BinN International Research Seminar, Sep. 23, 2019

Optimal Control Strategy for Relief Supply Behavior after a Major Disaster

Riki Kawase

Doctoral Student, Department of Civil Engineering, Kobe University

Joint work with Dr. Urata and Prof. Iryo

Background: Humanitarian Logistics

Humanitarian Logistics is important for minimizing the

damage between the rescue and restoration period after a disaster.

<u>Difficulties</u>

- Node bottleneck on supply network (e.g., DCs don't work)
- Link bottleneck on material network (e.g., Cannot access)

Link bottleneck on information network (e.g., Cannot communicate)

Many damaged roads

Chairs lined up to read "Paper, bread, water, SOS"

Kumamoto Earthquake (2016)

Transshipment processed inefficiently by human power

Background: Control Strategy

Control Strategy in Japan

[Push-mode support (sequence control)]

Demand forecasting

<u>Past disasters</u>

Long push-mode support caused the gap between supply (meals) and demand (evacuees).

Research Question

When should the control strategy change from push to pull ?

[Pull-mode support (feedback control)]

Demand feedback

Number of evacuees and meals supplied after the Kumamoto Earthquake

Background: Humanitarian Logistics

- DCs can adjust gaps by holding inventories on the implicit assumption of supply and information availability.
 - Push-mode
 - Decentralized Pull-mode
 - Centralized Pull-mode

Purpose and Methodology

Research Question: When should the push- be changed to pull-mode ?

■ We drive the sufficient condition to change control strategy from push-mode to pull-mode.

Purpose: Mathematical properties of the optimal control strategy

- Focus on information availability
- Mathematically analyze the optimal push-mode (no information) and the optimal pull-mode (decentralized/centralized information).

<u>Methodology</u>

- Dynamic optimization approach using the stochastic optimal control theory considering Demand uncertainty.
- The Bayesian updating process can model two control strategies.

 $(updating interval) = \begin{cases} \infty & (not available) \\ 0 \sim \infty & (limited available) \\ 0 & (fully available) \end{cases}$

Modeling

Definition

<u>Control variable</u>

 $S_{ij}(t)$: Supply rate from node *i* to node *j* at time *t*

<u>State variable</u>

IN(t): Net inventory level in the shelter at time t

 $I_i(t)$: Inventory level in node *i* at time *t*

<u>Parameter</u>

- D(t): Predicted demand rate at time $t (d\overline{D}/dt \le 0)$
- z(t): Standard wiener process
- *T*: The end of time
- *b*: Unsatisfied cost coefficient
- h'_i : Inventory cost coefficient (0 < h'_1 < h'_2 < h'_3 < b)
- *c*: Handling cost coefficient
- r_{ij} : Lead time from node *i* node *j* ($r_{13} < r_{12} + r_{23} = r_{123}$)

Supply Chain Network (SCN)

Information Updating Algorithm

9

• Predicted Demand D(t) follows the normal distribution.

[Dynamics] $D(t) dt = \overline{D}(t) dt + D^{SD}(t) dz(t)$ [Distribution] $D(t) dt \sim N(\overline{D}(t) dt, (D^{SD}(t))^2 dt)$

- D(t) is updated to subjective demand $D_l(t)$ based on information $\widetilde{D}(t)$, applying the Bayesian Estimation at an interval $k_l(k_1 \ge k_2)$.
- The number of updates *n* increases as depot *l* is closer to the shelter ⇒ The Bullwhip Effect $(V[D_1(t)] \ge V[D_2(t)] \because n_1 \le n_2)$

Stochastic Optimal Control Problem

10

Stochastic Optimal Control Problem

Mathematical Analysis

- Optimal Push-mode Support -

Assumption

Cost functions

$$f_I(x) = f_B(x) = f_S(x) = x^{\alpha}$$
 , $\alpha > 1$

Assumption

- 1. Let t = T be the time when demand becomes $0, \overline{D}_l(T) = 0$.
- 2. Demand decreases constantly over time, $d\overline{D}_l(t)/dt = \dot{\overline{D}}_l < 0$.
- 3. The inventory holding cost at the shelter is twice that at the RS, $h'_{IN} = 1/2h'_1$.
- 4. The DC is not ready after a disaster, $S_{23}(t) = 0 \ \forall t \in [0, r_{12})$.

The following mathematical properties will be proved:

Lemma 1. There is no need to pre-store at DC and to add stock after a disaster, *I**(*t*) = 0.
Lemma 2. "Direct Supply" is effective, *E*[*S*^{*}₁₂(*t*)] < *E*[*S*^{*}₁₃(*t*)].
Theorem 1. DC is unnecessary for sequence control strategy.
Theorem 2. Maintaining inventory at the shelter is the optimal when the penalty cost is sufficiently high, *IN**(*t*) > 0 *if b* → ∞.

