Practical note on specification of discrete choice model

Toshiyuki Yamamoto

Nagoya University, Japan

Contents

- Comparison between binary logit model and binary probit model
- Comparison between multinomial logit model and nested logit model
- Comparison between nested logit model and mixed logit model

Comparison between binary logit model and binary probit model

Random utility models

- Random utility

$$
\begin{aligned}
& U_{j n}=V_{j n}+\varepsilon_{j n} \\
& V_{j n}: \text { deterministic part of utility } \\
& \varepsilon_{j n}: \text { stochastic part of utility }
\end{aligned}
$$

- Conventional linear utility function

$$
\begin{aligned}
& V_{j n}=\beta X_{j n} \\
& X_{j n}: \text { vector of explanatory variables } \\
& \beta: \text { vector of coefficients }
\end{aligned}
$$

Binary choice models

When the choice set contains only two alternatives

- Probability for individual n to choose alternative i

$$
\begin{aligned}
P_{i n} & =\operatorname{Prob}\left(U_{i n}>U_{j n}\right) \\
& =\operatorname{Prob}\left(V_{i n}+\varepsilon_{i n}>V_{j n}+\varepsilon_{j n}\right) \\
& =\operatorname{Prob}\left(\varepsilon_{j n}-\varepsilon_{i n}<V_{i n}-V_{j n}\right)
\end{aligned}
$$

- If $\varepsilon_{j n}$ and $\varepsilon_{i n}$ follow normal distribution, $\varepsilon_{j n}-\varepsilon_{i n}$ also follows normal distribution -> Binary probit model
- If $\varepsilon_{i n}$ and $\varepsilon_{i n}$ follow iid Gumbel distribution, $\varepsilon_{j n}$ $\varepsilon_{i n}$ follows logistic distribution -> Binary logit model

Gumbel distribution: $\mathrm{G}(\eta, \mu)$

- Probability density function

$$
f(\varepsilon)=\mu \exp \{-\mu(\varepsilon-\eta)\} \exp [-\exp \{-\mu(\varepsilon-\eta)\}]
$$

- Mode $=\eta$, Mean $=\eta+r / \mu$, variance $=\pi^{2} / 6 \mu^{2}$, where $r \approx 0.577$ (Euler's constant)
- Cumulative density function

$$
F(\varepsilon)=\exp [-\exp \{-\mu(\varepsilon-\eta)\}]
$$

Binary logit model

- If $\varepsilon_{i n}$ and $\varepsilon_{j n}$ follow $\mathrm{G}\left(\eta_{\mathrm{i}}, \mu\right)$ and $\mathrm{G}\left(\eta_{\mathrm{j}}, \mu\right)$ respectively, $\varepsilon_{j n}-\varepsilon_{i n}=\varepsilon_{n}$ follows logistic distribution as below

$$
F\left(\varepsilon_{n}\right)=\frac{1}{1+\exp \left\{\mu\left(\eta_{j}-\eta_{i}-\varepsilon_{n}\right)\right\}}
$$

- Assuming $\eta_{\mathrm{i}}=\eta_{\mathrm{j}}=0$, probability to choose i is

$$
\begin{aligned}
P_{i n} & =\operatorname{Pr}\left(\varepsilon_{j n}-\varepsilon_{i n}<V_{i n}-V_{j n}\right)=F\left(V_{i n}-V_{j n}\right) \\
& =\frac{1}{1+\exp \left\{-\mu\left(V_{i n}-V_{j n}\right)\right\}}=\frac{\exp \left(\mu V_{i n}\right)}{\exp \left(\mu V_{i n}\right)+\exp \left(\mu V_{j n}\right)_{7}}
\end{aligned}
$$

Normal distribution: $\mathrm{N}\left(\mathrm{m}, \sigma^{2}\right)$

- Probability density function

$$
f(\varepsilon)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2}\left(\frac{\varepsilon-m}{\sigma}\right)^{2}\right]
$$

