Potential of On-demand Mobility and Real-time Trip Planning in Yokohama City

Group K from Nagoya University
DIAO Xiaosu
LIU Jianmeng
JIANG Feng
Othman EI Mourabiti
ZHU Shuyang
Basic Analysis on PP Data
If there is a problem, there is demand.

We can't force people to choose public transit, but situation like this only stop them from doing so.
Further analysis shows a serious problem. Arduous effort is needed just to get to the rail station.

People who choose RAIL

AccessTime+EgressTime: 9014 min
Time on the train: 15000 min
Total Time: 24014 min
Percentage of trip time: 38%

People who choose CAR, but if they choose RAIL

AccessTime+EgressTime: 18016 min
Time on the train: 17061 min
Total Time: 35077 min
Percentage of trip time: 51%

Do these people choose CAR instead of RAIL because of this reason?
Our assumption: Is Out-of-Rail time truly a factor that hinders people choosing subway? Needs to be justified by Behavior Choice Model.

MNL Model:

\[V_{car} = \beta_1 \cdot \text{travel time}_{\text{car}} + \beta_2 \cdot \text{travel cost}_{\text{car}} \]
\[V_{rail} = \beta_1 \cdot \text{travel time}_{\text{rail}} + \beta_2 \cdot \text{travel cost}_{\text{rail}} + \beta_3 \cdot \text{gender} + \beta_4 \cdot \text{purpose} + \beta_5 \cdot \text{out of vehicle time}_{\text{rail}} + \beta_6 \]
\[V_{bike} = \beta_1 \cdot \text{travel time}_{\text{bike}} + \beta_2 \cdot \text{travel cost}_{\text{bike}} \]
\[V_{walk} = \beta_1 \cdot \text{travel time}_{\text{walk}} + \beta_2 \cdot \text{travel cost}_{\text{walk}} \]
\[V_{bus} = \beta_1 \cdot \text{travel time}_{\text{bus}} + \beta_2 \cdot \text{travel cost}_{\text{bus}} + \beta_3 \cdot \text{out of vehicle time}_{\text{bus}} + \beta_4 \]

Message: NLL

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3170, 40057</td>
<td>1.2317, 985</td>
<td>470.04, 5008</td>
<td>500.94, 4008</td>
<td>199.30, 5099</td>
<td>1571.51, 2171</td>
<td>561.10, 3064</td>
<td>222.98, 3019</td>
<td>24.38, 3045</td>
<td>-124.61, 5012</td>
<td>-37.33, 0012</td>
</tr>
<tr>
<td>1574.51, 3171</td>
<td>684.78, 0498</td>
<td>280.27, 4441</td>
<td>122.62, 4521</td>
<td>130.63, 5449</td>
<td>353.30, 2707</td>
<td>40.23, 1818</td>
<td>29.00, 0667</td>
<td>18.96, 4712</td>
<td>124.97, 0778</td>
<td></td>
</tr>
<tr>
<td>2787.90, 4107</td>
<td>1274.64, 5845</td>
<td>320.89, 0231</td>
<td>6.26, 8002</td>
<td>3.34, 0156</td>
<td>29.09, 0866</td>
<td>14.02, 9391</td>
<td>42.89, 871</td>
<td>7.87, 0258</td>
<td>27.21, 6088</td>
<td></td>
</tr>
<tr>
<td>3148.62, 4107</td>
<td>1274.64, 5845</td>
<td>320.89, 0231</td>
<td>6.26, 8002</td>
<td>3.34, 0156</td>
<td>29.09, 0866</td>
<td>14.02, 9391</td>
<td>42.89, 871</td>
<td>7.87, 0258</td>
<td>27.21, 6088</td>
<td></td>
</tr>
</tbody>
</table>
Another NL model is conducted.
2 model results are compared.

NL Model:

\[U_{\text{car}} = V_{\text{car}} + V_{\text{pr}} + \varepsilon_{\text{car}} + \varepsilon_{\text{pr}} \]
\[U_{\text{walk}} = V_{\text{walk}} + V_{\text{pr}} + \varepsilon_{\text{walk}} + \varepsilon_{\text{pr}} \]
\[U_{\text{bike}} = V_{\text{bike}} + V_{\text{pr}} + \varepsilon_{\text{bike}} + \varepsilon_{\text{pr}} \]
\[U_{\text{bus}} = V_{\text{bus}} + V_{\text{pt}} + \varepsilon_{\text{bus}} + \varepsilon_{\text{pt}} \]
\[U_{\text{rail}} = V_{\text{rail}} + V_{\text{pt}} + \varepsilon_{\text{rail}} + \varepsilon_{\text{pt}} \]

<table>
<thead>
<tr>
<th>ω</th>
<th>MNL model</th>
<th>NL model</th>
</tr>
</thead>
<tbody>
<tr>
<td>L0</td>
<td>-2135.6</td>
<td>-2175.4</td>
</tr>
<tr>
<td>LL</td>
<td>-1290.5</td>
<td>-1409.7</td>
</tr>
</tbody>
</table>

Adjusted rho

square= 0.391

Scale parameter= 1

0.868
A Case Study-Policy Proposal.

- Suitable size.
- Frequent and punctual service.
- Trackable bus.
- Smart route based on real time demand.
- Shared vehicle, thus environment friendly.
- Pay-as-you-go based.
A Case Study-Implement Locations.
A Case Study-Implement Locations.
A Case Study-Simulation of Mode Share.

Before

- 34% Walk
- 15% Rail
- 14% Bus
- 3% Bike
- 3% Car

After

- 11% Walk
- 16% Rail
- 15% Bus
- 3% Bike
- 54% Car