order approximation is more than adequate (when combined with the CML approach) for estimation of any MNP model.
Thus, in the rest of this paper, we will use the term approximation to refer to the first-order approximation evaluation of the MVNCD function.
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where a is the least squares coefficient vector and ~gis a mean zero random term. In this form, the usual least squares esti-
mate of a is given by:
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Finally, putting the estimate of â back in Eq. (5), and predicting the expected value of ~Ii conditional on ~I<i ¼ 1 (i.e.,
~I1 ¼ 1;~I2 ¼ 1;~Ii% 1 ¼ 1Þ, we get the following approximation for Eq. (4):
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This conditional probability approximation can be plugged into Eq. (2) to approximate the multivariate orthant probability in
Eq. (1). The resulting expression for the multivariate orthant probability comprises only univariate and bivariate standard
normal cumulative distribution functions.

One remaining issue is that the decomposition of Eq. (1) into conditional probabilities in Eq. (2) is not unique. Further,
different permutations (i.e., orderings of the elements of the random vector W = (W1, W2, W3, . . . , WI)) for the decomposition
into the conditional probability expression of Eq. (2) will lead, in general, to different approximations. One approach to
resolve this is to average across the I!/2 permutation approximations. However, as indicated by Joe (1995), the average over
a few randomly selected permutations is typically adequate for the accurate computation of the multivariate orthant
probability. In the case when the approximation is used for model estimation (where the integrand in each individual’s

2 Note that, theoretically, this approximation can be viewed as a first-order approximation. The approximation can be continually improved by increasing the
order of the approximation. For instance, a second-order approximation would approximate the right side of Eq. (4) by the expectation from a linear regression
model that has ~Ii as the ‘‘dependent’’ random variable and ~I<i ¼ ð~I1;~I2; . . .~Ii% 1;~I12 ;~I13; . . . I1;i% 1 ;~I23;~I24 ; . . .~I2;i% 1; . . . Ii% 2;i% 1Þ as the independent random variable
vector, where ~Ii0 j0 ¼ ~Ii0

~Ij0 . Essentially this adds second-order interactions in the independent random variable vector (see Joe, 1995). However, doing so entails
trivariate and four-variate normal cumulative distribution function (CDF) evaluations (when I > 4) as opposed to univariate and bivariate normal CDF
evaluations in the first-order approximation, thus increasing computational burden. As we discuss later and show empirically in a companion paper (Bhat and
Sidharthan, forthcoming), the first-order approximation is more than adequate (when combined with the CML approach) for estimation of any MNP model.
Thus, in the rest of this paper, we will use the term approximation to refer to the first-order approximation evaluation of the MVNCD function.
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Next, define the binary indicator ~Ii that takes the value 1 if Wi < wi and zero otherwise. Then Eð~IiÞ ¼ UðwiÞ, where U(.) is the
univariate normal standard cumulative distribution function. Also, we may write the following:
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~Ii % Eð~IiÞ ¼ a0½~I<i % Eð~I<iÞ' þ ~g; ð5Þ

where a is the least squares coefficient vector and ~gis a mean zero random term. In this form, the usual least squares esti-
mate of a is given by:
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Finally, putting the estimate of â back in Eq. (5), and predicting the expected value of ~Ii conditional on ~I<i ¼ 1 (i.e.,
~I1 ¼ 1;~I2 ¼ 1;~Ii% 1 ¼ 1Þ, we get the following approximation for Eq. (4):
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This conditional probability approximation can be plugged into Eq. (2) to approximate the multivariate orthant probability in
Eq. (1). The resulting expression for the multivariate orthant probability comprises only univariate and bivariate standard
normal cumulative distribution functions.

One remaining issue is that the decomposition of Eq. (1) into conditional probabilities in Eq. (2) is not unique. Further,
different permutations (i.e., orderings of the elements of the random vector W = (W1, W2, W3, . . . , WI)) for the decomposition
into the conditional probability expression of Eq. (2) will lead, in general, to different approximations. One approach to
resolve this is to average across the I!/2 permutation approximations. However, as indicated by Joe (1995), the average over
a few randomly selected permutations is typically adequate for the accurate computation of the multivariate orthant
probability. In the case when the approximation is used for model estimation (where the integrand in each individual’s

2 Note that, theoretically, this approximation can be viewed as a first-order approximation. The approximation can be continually improved by increasing the
order of the approximation. For instance, a second-order approximation would approximate the right side of Eq. (4) by the expectation from a linear regression
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vector, where ~Ii0 j0 ¼ ~Ii0

