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Problem setting
• Standard logit model:

• The conventional form of :
– Linear approximation (rooted to the Taylor's 

theorem)
– Also known as a linear-in-parameter model

• Problem at hand:
– Is there any better way to determine the 

functional form?
• Obviously, taking into account the non-linearlity of 𝑉

would improve the goodness-of-fit.
• What is the cost of doing that?
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Problem setting
• Can we understand the non-linear 

transformation of logically?
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𝑉

Travel time of mode j

Example: contribution of travel time to mode/route choice model

Linear approximation

Logarithm transformation

Highly non-linear transformation



Problem setting
• In what context we may NOT need to 

explain the impacts of each factor logically?
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Example: contribution of eye movement to the speed choice

Adapted from Wang et al. (2019)

Speed-up

Speed-down

Constant



Contents
1. Logically explainable non-linear 

transformation

2. Spline-based non-linear transformation

3. NN (Neural network)-based non-linear 
transformation
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Advanced discrete choice models
[based on Hato (2002)]
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Multinomial logit (MNL)
(Luce, 1959)

Multinomial Probit (MNP)
(Thurstone, 1927)

Nested logit (NL)
(Ben-Akiva, 1973)

Generalized extreme value (GEV)
(McFadden, 1978)

Paired combinational 
logit (PCL) (Chu, 1981)

Cross-nested logit 
(CNL) (Vovsha, 1997)

Generalized nested logit (GNL), recursive nested 
logit extreme value model (RNEV), network-GEV
(Wen & Koppelman, 2001; Daly, 2001; Bierlaire, 2002)

Error component logit (ECL); Mixed 
logit (MXL); Kernel logit (KL); 

Heteroscedastic logit (HL)
(Boyd and Mellman, 1980; Cardell and 
Dunbar, 1980; McFadden, 1989; Bhat, 

1995; See Train (2009) for details)

Normal to Gumbel

Generalization

Generalization

Generalization

Special case

Heteroscedastic/mixed distributions

Derived from McFaddenʼs G function or “choice 
probability generating functions” (Fosgerau et al., 2013)

Generalization

Multinomial weibit (MNW)
(Castillo, et al., 2008)

Gumbel 
to Weibull q-generalized logit

(Nakayama, 2013, 
Nakayama and 

Chikaraishi, 2015)

Variance 
stabilization

(Li, 2011)

Generalized G function
(Mattsson et al., 2014)

Generalization

Derived from the generalized G function

Weibull to GEV (not MEV)

Closed-form models
Open-form models

Deep neural 
network
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LOGICALLY EXPLAINABLE 
NON-LINEAR 
TRANSFORMATION

Castillo, E., Menendez, J.M., Jimenez, P., Rivas, A. (2008) Closed form 
expressions for choice probabilities in the Weibull case. Transportation 
Research Part B 42, 373-380.
Chikaraishi, M., Nakayama, S. (2016) Discrete choice models with q-
product random utilities, Transportation Research Part B
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Nonlinearity of 
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εij:   Gumbel distribution
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Distribution/linearity: an example
(1) Difference in distribution assumption
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Gumbel distribution Weibull distribution

 

















k ik

ij

ij

V

V
p




1exp

1exp








k ik

ij
ij

V

V
p





1

1

𝑢 : Random utility
𝑉 : Systematic utility (linear in parameters)
εij:   Error term

Logit model Weibit (or multiplicative) model

𝜀 is 
dependent 
on 𝑉

𝜀 is 
independen
t from 𝑉
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Logit 
model

Distribution/linearity: an example

  ijijij Vfgu ,

Gumbel  Weibull

Linear  Logarithm

Weibit
model

Randam utility distribution:

Systematic utility function:

Castillo et al. (2008)

(See Castillo et al. (2008) for elegant explanations)



• Preliminaries: q-generalization (Tsallis, 2009)
– Generalized Boltzmann–Gibbs statistical mechanics
– The core concept is the so-called Tsallis entropy, where 

the “q-generalization” plays a central role

q-product random utility
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q-product 
random utility

q-generalized 
Gumbel

Derivation of 
q-product logit 

Behavioral 
implication

exp 𝑥 ≔ 1 1 𝑞 𝑥

𝑥 ⊗ 𝑦: 𝑥 𝑦 1

ln 𝑥 ≔
𝑥 1

1 𝑞
lim

→
ln 𝑥 ln 𝑥

lim
→

exp 𝑥  exp 𝑥

lim
→

𝑥 ⊗ 𝑦 𝑥𝑦

q-logarithm:

q-exponential:

q-product:

ln exp 𝑥 𝑥, ln 𝑥 ⊗ 𝑦 ln 𝑥 ln 𝑦
Some properties:



Generalization of logit and weibit
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• q-generalized reverse Gumbel distribution

q-generalized random term

13

0 1 2 3 4 5 6

0.
0

0.
5

1.
0

1.
5

0 1 2 3 4 5 6

0.
0

0.
5

1.
0

1.
5

0 1 2 3 4 5 6

0.
0

0.
5

1.
0

1.
5

x

f i
j(x

)

Solid line: i j=1; i=1/3; qi=0.0
Dotted line: i j=2; i=1/3; qi=0.0
Dashed line: i j=3; i=1/3; qi=0.0

0 1 2 3 4 5 6

0.
0

0.
5

1.
0

1.
5

0 1 2 3 4 5 6

0.
0

0.
5

1.
0

1.
5

0 1 2 3 4 5 6

0.
0

0.
5

1.
0

1.
5

x

f i
j(x

)

Solid line: i j=1; i=1/3; qi=0.1
Dotted line: i j=2; i=1/3; qi=0.1
Dashed line: i j=3; i=1/3; qi=0.1

0 1 2 3 4 5 6

0.
0

0.
5

1.
0

1.
5

0 1 2 3 4 5 6

0.
0

0.
5

1.
0

1.
5

0 1 2 3 4 5 6

0.
0

0.
5

1.
0

1.
5

x

f i
j(x

)

Solid line: i j=1; i=1/3; qi=0.3
Dotted line: i j=2; i=1/3; qi=0.3
Dashed line: i j=3; i=1/3; qi=0.3

0 1 2 3 4 5 6

0.
0

0.
5

1.
0

1.
5

0 1 2 3 4 5 6

0.
0

0.
5

1.
0

1.
5

0 1 2 3 4 5 6

0.
0

0.
5

1.
0

1.
5

x

f i
j(x

)

Solid line: i j=1; i=1/3; qi=0.7
Dotted line: i j=2; i=1/3; qi=0.7
Dashed line: i j=3; i=1/3; qi=0.7

0 1 2 3 4 5 6

0.
0

0.
5

1.
0

1.
5

0 1 2 3 4 5 6

0.
0

0.
5

1.
0

1.
5

0 1 2 3 4 5 6

0.
0

0.
5

1.
0

1.
5

x

f i
j(x

)

Solid line: i j=1; i=1/3; qi=0.9
Dotted line: i j=2; i=1/3; qi=0.9
Dashed line: i j=3; i=1/3; qi=0.9

0 1 2 3 4 5 6

0.
0

0.
5

1.
0

1.
5

0 1 2 3 4 5 6

0.
0

0.
5

1.
0

1.
5

0 1 2 3 4 5 6

0.
0

0.
5

1.
0

1.
5

x

f i
j(x

)

Solid line: i j=1; i=1/3; qi=1.0
Dotted line: i j=2; i=1/3; qi=1.0
Dashed line: i j=3; i=1/3; qi=1.0

(reverse Gumbel) 

(Weibull) 

𝑓 𝑥 𝑔 𝑦 exp exp exp



• Risk attitude
 ln 𝜇 is an isoelastic utility function (also known as a 

power utility function), which has been widely used in 
economics 

 This gives the parameter 𝑞 a clear behavioral meaning: 
𝒒𝒊 is equivalent to the Arrow–Pratt measure of 
relative risk aversion when imposing Gumbel 
distribution on its error component

Behavioral implication
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𝑅 𝜇 𝜇
𝜕 ln 𝜇 𝜕⁄ 𝜇
𝜕ln 𝜇 𝜕⁄ 𝜇

𝑞



• Example

Behavioral implication
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Route 1: travel cost μ1 = 0.1x

Route 2: travel cost μ2 = 0.1(x + 5)

Route 3: travel cost μ3 = 0.1(x + 10)

Origin Destination Choice probability: 
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Other choice models with non-
linearity transformation
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Swait, J., 2001. A non-compensatory choice model incorporating attribute 
cutoffs. Transportation Research Part B: Methodological 35, 903-928.



