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Background: Humanitarian Logistics

Humanitarian Logistics Is important for minimizing the
damage between the rescue and restoration period after a disaster.

Difficulties
m Node bottleneck on supply network (e.g., DCs don't work)
m Link bottleneck on material network (e.g., Cannot access)
m Link bottleneck on information network (e.g., Cannot communicate)

—p Material flow

== Information flow




Kumamoto Earthquake (2016)
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Transshipment processed inefficiently by human power




Background: Control Strategy

Control Strategy in Japan
[Push-mode support (sequence control)] [Pull-mode support (feedback control)]

Demand forecasting Demand feedback
Past disasters Pre-stock  Push Pull
time
m Long push-mode support caused = g

the gap between supply (meals)
and demand (evacuees).
Research Question

When should the control strategy
change from push to pull ?

Number of evacuees and meals supplied after the Kumamoto Earthquake



Background: Humanitarian Logistics

Upper logistics Lower logistics
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—p Material flow

== Information flow

m DCs can adjust gaps by holding inventories on the implicit
assumption of supply and information availability.
wem Push

- Push-mode - not available

- Decentralized Pull-mode - limited available
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Purpose and Methodology °

Research Question: When should the push- be changed to pull-mode ?

m We drive the sufficient condition to change control strategy from
push-mode to pull-mode.

Purpose: Mathematical properties of the optimal control strategy
m Focus on information availability

m Mathematically analyze the optimal push-mode (no information)
and the optimal pull-mode (decentralized/centralized information).

Methodology

m Dynamic optimization approach using the stochastic optimal
control theory considering Demand uncertainty.

m The Bayesian updating process can model two control strategies.

(o0 (not available)
(updating interval) = { 0~oo (limited available)
kO (fully available)




Modeling



Control variable
5;j(t): Supply rate from node i to node j at time ¢

State variable
IN(t): Netinventory level in the shelter at time t
I;(t): Inventory level innodei attimet

Parameter

D(t): Predicted demand rate at time t (dD/dt < 0)
z(t): Standard wiener process I,
T:  The end of time 2
b: Unsatisfied cost coefficient P é

/ . > 2 o
hi:  Inventory cost coefficient T 3

(0 < h; < h, < h3 <b) I IN

C: Handling cost coefficient Rls T13 Shjlter
rij;:  Lead time from node i node j 513

(13 < 1z + 13 =7123) Supply Chain Network (SCN)



Information Updating Algorithm

m Predicted Demand D(t) follows the normal distribution.

[Dynamics] D(t) dt = D(t)dt + DSP(t)dz(t)
[Distribution] [D(®)dt~N (E(t)dt, (DSD (t))zdt)

m D(t) is updated to subjective demand D, (t) based on information
D(t), applying the Bayesian Estimation at an interval k;(k; = k).

m The number of updates n increases as depot [ is closer to the shelter
= The Bullwhip Effect (V[D,(t)] = V[D,(t)] =~ n; < n,)

a t = kl N
D D D

1 [ 3 1 [ 3
RS "\ Shelter RS Shelter

Push-mode support Pull-mode support




Stochastic Optimal Control Problem

Object Function  minv = EJT[Z TCpy, (t) + Z TC,, (£) + Z TCs, (t)] dt
0

lEN ieENT leNt

Net inventory holding cost] TCw, (®) = hy [ff(UN;(O]F) + fe(lIN;(©)]7)]
[Inventory holding cost] TCp, () = hi|f; (1;(0)]

 Inventory handling cost] TCs, (1) = Z cfs(|TS; /[P =Si; (€ — 1))
JELy '
[Outflows at destination j] 7Sy = 4 ;Sﬁ(t) ifjeN?
le (t) otherwise
[Cost functions] i ;C(x) >0, dz‘:};i;x) > 0, fxy(x) and d fx (x) /dx is continuous

vX € [I,B,S]
State Equation (Inventory Dynamics)  Initial Condition

dIN,(t) = [2 Siz (t — r3) —D(t)|dt,vl €N IN;(0) <O,VI €N

s 1,(0) = 0,1,(0) > 0
D, (t) dt = D,(t)dt + DfP(t)dz;(t) VI €N
S;;(0)=0 Vvte|-r;,0),jeC,i € N*