~Ij0 . Essentially this adds second-order interactions in the independent random variable vector (see Joe, 1995). However, doing so entails
trivariate and four-variate normal cumulative distribution function (CDF) evaluations (when I > 4) as opposed to univariate and bivariate normal CDF
evaluations in the first-order approximation, thus increasing computational burden. As we discuss later and show empirically in a companion paper (Bhat and
Sidharthan, forthcoming), the first-order approximation is more than adequate (when combined with the CML approach) for estimation of any MNP model.
Thus, in the rest of this paper, we will use the term approximation to refer to the first-order approximation evaluation of the MVNCD function.

926 C.R. Bhat / Transportation Research Part B 45 (2011) 923–939

PrðW < wÞ ¼ PrðW1 < w1;W2 < w2Þ $
YI

i¼3

PrðWi < wijW1 < w1;W2 < w2;W3 < w3; . . . ;Wi% 1 < wi% 1Þ: ð2Þ

Next, define the binary indicator ~Ii that takes the value 1 if Wi < wi and zero otherwise. Then Eð~IiÞ ¼ UðwiÞ, where U(.) is the
univariate normal standard cumulative distribution function. Also, we may write the following:

Covð~Ii;~IjÞ ¼ Eð~Ii
~IjÞ % Eð~IiÞEð~IjÞ ¼ U2ðwi;wj;qijÞ % UðwiÞUðwjÞ; i – j

Covð~Ii;~IiÞ ¼ Varð~IiÞ ¼ UðwiÞ % U2ðwiÞ ¼ UðwiÞ½1 % UðwiÞ';
ð3Þ

where qij is the ijth element of the correlation matrix R. With the above preliminaries, consider the following conditional
probability:

PrðWi < wijW1 < w1;W2 < w2;W3 < w3; . . . ;Wi% 1 < wi% 1Þ ¼ Eð~Iij~I1 ¼ 1;~I2 ¼ 1;~I3 ¼ 1; . . . ;~Ii% 1 ¼ 1Þ: ð4Þ

The right side of the expression may be approximated by a linear regression model, with ~Ii being the ‘‘dependent’’ random
variable and ~I<i ¼ ð~I1;~I2; . . .~Ii% 1Þ being the independent random variable vector.2 In deviation form, the linear regression for
approximating Eq. (4) may be written as:

~Ii % Eð~IiÞ ¼ a0½~I<i % Eð~I<iÞ' þ ~g; ð5Þ

where a is the least squares coefficient vector and ~gis a mean zero random term. In this form, the usual least squares esti-
mate of a is given by:
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Finally, putting the estimate of â back in Eq. (5), and predicting the expected value of ~Ii conditional on ~I<i ¼ 1 (i.e.,
~I1 ¼ 1;~I2 ¼ 1;~Ii% 1 ¼ 1Þ, we get the following approximation for Eq. (4):
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This conditional probability approximation can be plugged into Eq. (2) to approximate the multivariate orthant probability in
Eq. (1). The resulting expression for the multivariate orthant probability comprises only univariate and bivariate standard
normal cumulative distribution functions.

One remaining issue is that the decomposition of Eq. (1) into conditional probabilities in Eq. (2) is not unique. Further,
different permutations (i.e., orderings of the elements of the random vector W = (W1, W2, W3, . . . , WI)) for the decomposition
into the conditional probability expression of Eq. (2) will lead, in general, to different approximations. One approach to
resolve this is to average across the I!/2 permutation approximations. However, as indicated by Joe (1995), the average over
a few randomly selected permutations is typically adequate for the accurate computation of the multivariate orthant
probability. In the case when the approximation is used for model estimation (where the integrand in each individual’s

2 Note that, theoretically, this approximation can be viewed as a first-order approximation. The approximation can be continually improved by increasing the
order of the approximation. For instance, a second-order approximation would approximate the right side of Eq. (4) by the expectation from a linear regression
model that has ~Ii as the ‘‘dependent’’ random variable and ~I<i ¼ ð~I1;~I2; . . .~Ii% 1;~I12 ;~I13; . . . I1;i% 1 ;~I23;~I24 ; . . .~I2;i% 1; . . . Ii% 2;i% 1Þ as the independent random variable
vector, where ~Ii0 j0 ¼ ~Ii0