- Mode $=$ Mean $=m$, variance $=\sigma^{2}$
- Cumulative density function

$$
F(\varepsilon)=\int_{e=-\infty}^{\varepsilon} f(e) d e
$$

Binary probit model

- $\varepsilon_{j n}-\varepsilon_{i n}=\varepsilon_{n}$ is assumed to follow $N\left(0, \sigma^{2}\right)$ where $\mathrm{m}=0$

$$
\begin{aligned}
P_{i n} & =\operatorname{Pr}\left(\varepsilon_{j n}-\varepsilon_{i n}<V_{i n}-V_{j n}\right) \\
& =\int_{\varepsilon_{n}=-\infty}^{V_{i n}-V_{j n}} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2}\left(\frac{\varepsilon_{n}}{\sigma}\right)^{2}\right] d \varepsilon_{n} \\
& =\Phi\left(\frac{V_{i n}-V_{j n}}{\sigma}\right)
\end{aligned}
$$

$$
\begin{gathered}
\text { If } \mathrm{V}\left(\varepsilon_{i n}\right)=\mathrm{V}\left(\varepsilon_{j n}\right) \text { and } \operatorname{COV}\left(\varepsilon_{i n}, \varepsilon_{j n}\right)=0 \text { (i.i.d.), } \\
\mathrm{V}\left(\varepsilon_{i n}\right)=\mathrm{V}\left(\varepsilon_{j n}\right)=\sigma^{2} / 2
\end{gathered}
$$

Identifiability of parameters

- Binary logit model:

$$
P_{\text {in }}=\frac{\exp \left(\mu V_{i n}\right)}{\exp \left(\mu V_{\text {in }}\right)+\exp \left(\mu V_{j n}\right)}=\frac{\exp \left(\mu \beta X_{\text {in }}\right)}{\exp \left(\mu \beta X_{\text {in }}\right)+\exp \left(\mu \beta X_{\text {jn }}\right)}
$$

- Binary probit model:

$$
P_{i n}=\Phi\left(\frac{V_{i n}-V_{j n}}{\sigma}\right)=\Phi\left(\frac{\beta X_{\text {in }}-\beta X_{\text {jn }}}{\sigma}\right)=\Phi\left(\frac{\beta}{\sigma} X_{i n}-\frac{\beta}{\sigma} X_{j n}\right)
$$

μ and σ are always connected with β Thus, μ and σ cannot be identified

Standardization

- Binary logit model: $\mu=1 \Rightarrow \mathrm{~V}\left(\varepsilon_{i n}\right)=\pi^{2} / 6$

$$
P_{\text {in }}=\frac{\exp \left(\mu V_{i n}\right)}{\exp \left(\mu V_{\text {in }}\right)+\exp \left(\mu V_{j n}\right)}=\frac{\exp \left(V_{i n}\right)}{\exp \left(V_{i n}\right)+\exp \left(V_{\text {jn }}\right)}
$$

- Binary probit model: $\sigma=1 \triangle \mathrm{~V}\left(\varepsilon_{i n}\right)=1 / 2$

$$
P_{i n}=\Phi\left(\frac{V_{i n}-V_{j n}}{\sigma}\right)=\Phi\left(V_{i n}-V_{j n}\right)
$$

$$
\text { when } \mathrm{V}\left(\varepsilon_{i n}\right)=\mathrm{V}\left(\varepsilon_{j n}\right) \text { and }
$$

$$
\operatorname{COV}\left(\varepsilon_{i n}, \varepsilon_{j n}\right)=0 \text { (i.i.d.) }
$$

Estimates of $V_{j n}=\beta X_{j n}$ have different sizes Also applies when comparing multinomial logit and probit models

Comparison between multinomial logit model and nested logit model

Multinomial logit model

$$
\begin{aligned}
P_{i n} & =\frac{\exp \left(\mu V_{i n}\right)}{\sum_{j=1}^{J} \exp \left(\mu V_{j n}\right)} \quad \text { where } \varepsilon_{\text {in }} \text { follows } \mathrm{G}(0, \mu) \\
& =\frac{\exp \left(\mu \beta X_{i n}\right)}{\sum_{j=1}^{J} \exp \left(\mu \beta X_{j n}\right)} \quad \begin{array}{c}
\mu \text { Is always connected with } \beta \\
\text { Thus, } \mu \text { cannot be identified }
\end{array} \\
& \rightarrow \frac{\exp \left(\beta X_{\text {in }}\right)}{\sum_{j=1}^{J} \exp \left(\beta X_{j n}\right)} \quad \begin{array}{c}
\text { standardized by } \mu=1 \\
\mathrm{~V}\left(\varepsilon_{i n}\right)=\pi^{2} / 6
\end{array}
\end{aligned}
$$