I;(t) = 0,1,(t) = Sy2(t — r12) — S3(t)



Stochastic Optimal Control Problem *

Object Function  minv = EJT[Z TCpy, (t) + Z TC,, (£) + Z TCs, (t)] dt
0

lEN ieENT leNt

Net inventory holding cost] TCw, (®) = hy [ff(UN;(O]F) + fe(lIN;(©)]7)]
[Inventory holding cost] TCp, () = hi|f; (1;(0)]

 Inventory handling cost] TCs, (t) = Z cfs (TS, /1P| =S (£ — 1))

JECy

[Outflows at destination j] 75y = | ;Sﬁ(t) if jENT
le (t) otherwise

e Tbsl(tj: Changes in the inventory Ieﬂ;/el in node [
- minTC(g,(t) = 0 (-~ no transshipment) d
- TCs,(t) # 0 means that the inventory level should change (- handling cost).

( ) - min T (g, (t) means supply constraints for node [
Sij(t — rij) TSl](t)

[ e [ AN ' t TS [ A

S;;(0)=0 Vvte|-r;,0),jeC,i € N*
I(t) = 0,1,(t) = Sy (t — 113) — So3(t)



Mathematical Analysis

- Optimal Push-mode Support -



Assumption

Cost functions

f1(x) = fp(x) = fs(x) =x%,a>1
Assumption

Let t = T be the time when demand becomes 0, D,(T) = 0.

1
2. Demand decreases constantly over time, dD,(t)/dt = 51 < 0.
3. The inventory holding cost at the shelter is twice that at the RS, h;y = 1/2h;.
4. The DC is not ready after a disaster, S,3(t) =0 Vt € [0,1y,).

The following mathematical properties will be proved:

Lemma 1. There is no need to pre-store at DC and to add stock
after a disaster, I*(t) = 0.

Lemma 2. "Direct Supply" is effective, E[S;,(t)| < E|S{53(t)].
Theorem 1. DC is unnecessary for sequence control strategy.

Theorem 2. Maintaining inventory at the shelter is the optimal
when the penalty cost is sufficiently high, IN*(t) > 0 if b — co.



Optimal Control : I(t)

Optimal Inventory ,
) yr (t) = exp ((t -T) \/?)

1+y7 (t)

I"(t) = I(0)exp (— 5
Ve =V(*,IN%,S")
m Positive inventory level I () >0
' ' i(t)=—1(0 _t\/g -y (t) _,
m Decreasing function (t) = —1(0)exp 2 ) T, o) <
2

m ThelimitvalueisO lim I*(T)=1(0)-0-—— =0
T— o0 1-|-0

m /(t) asymptotically approaches 0 from initial value I (0) > 0.
— Solve I*(0) = argmin,; ) V" Pre-stock

r +fTex —2s h—é 1+y?N(S) ds
2T ¢ ) (1+ yh(112))?

> (0, therefore I*(0) = 0

ov- = 2h51(0)
ar(0) T2

— Lemma 1
There is no need to pre-store at DC and to add stock, /*(t) = 0.




Optimal Control : §4;(£)

Optimal supply rate from RS
Sia (t) = S (t + r123)

t € [r123 — 713, T — 1123)

ng (t) = S’ (t -+ 7“13)