~Ij0 . Essentially this adds second-order interactions in the independent random variable vector (see Joe, 1995). However, doing so entails
trivariate and four-variate normal cumulative distribution function (CDF) evaluations (when I > 4) as opposed to univariate and bivariate normal CDF
evaluations in the first-order approximation, thus increasing computational burden. As we discuss later and show empirically in a companion paper (Bhat and
Sidharthan, forthcoming), the first-order approximation is more than adequate (when combined with the CML approach) for estimation of any MNP model.
Thus, in the rest of this paper, we will use the term approximation to refer to the first-order approximation evaluation of the MVNCD function.
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Finally, putting the estimate of â back in Eq. (5), and predicting the expected value of ~Ii conditional on ~I<i ¼ 1 (i.e.,
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This conditional probability approximation can be plugged into Eq. (2) to approximate the multivariate orthant probability in
Eq. (1). The resulting expression for the multivariate orthant probability comprises only univariate and bivariate standard
normal cumulative distribution functions.

One remaining issue is that the decomposition of Eq. (1) into conditional probabilities in Eq. (2) is not unique. Further,
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into the conditional probability expression of Eq. (2) will lead, in general, to different approximations. One approach to
resolve this is to average across the I!/2 permutation approximations. However, as indicated by Joe (1995), the average over
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One remaining issue is that the decomposition of Eq. (1) into conditional probabilities in Eq. (2) is not unique. Further,
different permutations (i.e., orderings of the elements of the random vector W = (W1, W2, W3, . . . , WI)) for the decomposition
into the conditional probability expression of Eq. (2) will lead, in general, to different approximations. One approach to
resolve this is to average across the I!/2 permutation approximations. However, as indicated by Joe (1995), the average over
a few randomly selected permutations is typically adequate for the accurate computation of the multivariate orthant
probability. In the case when the approximation is used for model estimation (where the integrand in each individual’s

2 Note that, theoretically, this approximation can be viewed as a first-order approximation. The approximation can be continually improved by increasing the
order of the approximation. For instance, a second-order approximation would approximate the right side of Eq. (4) by the expectation from a linear regression
model that has ~Ii as the ‘‘dependent’’ random variable and ~I<i ¼ ð~I1;~I2; . . .~Ii% 1;~I12 ;~I13; . . . I1;i% 1 ;~I23;~I24 ; . . .~I2;i% 1; . . . Ii% 2;i% 1Þ as the independent random variable
vector, where ~Ii0 j0 ¼ ~Ii0

~Ij0 . Essentially this adds second-order interactions in the independent random variable vector (see Joe, 1995). However, doing so entails
trivariate and four-variate normal cumulative distribution function (CDF) evaluations (when I > 4) as opposed to univariate and bivariate normal CDF
evaluations in the first-order approximation, thus increasing computational burden. As we discuss later and show empirically in a companion paper (Bhat and
Sidharthan, forthcoming), the first-order approximation is more than adequate (when combined with the CML approach) for estimation of any MNP model.
Thus, in the rest of this paper, we will use the term approximation to refer to the first-order approximation evaluation of the MVNCD function.
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evaluations in the first-order approximation, thus increasing computational burden. As we discuss later and show empirically in a companion paper (Bhat and
Sidharthan, forthcoming), the first-order approximation is more than adequate (when combined with the CML approach) for estimation of any MNP model.
Thus, in the rest of this paper, we will use the term approximation to refer to the first-order approximation evaluation of the MVNCD function.

926 C.R. Bhat / Transportation Research Part B 45 (2011) 923–939

Multivariate normal distribution expressed as univariate 
normal distribution with N of alternatives -1 
⇒ Calculation cost is greatly reduced!
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a b s t r a c t

This paper evaluates the ability of the maximum approximate composite marginal likeli-
hood (MACML) estimation approach to recover parameters from finite samples in mixed
cross-sectional and panel multinomial probit models. Comparisons with the maximum
simulated likelihood (MSL) estimation approach are also undertaken. The results indicate
that the MACML approach recovers parameters much more accurately than the MSL
approach in all model structures and covariance specifications. The MACML inference
approach also estimates the parameters efficiently, with the asymptotic standard errors
being, in general, only a small proportion of the true values. As importantly, the MACML
inference approach takes only a very small fraction of the time needed for MSL estimation.
In particular, the results suggest that, for the case of five random coefficients, the MACML
approach is about 50 times faster than the MSL for the cross-sectional random coefficients
case, about 15 times faster than the MSL for the panel inter-individual random coefficients
case, and about 350 times or more faster than the MSL for the panel intra- and inter-indi-
vidual random coefficients case. As the number of alternatives in the unordered-response
model increases, one can expect even higher computational efficiency factors for the MAC-
ML over the MSL approach. Further, as should be evident in the panel intra- and inter-indi-
vidual random coefficients case, the MSL is all but practically infeasible when the mixing
structure leads to an explosion in the dimensionality of integration in the likelihood func-
tion, but these situations are handled with ease in the MACML approach. It is hoped that
the MACML procedure will spawn empirical research into rich model specifications within
the context of unordered multinomial choice modeling, including autoregressive random
coefficients, dynamics in coefficients, space–time effects, and spatial/social interactions.

