ANALYSIS OF CAR BEHAVIOR IN MATSUYAMA CITY (USING PROBE PERSON DATA)

GROUP INTRODUCTION

TARGET AREA

MATSUYAMA CITY

- Located in Ehime Prefecture on Shikoku Island (Western part of Japan)
- Capital and Largest City of Ehime Prefecture with <u>Population = 516, 643</u> (as of January 1, 2014), <u>Area = 429.06 m²</u> and <u>No. of Households = 229,916</u>.
- According to the PT survey conducted in 2007, car usage is more than half showing the <u>Expanding Car</u>
 <u>Usage</u> in Matsuyama City

2

DATA CHARACTERISTICS & PREPARATION

INTRODUCED POLICIES

PRELIMINARY ANALYSIS

Purpose of Trip

Purpose of Trip

FORMULATION OF MODEL

Existing Route Choice Models

Sequential Route **Choice Models**

Spatial Cognition about downstream, **Degree of Spatial Cognition**

β -SCALED RECURSIVE LOGIT MODEL; OYAMA AND HATO 2016

- \blacktriangleright Consider a directed connected graph; G = (A, N), where A set of links, N set of nodes
- > The instantaneous random utility of a link a_i condition on being in state a_{i-1} is given by, $u_n(a_i|a_{i-1}) = v_n(a_i|a_{i-1}) + \mu \varepsilon_n(a_i)$
- > The total utility of link a_i given the state a_{i-1} is formulated by sum of the instantaneous utility $u_n(a_i|a_{i-1})$ and maximum

expected downstream utility up to the destination link d, denoted as value function $V_n^d(a_i)$ and defined by the Bellman equation (Bellman, 1957); $V_n^d(a_j) = \mathbb{E}\left[\max_{a_{j+1} \in A(a_i)} \{v_n(a_{j+1}|a_j) + \beta V_n^d(a_{j+1}) + \mu \varepsilon_n(a_{j+1})\}\right]$ β is time discount rate represents $\forall a_j \epsilon A$

the spatial cognition of driver for downstream links

LINK CHOICE PROBABILITY (MULTINOMIAL LOGIT MODEL)

$$P_n^d(a_{j+1}|a_j) = \frac{e^{\frac{1}{\mu}\{v_n(a_{j+1}|a_j) + \beta V_n^d(a_{j+1})\}}}{\sum_{a'_{j+1} \in A(a_j)} e^{\frac{1}{\mu}\{v_n(a'_{j+1}|a_j) + \beta V_n^d(a'_{j+1})\}}}$$

PRELIMINARY ESTIMATION RESULTS

Variables	Parameters	t-Value
Travel Time	-0.1106528	-7.2201359**
Right-Turn Dummy	-0.6584271	-6.194608**
β	0.4506658	-2.60758**
L (0)		-1268.621
LL		-1203.331
Rho-Square		0.05146568
Adjusted Rho-Square		0.04910091

INTRODUCED POLICIES

TRAFFIC ASSIGNMENT

> β -SCALED RECURSIVE LOGIT MODEL; OYAMA AND HATO 2016

$$u_n(a_j|a_{j-1}) = \Theta_{tt}(a_j|a_{j-1}) * (TT) + \Theta_{RT}(a_j|a_{j-1}) * (RT) + \mu \varepsilon_n(a_j|a_{j-1})$$

$$P_{n}^{d}(a_{j+1}|a_{j}) = \frac{e^{\frac{1}{\mu}\{v_{n}(a_{j+1}|a_{j})+\beta V_{n}^{d}(a_{j+1})\}}}{\sum_{a_{j+1}'\in A(a_{j})} e^{\frac{1}{\mu}\{v_{n}(a_{j+1}'|a_{j})+\beta V_{n}^{d}(a_{j+1}')\}}}$$
$$e^{V_{n,t}^{d}(a_{j})} = \begin{cases} \frac{1}{\mu}\sum_{a_{j+2}'\in A(a_{j+1})} e^{\{v_{n,d}(a_{j+2}|a_{j+1})+\beta V_{n}^{d}(a_{j+2}')\}}\\0\end{cases}$$
$$z = Mz + b$$
$$z = (I - M)^{-1} * b$$

Link Flows Equation: $(I - P^T)F = G$

POLICY SIMULATION - (CASE-0)

Central Area

(<u>Without any change</u>)

POLICY - (CASE-1)

POLICY SIMULATION - (CASE-1)

POLICY - (CASE-2)

POLICY SIMULATION - (CASE-2)

POLICY - (CASE-3)

Prohibit Cars in sixteen (16) links (<u>Case-1,2 + Making a</u>

Small Traffic Cell)

POLICY SIMULATION - (CASE-3)

POLICY - (CASE-4)

POLICY SIMULATION - (CASE-4)

18

VISUALIZATION OF FLOW CHANGE