(1) = —exp {(mg —1y/ %—N‘ V oz Loy © IN (rizs) — J1,, Zoeidz (1) + 2] + 20

2c 1+y?N (?“123) 123

Differentiate E[S(t)] as follows:

dr [S (f-)} on' | Why 1412 D
_ , B N | UN yin (t) e 2
- g = exp l(r]% t) . ] o T5 a2y (?"123)E[IA (r123)] + 5 <0
We obtain, ‘
. - 1 - ’U?N (r13) cD ; ; 1 - y%w (r13)
TIN (1102)] = oY ETIN (142)] — . : _ U (1192) — 1 4+ 7w (7 /1]
E [IV (!‘123)] U (?‘133) E [If\' ('f‘ 13)] cD (Tlgg) ﬂ)"‘ — '1,3_3,-'%1;\( (T]3) Zh}N (?1123) T YIN (? 123) ’{L'I’+ — U_y?w (?‘13)
]_ - yz N (Tl.‘j) 2 Chrirv 2
U ('?"123) — 1+ YN ('T'lz:s) ; .I" = - .. : yrn (riz) —1)" <0
YT — Ts'f’_if?w (r13) Pt — '?s'--’_'?f?.mr (713) ( (r13) )

When dE|S(t)]/dt < 0, we obtain E[S;,(t)] < E[S;3(£)] (+ 113 < T123)
|— Lemma 2

"Direct Supply" is effective, E|S{,(t)] < E[S{3(t)].




Optimal Control : §4;(£)

Optimal supply rate from RS

S12(t) 2 S*. (£)
Lemma 1

There is no need to pre-store at DC and to add stock, I*(t) = 0. | &

Lemma 2 +

"Direct Supply" is effective, E|S{,(t)] < E[S{3(t)].

-

DC Is unnecessary for sequence control strategy.

o
L

Theorem 1




Optimal Control : IN(t)

Optimal net inventory

[Dynam|CS] dIN (f) — _ zh}"\v 1 - UI“\- ) [I“"- {f‘ C ](ﬁ . DSU {ﬂ d= (f':]
v L+ yiy ()

of IS -
[Optimal] IN*(t) = U (t) [Imf(;m}— / D w_“}dz (r) t € (ry23, 7]

m Long-term expected value is0 # = %E;GE IN(T)] = 0-E[IN (r123)] = 0

m Regression speed < 0 _ [Phin 1=V ®

c 1+yh(®)
(<0 IN(t)>0
m Dynamics of IN(t) iS dIN(H){=0 IN(t)=0
>0 IN(t)<O0 |
m Assume b - o ‘ ol p—r @
i = {h& if IN ()20

b otherwise

Maintaining inventory at the shelter is
the optimal when the penalty cost Is
sufficiently high, IN*(t) > 0 if b — 0.

=
b —> oo

— Theorem 2 \ A
0




Numerical Analysis

- Optimal Pull-mode Support -



Settings

Analysis method

= Comparing the objective functions of the push V?¥s" and
pull VP4 (k. | k) with the Monte Carlo simulation.

Parameter setting
= Prediction demand D(t) = —0.15(t — T).
= The number of simulations is 5,000.
= case-al|R[z,(t), z,(t)] = 1]I, case-bl[R[z,(t),z,(t)] = 1]l

RS and DC share prediction errors not share
Parameter setting
t [0, 10) [10,20) | [20, 30]
D (t) 4 2 1
D (t) —0.15(t —T)
(D P (t),0(1)} {100, 50}
{ri2,723,713} {h%, h,g;., b} ¢ IN (0)
(3,2, 4} {0.5,0.7,1} 10 -200




IZO

Results : Comparing Push and Pul

R[z,(t),z,(t)] = 1(case—a)
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B The sufficient conditions for control strategy change (push-mode to pull-mode) is
k, = k,, that is the centralized information system is restored.

B Under the decentralized information system, pull-mode may not be effective.



Conclusion



Conclusion

summary

m Dynamic optimization approach analyzed the mathematical
properties of the optimal control strategy.

- Push-mode: direct supply from the RS to the shelter is optimal
transportation strategy. DC should not be used.

- Pull-mode: the sufficient condition for pull-mode to be optimal
IS to restore the centralized information system. Otherwise,
pull-mode may make a not always good result.

Future work

m General network analysis (e.g., many-to-many network) can
consider significant elements such as the single point of failure.

m Considering optimal day-to-day recovery dynamics.
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Thank you for your attention.

Riki Kawase: r-kawase@stu.kobe-u.ac.jp