! 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Consider the following random-coefficients formulation in which the utility that an individual q associates with alterna-
tive i is given by:

Uqi ¼ b0qxqi þ eqi ð1Þ

where xqi is a (K % 1)-column vector of exogenous attributes, and bq is an individual-specific (K % 1)-column vector of cor-
responding coefficients that is a realization from a multivariate normal density function with mean vector b and covariance
matrix X. eqi is assumed to be an independently and identically distributed (across alternatives and across individuals) error
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term, which is also independent of the covariate vector xqi. If eqi is normally distributed with a mean zero and variance of
one-half, then the likelihood contribution of individual q who chooses alternative m is:

Lq ¼
Z 1

b¼"1

Z 1

k¼"1

Y

i–m

U "
ffiffiffi
2
p
ðb0zqimÞ

h i
þ k

n oh i !

/ðkÞdk

( )

f ðbjb;XÞdb; ð2Þ

where zqim ¼ xqi " xqm, Uð:Þ is the univariate cumulative distribution function and /ð:Þ is the univariate normal density func-
tion. In the case of panel data, the utility structure may be written with the inclusion of choice occasion t as:

Uqit ¼ b0qxqit þ eqit: ð3Þ

In this case, the individual likelihood contribution of individual q choosing alternative mt at choice occasion t when eqit is
normally distributed, is:

Lq ¼
Z 1

b¼"1

YT

t¼1

Z 1

k¼"1

Y

i–mt

U "
ffiffiffi
2
p
ðb0zqimt tÞ

h i
þ k

n oh i !

/ðkÞdk

" #

f ðbjb;XÞdb; ð4Þ

where zqimt t ¼ xqit " xqmt .
Finally, in the case of panel data, and when the random coefficients have both an intra-individual and inter-individual

random component (see Bhat and Castelar, 2002; Bhat and Sardesai, 2006; Hess and Rose, 2009), the utility structure
may be written as:

Uqit ¼ b0qtxqit þ eqit; ð5Þ

where bqt ¼ bq þ ~bqt , bq & Nðb;XÞ, ~bqt & Nð0; eXÞ.
In this case, when eqit is normally distributed

Lq ¼
Z 1
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 !" #

f ðbjb;XÞdb: ð6Þ

The likelihood contribution of individual q in Eqs. (2), (4), and (6) entails the evaluation of an analytically intractable func-
tion with multidimensional integrals. This has led to the development of various simulation techniques in high dimensions
as part of a maximum simulated likelihood (MSL) estimation approach. Unfortunately, for many practical situations, the
computational cost to ensure good asymptotic MSL estimator properties can be prohibitive and literally infeasible (in the
context of the computation resources available and the time available for estimation) as the number of dimensions of inte-
gration increases.

In a companion paper, Bhat (2011a) proposed the use of an alternative maximum approximate composite marginal like-
lihood (MACML) estimator within the class of frequentist estimators for the estimation of multinomial probit (MNP) models.
Bhat’s MACML estimator is based solely on univariate and bivariate cumulative normal distribution evaluations, regardless
of the dimensionality of integration. This should substantially reduce computation time compared to more cumbersome
simulation techniques to evaluate multidimensional integrals. At the same time, the MACML estimator retains the properties
of being consistent and asymptotically normally distributed.

The specific objectives of this study are motivated by the discussion above. The first objective is to examine the ability of
the MACML estimator to recover parameters from finite samples in mixed cross-sectional and panel multinomial probit
models. We use simulated data sets with known underlying model parameters to evaluate the MACML approach. The sec-
ond, related, objective is to compare the performance of the MACML approach with the MSL approach in mixed MNP sim-
ulations when the MSL approach is feasible. In doing so, we examine the relative ability of the two approaches to recover
parameters and the computation time of the two approaches.

The rest of the paper is structured as follows. Section 2 presents the experimental design for the simulation experiments
and Section 3 presents the results. Section 4 concludes the paper by highlighting important findings.