Nested logit model

- Joint choice of trip destination and mode
- Destination $d=\{I, T\}$, mode $m=\{A, R\}$
- Utility function:
$\mathrm{U}_{\mathrm{dm}}=\mathrm{V}_{\mathrm{d}}+\mathrm{V}_{\mathrm{m}}+\mathrm{V}_{\mathrm{dm}}+\varepsilon_{\mathrm{d}}+\varepsilon_{\mathrm{dm}}$
- $\mathrm{V}_{\mathrm{d}}:$ utility specific to destination d
- V_{m} : utility specific to mode m
- V_{dm} : utility specific to combination of destination d and mode m (such as travel time)
- ε_{d} : stochastic utility specific to destination d
- $\varepsilon_{\mathrm{dm}}$: stochastic utility specific to combination of destination d and mode m
- Tree structure

Identifiability of parameters

$$
\begin{aligned}
& P(d, m)=\frac{\exp \left\{\mu_{d m}\left(V_{m}+V_{d m}\right)\right\}}{\sum_{m \in\{A, R\}} \exp \left\{\mu_{d m}\left(V_{m^{\prime}}+V_{d m^{\prime}}\right)\right\}} \\
& \times \frac{\exp \left\{\mu V_{d}+\frac{\mu}{\mu} \ln \sum_{d m} \sum_{m\{A, R\}} \exp \left\{\mu_{d m}\left(V_{m}+V_{d m}\right)\right\}\right\}}{\sum_{d \in\{\{, T\}\}} \exp \{\mu V_{d^{\prime}}+\underbrace{\mu} \mu_{d^{\prime} m} \ln \sum_{m\{\{A, R\}} \exp \left\{\mu_{d^{\prime} m}\left(V_{m}+V_{d^{\prime} m}\right)\right\}\}}
\end{aligned}
$$

- $\varepsilon_{d m}$ follows $G\left(0, \mu_{d m}\right)$ and $\varepsilon_{d}+\varepsilon_{d m}$ follows $G(0, \mu)$ which means $\mu \leq \mu_{\mathrm{dm}}$
- One of μ and $\mu_{d m}$ can be identified, and the other should be fixed

Two ways of standardization

- $\mu_{\mathrm{dm}}=1 \Rightarrow 0 \leq \mu \leq 1 \Rightarrow \mathrm{~V}\left(\varepsilon_{\mathrm{d}}+\varepsilon_{\mathrm{dm}}\right) \geq \pi^{2} / 6$

- $\mu=1$ $1 \leq \mu_{\mathrm{dm}}$

$$
\mathrm{V}\left(\varepsilon_{\mathrm{d}}+\varepsilon_{\mathrm{dm}}\right)=\pi^{2} / 6
$$

$P(d, m)=\frac{\exp \left\{\mu_{m}\left(V_{m}+V_{m}\right)\right\}}{\sum_{m \in A, R} \operatorname{ex}\left\{\left\langle\mu_{m}\left(V_{m}+V_{m, m}\right)\right\}\right.} \times$
$\mu=1$ is recommended to keep the size of β comparable with multinomial logit model

Comparison between nested logit model and mixed logit model

Stochastic terms of nested logit model and mixed logit model

Nested logit model

- $\mathrm{U}_{\mathrm{dm}}=\mathrm{V}_{\mathrm{d}}+\mathrm{V}_{\mathrm{m}}+\mathrm{V}_{\mathrm{dm}}+\varepsilon_{\mathrm{d}}+\varepsilon_{\mathrm{dm}}$
- $\varepsilon_{\mathrm{dm}}$ follows $\mathrm{G}\left(0, \mu_{\mathrm{dm}}\right)$
- $\varepsilon_{\mathrm{d}}+\varepsilon_{\mathrm{dm}}$ follows $\mathrm{G}(0, \mu)$

Mixed logit model

- $\mathrm{U}_{\mathrm{dm}}=\mathrm{V}_{\mathrm{d}}+\mathrm{V}_{\mathrm{m}}+\mathrm{V}_{\mathrm{dm}}+\varepsilon_{\mathrm{d}}+\varepsilon_{\mathrm{dm}}$
- $\varepsilon_{\mathrm{dm}}$ follows $\mathrm{G}\left(0, \mu_{\mathrm{dm}}\right)$
- ε_{d} follows $N\left(0, \sigma_{d}{ }^{2}\right)$
- Tree structure

Stochastic terms of nested logit model and mixed logit model

Nested logit model

- $\mathrm{U}_{\mathrm{dm}}=\mathrm{V}_{\mathrm{d}}+\mathrm{V}_{\mathrm{m}}+\mathrm{V}_{\mathrm{dm}}+\varepsilon_{\mathrm{d}}+\varepsilon_{\mathrm{dm}}$
- $\varepsilon_{\mathrm{dm}}$ follows G(0, μ_{dm})
- $\varepsilon_{d}+\varepsilon_{\mathrm{dm}}$ follows $G(0, \mu)$