SPLINE-BASED NON-
LINEAR TRANSFORMATION

Li, B. (2011) The multinomial logit model revisited: A semi-
parametric approach in discrete choice analysis. 
Transportation Research Part B 45, 461-473.
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Choice probability
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𝑃 𝜃𝛼 exp 𝛼 exp 𝜃𝑧 exp 𝜃𝑧 𝑑𝑧
∈

∈ ∈

𝛃𝐱𝐢𝐣

∈ 𝛃𝐱𝐢𝐣

Li (2011) shows that we can derive a number of discrete choice models
under different error tem distributions:

The above equation indicates the choice of error term distribution would
be equal to the choice of non-linear transformation of systematic utility.
(as we already confirmed)



Semi-parametric discrete choice models

Semi-parametric approach (such as P-splines approach) can be 
used as an approximation of any base distribution.
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𝐻 𝑉
Σ ∈ 𝐻 𝑉

exp 𝑆 𝛃𝐱𝐢𝐣

Σ ∈ exp 𝑆 𝛃𝐱𝐢𝐣
𝑆 𝛃𝐱𝐢𝐣 : Sensitivity function



Emergence of Deep Learning
• Limitations of linear-in-parameter model

– No consideration of non-linearity
– No consideration of interactions among variables

• Possible solutions (Goodfellow et al., 2016)
1. Theory-driven (e.g., assuming non-

compensatory, using BPR function, etc.)
2. Use Kernel, Splines, etc.
3. Learn the function from the data (e.g., deep 

learning)  produce more accurate results in 
many cases
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DISCRETE CHOICE WITH 
NEURAL NETWORK

Sifringer, B., Lurkin, V., Alahi, A., 2018. Enhancing Discrete 
Choice Models with Neural Networks. 18th Swiss Transport 
Research Conference, Monte Verità, May 16–18.
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Background and objective
• RUM model vs neural network

– Advantage of RUMmodel
• Interpretability of the results.

– Advantage of neural network
• Better goodness-of-fit

• Objective
– Bringing the predictive strength of Neural 

Networks, a powerful machine learning-based 
technique, to the field of Discrete Choice Models 
(DCM) without compromising interpretability of 
these choice models.

22
RUM: random utility maximization



A discrete choice model from the perspective of neural network

RUM model and neural network (NN)
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Utility function:

Choice probability:

(negative) log-likelihood:

Softmax activation function:

Cross-entropy:

Discrete choice model as a Random Utility Maximization (RUM) model

The conventional MNL can be seen as a neural network model with a 
simple network structure. 



Discrete Choice Model with NN
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:
: A vector of parameters (1×d)
: A set of explanatory variables (I×d)

Utility function with non-linear component:

where      is the ensemble of input features, and, 𝜓 is 
the function defined by multiple neural network layers
and their corresponding activation functions.

Linear-in-
parameters 
component 

Non-linear 
component
(via NN)



Discrete Choice Model with NN
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Linear-in-parameters 
component 

Non-linear
component

Hold a monotonicity 
Constraint.



Empirical analysis
• Dataset

– Swissmetro dataset (Bierlaire et al., 2001)
– A stated preference data on mode choice
– 10700 entries from 1190 individuals

• Linear-in-parameters component:
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Empirical analysis
• Non-linear component:

1. Travel purpose: Discrete value between 1 to 9 (Business, leisure, 
travel,... )

2. First class: 0 for no or 1 for yes if passenger is a first class 
traveler in public transport

3. Ticket: Discrete value between 0 to 10 for the ticket type (One-
way, half-day, ...)

4. Who: Discrete value between 0 to 3 for who pays the travel (self, 
employer, ...)

5. Male: Travelerʼs gender, 0 for female and 1 for male
6. Income: Discrete value between 0 to 4 concerning the travelerʼs 

income per year
7. Origin: Discrete value defining the canton in which the travel 

begins
8. Dest: Discrete value defining the canton in which the travel ends
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Multinomial Logit as Benchmark
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Hybrid model (1)
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Note: Statistical properties of the parameters are obtained through Biogeme (Bierlaire, 2009)



Simplified hybrid model (2)
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All remaining variables are used here



Conclusions & future works
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Comparison of key parameters

Conclusions:
• Combining the advantage of linear-in-parameters RUM model and 

the advantage of neural network where highly non-linear impacts 
of explanatory variables

Future works:
• The selection of hyper 

parameters (it would 
change the results)

• Possibility of using the 
model for long-term 
demand forecasting 
(cross-validation may not 
be enough)

• Possibility of using 
different NN components 
(e.g., convolutional NN, 
recurrent NN, etc.)
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