2. Experimental design

In the simulation set-up to examine the performance of the MSL and MACML inference approaches, we consider the case
of five alternatives with five independent variables. For all the datasets generated in the experimental design, the values of
each of the five independent variables for the alternatives are drawn from a standard univariate normal distribution. For the
cross-sectional data set, we generate a sample of 5000 realizations of the five independent variables corresponding to 5000
individuals, while, for the panel data set, we generate a sample of 2500 realizations of the five independent variables corre-
sponding to a situation, where 500 individuals each have five choice occasions for a total of 2500 choice occasions. We allow
random coefficients on all the five independent variables. This leads to a five-dimensional integral in the mixed model. In the
subsequent three sections, we discuss the set-up for each of the following three cases in more detail: (1) cross-sectional ran-
dom coefficients, (2) panel inter-individual coefficients and (3) panel intra-individual and inter-individual random
coefficients.
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2.1. Cross-sectional random coefficients model structure

In the cross-sectional case, the coefficient vector bq for individual q is assumed to be a realization from a multivariate
normal distribution with a mean vector b = (1.5, –1, 2, 1, –2) and covariance matrix X. Two specifications for X are con-
sidered. The first specification, which we label as the diagonal covariance specification, assumes independence among
the random coefficients; that is, the matrix X is assumed to be diagonal. This specification has been frequently used
in the literature. The entries along the diagonal are set to the value of 1 in our experimental design. This first specifi-
cation entails the estimation of five parameters in the covariance matrix. The second specification, which we label as the
non-diagonal covariance specification, allows the random coefficients to be correlated. In this specification, we specify
the matrix X to be as follows:

X ¼

1 "0:50 0:25 0:75 0
"0:50 1 0:25 "0:50 0
0:25 0:25 1 0:33 0
0:75 "0:50 0:33 1 0

0 0 0 0 1

2

6666664

3

7777775

This positive definite non-diagonal specification involves the estimation of 10 covariance matrix parameters. Finally, values
for the error terms eqi (q = 1, 2, . . . , Q; i = 1, 2, . . . , I) in Eq. (1) are generated from a univariate normal distribution with a var-
iance of 0.5, leading to the mixed MNP model structure. The alternative with the highest utility for each observation is then
identified as the chosen alternative. The above data generation process is undertaken 20 times with different realizations of
the bq vector and the error term eqi to generate 20 different data sets each for the diagonal specification and the non-diagonal
specification of the X matrix.

The MSL and MACML estimators are applied to each data set to estimate data specific values of b and L (X ¼ LL0, where L
is the lower Cholesky decomposition of X; note that it is the Cholesky parameters that are estimated to ensure the positive
definiteness of the variance–covariance matrix X). In the case of the diagonal covariance specification, L is also a diagonal
matrix with entries of ‘1’ along the diagonal. The MSL estimator is applied to each dataset 10 times with different (indepen-
dent) draws for the random coefficients for each individual. This allows us to estimate the simulation error in the MSL case
by computing the standard deviation of estimated parameters among the 10 different estimates on the same data set. Sim-
ilarly, for the MACML approach, the approximation error is obtained by computing the standard deviation of estimated
parameters among the 10 different estimates on the same data set by using different permutations to decompose the mul-
tivariate normal cumulative distribution (MVNCD) function into a product sequence of marginal and conditional probabil-
ities (see Section 2.1 of Bhat, 2011a).

For the MSL estimation, we use draws from the Halton sequence for the random coefficients vector bq, because it is the
most commonly used QMC sequence in the literature. While some other QMC systems have been shown to provide better
results for a given number of draws, the Halton has the advantage of very easy generation. Thus, as indicated by Sandor and
Train (2004), one can generate many more draws per individual of the Halton sequence than other QMC sequences for the
same amount of time. Within the context of Halton draws, we experimented with different kinds of scramblings and
randomizations of the Halton sequence (see Bhat, 2003 and Sivakumar et al., 2005 for a review of these scrambling and
randomization techniques). The experiments indicated that the best performance was obtained using a procedure that com-
bined Bratten–Weller scrambling with the Tuffin randomization, further enhanced by the random assignment of Halton
dimensions to coefficients. Also, while a higher number of draws per individual (based on the combination scrambling/ran-
domization discussed above) generally provided improved results, we used 250 draws per individual, which is more than
what is typically used in most applications of the MSL procedure. Further, with a total of 400 total estimations for the
cross-sectional random coefficients case (20 simulation runs for each of 10 different data samples for each of the diagonal
and non-diagonal covariance case), an important factor was to keep the computation cost per estimation to a reasonable
amount of time (even with 250 draws per individual, the total computer time for the 400 estimations was over 800 h, as
we discuss in more detail later). Finally, note that one has to integrate out the inner one-dimensional integral over the scalar
k that is distributed standard normal (see Eq. (2)). While this integration can also be performed using QMC draws, we under-
take this inner one-dimensional integration using the more efficient hermite quadrature technique with 10 quadrature
points.

