Potential of On－demand Mobility and Real－time Trip Planning in Yokohama City

森川•山本•三輪研究室

Group K from Nagoya University DIAO Xiaosu
LIU Jianmeng
JIANG Feng
Othman El Mourabiti
ZHU Shuyang

Basic Analysis on PP Data

		：30\％	Etan mex		wextis		aitmen	\％．			weme axessw：
	max－mi				zxyle	4，	\％axtys．	\％es．and in max		（1）	
4	\％ase	208 ${ }^{\text {明 }}$		ymincisisio	mant	208	7ther 6		1user	\％	10xsher
（1382	\％ater		zime	\％	\％own	管	zar	Nambi 12.65	，for	mex	
II，	$x^{\text {and }}$	1800	vemer	wablicmux	mphitions	sm	3m，mem		\％ 3 xax	max min	ameme
${ }_{\text {4，}}^{48}$	，mism		\cdots	mex	3man mix	，				mamm $\frac{5 x}{}$	\％ome
	\％rsmi		＝	${ }^{2 \times 1}$	Wman min mis	3	2acms	Werase 18.80	in ${ }^{\text {a }}$	Smism wir	2mase
	Smem		ter mine	NsiL	W\％Lix exiz	\％	crin mesi	，	in	amem mix	1．jemen
		\cdots		，minum	asplis if cis	，	3，mam	\％ather 12.	\％ 3 ment	2xame	dome
迷	Susa				mane	，		Is		\％mas mater	（10）
${ }_{\text {cke }}^{4}$	\％ex	：30 \％	tome	${ }^{2 \times 5}$	20，	3，	\％askiea			：mmx ${ }^{\text {F }}$	10．emes ${ }^{\text {a }}$
	\％as－as	200	Stemersime	ambuy	\％xylus	Stiot	$\frac{1}{3}$	ze．sy	－	mask	边
			\％ille	\％20	连	2e					
	Sxime	¢08			momme	\％	zricer	xumer in emam	Mix	Comsix me	\％euce
$\frac{18}{4 x}$	\％smis	50，	zmis	边	为	\％	2k nim	8 memax			cemese
	\％me－mil	\％00	stersm	\％mbis	whimin ：	\％	\％emmay	\％，wim		mme fur	\％ame
${ }_{4}^{4}$	，amme	10，		mendinem ${ }^{\text {a }}$	man mons	，	nem	Ssume mame	9ack	manm	lomme firm
4	Ans tra		ont	3milue	\％		Trus	\％asiz is．ese			Mases
	：			Mown int	Noman		ammas	\％ams memm	．1．4．ix	\％min	
	asme	3	－	（abras sis	anim	\％	Nament			caxp ascorn	
尤	$-$									［本프 7	－

If there is a problem, there is demand.

We can't force people to choose public transit, but situation like this only stop them from doing so.

Further analysis shows a serious problem. Arduous effort is needed just to get to the rail station.

People who choose RAIL

AccessTime+EgressTime: 9014 min
Time on the train: 15000 min
Total Time: 24014 min Percentage of trip time: 38\%

0\% 25\% 50% 100\%
People who choose CAR, but if they choose RAIL
AccessTime+EgressTime: 18016 min
Time on the train: 17061 min
Total Time: 35077 min
Percentage of trip time: 51% Rail Users
\square Out Time 18016 min On Time 17061 min- Out Time 18016 min - On Time 17061 min

Our assumption:

Is Out-of-Rail time truly a factor that hinders people choosing subway? needs to be justified by Behavior Choice Model.

MNL Model (1)
MNL model:
$V_{\text {car }}=\beta_{1} t_{\text {car }}+\beta_{2} c_{\text {car }}$
$V_{\text {rail }}=\beta_{10} t t+\beta_{2} c_{\text {rail }}+\beta_{3} g+\beta_{4} p+\beta_{5} o t_{\text {rail }}+\beta_{6}$
$V_{\text {bike }}=\beta_{1} t_{\text {bike }}+\beta_{7}$
$V_{\text {walk }}=\beta_{1} t_{\text {walk }}+\beta_{8}$
$V_{\text {bus }}=\beta_{10} t b+\beta_{2} c_{\text {bus }}+\beta_{5}$ ot $t_{\text {bus }}+\beta_{9}$
t : total travel time
c: travel cost
g: gender
p: purpose
ot: out of vehicle time
tt : time on train
tb: time on bus

Another NL model is conducted. 2 model results are compared.

NL Model

NL model:

$\mathrm{U}_{c a r}=V_{c a r}+V_{p r}+\varepsilon_{c a r}+\varepsilon_{p r}$
$\mathrm{U}_{\text {walk }}=V_{\text {walk }}+V_{p r}+\varepsilon_{\text {walk }}+\varepsilon_{p r}$
$\mathrm{U}_{\text {bike }}=V_{\text {bike }}+V_{p r}+\varepsilon_{\text {bike }}+\varepsilon_{p r}$
$\mathrm{U}_{\text {bus }}=V_{\text {bus }}+V_{p t}+\varepsilon_{b u s}+\varepsilon_{p t}$
$\mathrm{U}_{\text {rail }}=V_{\text {rail }}+V_{p t}+\varepsilon_{\text {rail }}+\varepsilon_{p t}$
t : total travel time
$\mathrm{c}:$ travel cost
$\mathrm{g}:$ gender
p : purpose
ot: out of vehicle time
tt : time on train
tb : time on bus

	MNL model	NL model
L0	-2135.6	-2175.4
LL	-1290.5	-1409.7
Adjusted rho square	0.391	0.347
Scale parameter	1	0.868

A Case Study-Policy Proposal.

Smart route based on real time demand.

Shared vehicle, thus environment friendly.

Pay-as-you-go based.

A Case Study-Implement Locations.

A Case Study-Implement Locations.

A Case Study-Simulation of Mode Share.

 BeforeAfter