Optimal Control : I(t)

Optimal Inventory

$$\frac{I - I I V O I I O I}{I^* (t)} = I(0) \exp\left(-t\sqrt{\frac{h'_2}{c}}\right) \frac{1 + y_I^2(t)}{1 + y_I^2(r_{12})} \qquad t \in (r_{12}, T] \qquad y_I(t) = \exp\left((t - T)\sqrt{\frac{h'_2}{c}}\right) \\ V^* = V(I^*, IN^*, S^*)$$

- Positive inventory level
- Decreasing function
- The limit value is 0

$$I^{*}(t) > \mathbf{0}$$

$$\dot{I}^{*}(t) = -I(0) \exp\left(-t\sqrt{\frac{h_{2}'}{c}}\right) \frac{1 - y_{I}(t)}{1 + y_{I}(r_{12})} < 0$$

$$\lim_{T \to \infty} I^{*}(T) = I(0) \cdot 0 \cdot \frac{2}{1 + 0} = 0$$

■ I(t) asymptotically approaches 0 from initial value I(0) > 0. → Solve $I^*(0) = \operatorname{argmin}_{I(0)} V^*$ Pre-stock

$$\frac{\partial V^*}{\partial I(0)} = 2h'_2 I(0) \left[r_{12} + \int_{r_{12}}^T \exp\left(-2s \sqrt{\frac{h'_2}{c}}\right) \frac{1 + y_{IN}^4(s)}{(1 + y_{IN}^2(r_{12}))^2} ds \right]$$

> 0, therefore $I^*(0) = 0$

- <u>Lemma 1</u>

There is no need to pre-store at DC and to add stock, $I^*(t) = 0$.

Optimal Control : $S_{1j}(t)$

$\begin{array}{l} \underline{Optimal \ supply \ rate \ from \ RS} \\ S_{12}^{*}\left(t\right) = \hat{S}\left(t + r_{123}\right) \\ S_{13}^{*}\left(t\right) = \hat{S}\left(t + r_{13}\right) \\ \hat{S}\left(t\right) = -\exp\left[\left(r_{123} - t\right)\sqrt{\frac{2h'_{IN}}{c}}\right]\sqrt{\frac{h'_{IN}}{2c}} \frac{1 - y_{IN}^{2}(t)}{1 + y_{IN}^{2}(r_{123})} \left[IN\left(r_{123}\right) - \int_{r_{123}}^{t} \frac{D^{SD}(t)}{U(t)} dz\left(t\right) + \frac{c\overline{D}}{2h'_{IN}}\right] + \frac{\overline{D}(t)}{2} \end{array}$

Differentiate $E[\hat{S}(t)]$ as follows:

$$\frac{dE\left[\hat{S}\left(t\right)\right]}{dt} = \exp\left[\left(r_{123} - t\right)\sqrt{\frac{2h'_{IN}}{c}}\right]\frac{h'_{IN}}{c}\frac{1 + y_{IN}^{2}\left(t\right)}{1 + y_{IN}^{2}\left(r_{123}\right)}E\left[IN\left(r_{123}\right)\right] + \frac{\dot{\overline{D}}}{2} < \mathbf{0}$$

We obtain,

$$E\left[IN\left(r_{123}\right)\right] = U\left(r_{123}\right)E\left[IN\left(r_{13}\right)\right] - c\overline{D}\left(r_{123}\right)\frac{1 - y_{IN}^{2}\left(r_{13}\right)}{\psi^{+} - \psi^{-}y_{IN}^{2}\left(r_{13}\right)} - \frac{c\overline{D}}{2h_{IN}'}\left[U\left(r_{123}\right) - 1 + \psi_{IN}\left(r_{123}\right)\frac{1 - y_{IN}^{2}\left(r_{13}\right)}{\psi^{+} - \psi^{-}y_{IN}^{2}\left(r_{13}\right)}\right]$$
$$U\left(r_{123}\right) - 1 + \psi_{IN}\left(r_{123}\right)\frac{1 - y_{IN}^{2}\left(r_{13}\right)}{\psi^{+} - \psi^{-}y_{IN}^{2}\left(r_{13}\right)} = -\frac{2\sqrt{ch_{IN}'}}{\psi^{+} - \psi^{-}y_{IN}^{2}\left(r_{13}\right)}\left(y_{IN}\left(r_{13}\right) - 1\right)^{2} < 0$$

When $dE[\hat{S}(t)]/dt < 0$, we obtain $E[S_{12}^*(t)] < E[S_{13}^*(t)]$ (: $r_{13} < r_{123}$)

- <u>Lemma 2</u>

"Direct Supply" is effective, $E[S_{12}^*(t)] < E[S_{13}^*(t)]$.