For the MACML method, a single random permutation is generated for each individual (the random permutation
varies across individuals, but is the same across iterations for a given individual), and the multivariate normal cumu-
lative distribution (MVNCD) function is approximated using the resulting conditional probability sequence. We used
different numbers of random permutations per individual to approximate the MVNCD function corresponding to the
individual likelihood contribution. However, there was hardly any difference between using a single permutation
and higher numbers of permutations, and hence we used a single permutation per individual (in one of the 400 esti-
mations undertaken in the cross-sectional case, using two permutations per individual instead of a single permutation
provided stability to the iterations).
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tivariate normal cumulative distribution (MVNCD) function into a product sequence of marginal and conditional probabil-
ities (see Section 2.1 of Bhat, 2011a).

For the MSL estimation, we use draws from the Halton sequence for the random coefficients vector bq, because it is the
most commonly used QMC sequence in the literature. While some other QMC systems have been shown to provide better
results for a given number of draws, the Halton has the advantage of very easy generation. Thus, as indicated by Sandor and
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randomizations of the Halton sequence (see Bhat, 2003 and Sivakumar et al., 2005 for a review of these scrambling and
randomization techniques). The experiments indicated that the best performance was obtained using a procedure that com-
bined Bratten–Weller scrambling with the Tuffin randomization, further enhanced by the random assignment of Halton
dimensions to coefficients. Also, while a higher number of draws per individual (based on the combination scrambling/ran-
domization discussed above) generally provided improved results, we used 250 draws per individual, which is more than
what is typically used in most applications of the MSL procedure. Further, with a total of 400 total estimations for the
cross-sectional random coefficients case (20 simulation runs for each of 10 different data samples for each of the diagonal
and non-diagonal covariance case), an important factor was to keep the computation cost per estimation to a reasonable
amount of time (even with 250 draws per individual, the total computer time for the 400 estimations was over 800 h, as
we discuss in more detail later). Finally, note that one has to integrate out the inner one-dimensional integral over the scalar
k that is distributed standard normal (see Eq. (2)). While this integration can also be performed using QMC draws, we under-
take this inner one-dimensional integration using the more efficient hermite quadrature technique with 10 quadrature
points.

For the MACML method, a single random permutation is generated for each individual (the random permutation
varies across individuals, but is the same across iterations for a given individual), and the multivariate normal cumu-
lative distribution (MVNCD) function is approximated using the resulting conditional probability sequence. We used
different numbers of random permutations per individual to approximate the MVNCD function corresponding to the
individual likelihood contribution. However, there was hardly any difference between using a single permutation
and higher numbers of permutations, and hence we used a single permutation per individual (in one of the 400 esti-
mations undertaken in the cross-sectional case, using two permutations per individual instead of a single permutation
provided stability to the iterations).
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q: individual
i : alternatives
ε: Error: IID Gumbel

Create experimental data using random numbers of virtual data for 
5000 people

The MVNCD approximation of Section 2.1 is computationally efficient and straightforward to implement when maximiz-
ing the likelihood function of Eq. (18).8,9 As such, the MVNCD approximation can be used for any value of K and any value of I,
as long as there is data support for the estimation of parameters. Of course, parsimonious factor-analytic or other spatial struc-
tures may be imposed on the covariance matrix X based on the process under study to reduce the number of parameters to be
estimated and increase estimator efficiency.

One final issue in the MACML estimation relates to the procedure to ensure that the symmetric matrix X is positive-def-
inite (that is, all the eigenvalues of the matrix should be positive, or, equivalently, the determinant of the entire matrix and
every principal submatrix of X should be positive). To do so, X may be reparameterized through a Cholesky matrix decom-
position, and then these Cholesky-decomposed parameters may be estimated.

4. Panel multinomial probit models

In the discussion below, we will assume that the number of choice occasions per individual is the same across all indi-
viduals. We discuss the case of different numbers of choice occasions per individual in Section 4.2.

4.1. The panel MNP model

Consider the following model with ‘t’ now being an index for choice occasion:

Uqit ¼ b0qxqit þ eqit;bq # MVNðb;XÞ; q ¼ 1;2; . . . ;Q ; i ¼ 1;2; . . . ; I; t ¼ 1;2; . . . ; T ð19Þ

Let eqit be IID normal over individuals, alternatives, and choice occasions with a variance of 0.5. We will assume that the coef-
ficients bq are constant over choice situations of a given decision maker.

The traditional simulation procedures are similar to the cross-sectional case. Consider an individual who selects alternative
mt at the tth choice occasion. When the number of random coefficients K (the cardinality of the vector bq) is less than
[(I & 1) ⁄ T] & 2, as will mostly be the case in application, it is convenient to write the likelihood contribution of individual q as:

Lqðb;XÞ ¼
Z 1

b¼&1

YT

t¼1

Z 1

k¼&1

Y

i–mt

½Uf½&
ffiffiffi
2
p
ðb0zqimt tÞ( þ kg(

 !
/ðkÞdk

" #
f ðbjb;XÞdb ð20Þ

where zqimt t ¼ ðxqit & xqmt tÞ. Another approach is to write the likelihood contribution in terms of the latent utility differentials
y)qimt t ¼ b0qzqimt t þ g qimt t ; g qimt t ¼ eqit & eqmt t (i – mt). These latent utility differentials have an (I & 1) ⁄ T mean vector Bqðb0zq1m1;

b0zq2m11 . . . b0zqIm11ði – m1Þ; b0zq1m22;b
0zq2m22 . . . b0zqIm22ði – m2Þ; . . . ;b0zq1mTT;b

0zq2mTT; . . . ;b0zqImTTði – mTÞÞ and a covariance
matrix given by Rq ¼ ~zqX~z0q þ IDT*ðI&1Þ, where ~zq is a [T * (I & 1)] * K matrix obtained by vertically concatenating the trans-
pose of the K * 1 vectors zqimt t (i = 1, 2, . . . , I, i – mt; t = 1, 2, . . . , T) (note that there are T * (I & 1) vectors in zqimt t), and
IDT*(I&1) is a block-diagonal matrix with each block matrix of size (I & 1) * (I & 1) with values of one along the diagonal
and values of 0.5 on the off-diagonals. The likelihood contribution of individual q then takes the multidimensional (I & 1) * T
integral form below:

Lqðb;XÞ ¼ FðI&1Þ*Tð&Bq;RqÞ; ð21Þ

with F(I&1)*T being the multivariate cumulative normal distribution of (I & 1) * T dimensions.
The simulation approaches for evaluating the panel likelihood function are time-consuming. In our MACML estimation

approach, we propose a combination of the approximation method for multivariate normal orthant probabilities and the
composite marginal likelihood method. Specifically, based on Eq. (12) and the notation defined there, the analyst may con-
struct the following pairwise CML function across the choice occasions of individual q:

LCML;qðb;XÞ ¼
YT&1

t¼1

YT

w¼tþ1

ProbðCqt ¼ mt; Cqw ¼ mwÞ ¼
YT&1

t¼1

YT

w¼tþ1

Prob ½y)qimt t < 08i – mtandy)qimww < 08i – mw( ð22Þ

8 As indicated earlier, the CML class of estimators subsumes the usual ordinary full-information likelihood estimator as a special case. It is this characteristic
of the CML approach that leads us to the label MACML for the estimation approach proposed here. Specifically, even in cross-sectional mixing distribution
contexts, when our approach involves only the approximation of the maximum likelihood function, the MACML label is appropriate since the maximum
likelihood function is a special case of the CML function. Of course, in a panel context or in cross-sectional/panel contexts with spatial/social error dependencies,
we use a specific pairwise (and non-ML) technique within the CML approach for estimation, as discussed in Section 4 and Section 5.