Optimal Control : $S_{1j}(t)$

Optimal Control : IN(t)

Optimal net inventory [Dynamics] $dIN(t) = -\sqrt{\frac{2h'_{IN}}{c}} \frac{1 - y_{IN}^2(t)}{1 + y_{IN}^2(t)} [IN(t) - \mu^{\infty}] dt - D^{SD}(t) dz(t)$ [Optimal] $IN^{*}(t) = U(t) \left[IN(r_{123}) - \int_{-\infty}^{t} \frac{D^{SD}(r)}{U(r)} dz(r) \right] \quad t \in (r_{123}, T]$ Long-term expected value is 0 $\mu^{\infty} = \lim_{T \to \infty} E[IN(T)] = 0 \cdot E[IN(r_{123})] = 0$ $-\sqrt{\frac{2h_{IN}'}{c}\frac{1-y_{IN}^2(t)}{1+y_{IN}^2(t)}} < 0$ Regression speed < 0Regression speceDynamics of IN(t) is $dIN(t) \begin{cases} < 0 & IN(t) > 0 \\ = 0 & IN(t) = 0 \\ > 0 & IN(t) < 0 \end{cases}$ IN(t)0 $h'_{IN} = \begin{cases} h'_3 & if \ IN \ (t) \ge 0 \\ b & otherwise \end{cases} \quad b \to \infty$ $t + \Delta t$ Theorem 2 IN(t)

Maintaining inventory at the shelter is the optimal when the penalty cost is sufficiently high, $IN^*(t) > 0$ if $b \to \infty$.

 $t + \Lambda t$

()

Numerical Analysis

- Optimal Pull-mode Support -

Settings

Analysis method

• Comparing the objective functions of the push V^{push} and pull $V^{pull}(k_1, k_2)$ with the Monte Carlo simulation.

Parameter setting

- Prediction demand $\overline{D}(t) = -0.15(t T)$.
- The number of simulations is 5,000.
- case-a[$R[z_1(t), z_2(t)] = 1$], case-b[$R[z_1(t), z_2(t)] \neq 1$] RS and DC share prediction errors not share

Parameter setting

t	[0, 10)	[10, 20)	[20, 30]
$\tilde{D}(t)$	4	2	1
$\overline{D}(t)$	-0.15(t-T)		
$\left\{ D^{SD}\left(t\right) ,\sigma\left(t\right) \right\}$	$\{100, 50\}$		
$[r_{12}, r_{23}, r_{13}]$	$\{h'_2, h'_3, b\}$	c	$IN\left(0 ight)$
${3, 2, 4}$	$\{0.5, 0.7, 1\}$	10	-200

Results : Comparing Push and Pull²⁰

 $R[z_1(t), z_2(t)] = 1(\text{case}-a)$

The sufficient conditions for control strategy change (push-mode to pull-mode) is $k_1 = k_2$, that is **the centralized information system is restored.**

Under the decentralized information system, pull-mode may not be effective.

Conclusion

Conclusion

<u>Summary</u>

- Dynamic optimization approach analyzed the mathematical properties of the optimal control strategy.
 - Push-mode: direct supply from the RS to the shelter is optimal transportation strategy. DC should not be used.
 - Pull-mode: the sufficient condition for pull-mode to be optimal is to restore the centralized information system. Otherwise, pull-mode may make a not always good result.

Future work

- General network analysis (e.g., many-to-many network) can consider significant elements such as *the single point of failure*.
- Considering optimal day-to-day recovery dynamics.

Reference

Cabinet Office in Japan (2017). White paper on disaster management 2017.

http://www.bousai.go.jp/kyoiku/panf/pdf/WP2017_DM_Full_Version.pdf. [accessed December. 14, 2017].

Cabinet Office in Japan (2018). White paper on disaster management 2018.

http://www.bousai.go.jp/kaigirep/hakusho/pdf/H30_hakusho_english.pdf. [accessed November. 25, 2018].

Chen, F., Drezner, Z., Ryan, J.K., and Simchi-Levi, D. (2000). Quantifying the bullwhip effect in a simple supply chain:

The impact of forecasting, lead times, and information. Management science, 46(3), 436-443.

Chomilier, B. (2010). WFP logistics. World Food Programme.

Holguin-Veras, J., Taniguchi, E., Jaller, M., Aros-Vera, F., Ferreira, F., and Thompson, R.G. (2014). The tohoku disasters: Chief lessons concerning the post disaster humanitarian logistics response and policy implications. Transportation research part A, 69, 86-104.

Kawase, R., Urata, J., and Iryo, T. (2018). Optimal inventory distribution strategy for relief supply considering information uncertainty after a major disaster. Informs Annual Meeting.

Mangasarian, O.L. (1966). Sufficient conditions for the optimal control of nonlinear systems. SIAM Journal on control, 4(1), 139-152.

Maruyama, G. (1955). Continuous markov processes and stochastic equations. Rendiconti del Circolo Matematico

di Palermo, 4(1), 48-90.

Meng, Q. and Shen, Y. (2010). Optimal control of mean-field jump-diffusion systems with delay: A stochastic maximum principle approach. Automatica, 46(6), 1074-1080.

Sheu, J. B. (2007). An emergency logistics distribution approach for quick response to urgent relief demand in disasters. Transportation Research Part E: Logistics and Transportation Review, 43(6), 687-709.

The Committee of Infrastructure Planning and Management (2016). Investigation report on kumamoto earthquake: Challenges of logistics. (In Japanese).

Uhlenbeck, G.E. and Ornstein, L.S. (1930). On the theory of the brownian motion. Physical review, 36(5), 823-841.

Thank you for your attention.

Riki Kawase: r-kawase@stu.kobe-u.ac.jp