9 The use of the MVNCD approximation (as discussed in Section 2.1) has been shown to be accurate in the context of evaluating single multivariate integrals.
Joe (1995) indicates that the approximation has an error (even in the worst case of high correlations) in the third decimal place. In a companion paper, we have
examined the performance of the MVNCD approximation in the context of estimating parameters in cross-sectional and panel multinomial probit models. The
results indicate that the approximation provides parameter values very close to the ‘‘true’’ population parameter values in simulation experiments, with the
empirical absolute percentage bias being smaller than that from regular simulation techniques to evaluate the MVNCD function. Thus, the MVNCD-
approximated log-likelihood function as proposed here should be close to the log-likelihood function for all parameters in a neighborhood of the ‘‘true’’
parameter values, which implies that the covariance matrix computed using our MACML procedure should also be an accurate approximation to the actual
covariance matrix.
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3. Numerical Test (vs MSL） 20

Cross-sectional random coefficients model
・ Estimate the lower triangle of the variance-covariance matrix
・ time： About 33 times faster on average and stable
・ bias： About 2.1 points lower on average than MSL method
Table 1b
Evaluation of the ability to recover true parameters for the cross!sectional non-diagonal case.

Parameter True
value

MSL method MACML method

Parameter estimates Standard error estimates Parameter estimates Standard error estimates

Mean
estimate

Absolute
percentage
bias (%)

Asymptotic
standard
error

Simulation
standard
error

Simulation adjusted
asymptotic standard
error

Mean
estimate

Absolute
percentage
bias (%)

Asymptotic
standard
error

Approximation
standard error

Approximation
adjusted asymptotic
standard error

Mean values of the b vector
b1 1.500 1.374 8.4 0.133 0.049 0.142 1.443 3.8 0.147 0.022 0.148
b2 !1.000 !0.912 8.8 0.093 0.037 0.100 !0.959 4.1 0.102 0.014 0.103
b3 2.000 1.830 8.5 0.174 0.068 0.187 1.923 3.8 0.191 0.029 0.193
b4 1.000 0.914 8.6 0.092 0.032 0.097 0.958 4.2 0.101 0.014 0.102
b5 !2.000 !1.849 7.6 0.176 0.068 0.189 !1.941 3.0 0.194 0.028 0.196

Cholesky parameters characterizing the covariance matrix of the b vector
l11 1.000 0.909 9.1 0.112 0.040 0.119 0.959 4.1 0.119 0.017 0.120
l12 !0.500 !0.463 7.3 0.085 0.029 0.090 !0.472 5.6 0.085 0.010 0.085
l13 0.250 0.231 7.5 0.089 0.036 0.096 0.233 6.7 0.087 0.009 0.088
l14 0.750 0.689 8.2 0.092 0.028 0.097 0.707 5.7 0.095 0.013 0.096
l15 0.000 0.006 0.6 0.086 0.040 0.095 0.015 1.5 0.088 0.008 0.089
l22 0.866 0.756 12.7 0.109 0.043 0.117 0.809 6.5 0.116 0.017 0.117
l23 0.433 0.431 0.5 0.105 0.050 0.117 0.436 0.6 0.100 0.012 0.101
l24 !0.144 !0.149 3.6 0.101 0.041 0.109 !0.170 17.8 0.093 0.010 0.094
l25 0.000 !0.021 2.1 0.101 0.055 0.115 !0.019 1.9 0.098 0.010 0.099
l33 0.866 0.750 13.4 0.130 0.073 0.149 0.812 6.3 0.131 0.019 0.132
l34 0.237 0.242 2.0 0.112 0.055 0.125 0.259 9.3 0.106 0.011 0.106
l35 0.000 !0.031 3.1 0.120 0.081 0.145 !0.029 2.9 0.116 0.011 0.117
l44 0.601 0.464 22.9 0.126 0.085 0.152 0.531 11.6 0.125 0.015 0.126
l45 0.000 !0.053 5.3 0.168 0.134 0.214 !0.053 5.3 0.171 0.017 0.172
l55 1.000 0.885 11.5 0.125 0.089 0.153 0.956 4.4 0.136 0.018 0.137

Overall mean value across parameters – 7.6 0.116 0.057 0.130 – 5.5 0.120 0.015 0.121
Mean time 174.32 5.19
Std. dev. of time 28.13 0.84
% of Runs converged 100 100

946
C.R.Bhat,R.Sidharthan

/Transportation
Research

Part
B

45
(2011)

940–953

Ω =

l11
l21 l22
l31 l32 l33
l41 l42 l43 l44
l51 l52 l53 l54 l55

"

#

$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'



4. Possibility of ML 21

Estimation methods in the field of machine learning can 
be applied to DCM estimation.

Neural network
（Back propagation)

Reinforcement learning

Sparse modeling 

Gaussian Process

Variational Bayesian

Estimation considering 
complex nonlinear 
structures

Estimation considering complex 
probability distribution

Estimation considering 
parameter dimension reduction

Estimation considering 
complex and dynamic choice