Mixed logit model

- $\mathrm{U}_{\mathrm{dm}}=\mathrm{V}_{\mathrm{d}}+\mathrm{V}_{\mathrm{m}}+\mathrm{V}_{\mathrm{dm}}+\varepsilon_{\mathrm{d}}+\varepsilon_{\mathrm{dm}}$
- $\varepsilon_{\mathrm{dm}}$ follows $\mathrm{G}\left(0, \mu_{\mathrm{dm}}\right)$
- ε_{d} follows $N\left(0, \sigma_{d}{ }^{2}\right)$
- Different probability distributions are mixed
- Distributions other than normal can be used, but normal is often used
- Standardized by $\mu_{\mathrm{dm}}=1$, $\mathrm{V}\left(\varepsilon_{\mathrm{d}}+\varepsilon_{\mathrm{dm}}\right)=\sigma_{\mathrm{d}}{ }^{2}+\pi^{2} / 6$
- Size of β becomes different from nested logit model

Nested logit model

- $\mathrm{U}_{\mathrm{dm}}=\mathrm{V}_{\mathrm{d}}+\mathrm{V}_{\mathrm{m}}+\mathrm{V}_{\mathrm{dm}}+\varepsilon_{\mathrm{d}}+\varepsilon_{\mathrm{dm}}$
- $\varepsilon_{\mathrm{dm}}$ follows G(0, μ_{dm})
- $\varepsilon_{d}+\varepsilon_{d m}$ follows G(0, μ)

Utility function for each alternative

1. $\mathrm{U}_{\mathrm{IA}}=\mathrm{V}_{1}+\mathrm{V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{IA}}+\varepsilon_{I}+\varepsilon_{\mathrm{IA}}$
2. $\mathrm{U}_{\mathrm{IR}}=\mathrm{V}_{1}+\mathrm{V}_{\mathrm{R}}+\mathrm{V}_{\mathrm{IR}}+\varepsilon_{1}+\varepsilon_{I R}$
3. $\mathrm{U}_{\mathrm{TA}}=\mathrm{V}_{\mathrm{T}}+\mathrm{V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{TA}}+\varepsilon_{\mathrm{T}}+\varepsilon_{\mathrm{TA}}$
4. $\mathrm{U}_{\mathrm{TR}}=\mathrm{V}_{\mathrm{T}}+\mathrm{V}_{\mathrm{R}}+\mathrm{V}_{\mathrm{TR}}+\varepsilon_{\mathrm{T}}+\varepsilon_{\mathrm{TR}}$

- Tree structure

Nested logit model

- $\mathrm{U}_{\mathrm{dm}}=\mathrm{V}_{\mathrm{d}}+\mathrm{V}_{\mathrm{m}}+\mathrm{V}_{\mathrm{dm}}+\varepsilon_{\mathrm{d}}+\varepsilon_{\mathrm{dm}}$
- $\varepsilon_{d m}$ follows $G\left(0, \mu_{d m}\right)$
- $\varepsilon_{d}+\varepsilon_{d m}$ follows $G(0, \mu)$

Utility function for each alternative

1. $\mathrm{U}_{\mathrm{IA}}=\mathrm{V}_{1}+\mathrm{V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{IA}}+\varepsilon_{I}+\varepsilon_{\mathrm{IA}}$
2. $\mathrm{U}_{\mathrm{IR}}=\mathrm{V}_{1}+\mathrm{V}_{\mathrm{R}}+\mathrm{V}_{\mathrm{IR}}+\varepsilon_{1}+\varepsilon_{I R}$
3. $\mathrm{U}_{\mathrm{TA}}=\mathrm{V}_{\mathrm{T}}+\mathrm{V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{TA}}+\varepsilon_{\mathrm{T}}+\varepsilon_{\mathrm{TA}}$
4. $\mathrm{U}_{\mathrm{TR}}=\mathrm{V}_{\mathrm{T}}+\mathrm{V}_{\mathrm{R}}+\mathrm{V}_{\mathrm{TR}}+\varepsilon_{\mathrm{T}}+\varepsilon_{\mathrm{TR}}$

- ε_{1} is common for alt. $1 \& 2$, so $\mathrm{V}\left(\varepsilon_{\text {IA }}\right)=\mathrm{V}\left(\varepsilon_{\text {IR }}\right)$
- ε_{T} is common for alt. $3 \& 4$, so $\mathrm{V}\left(\varepsilon_{T A}\right)=\mathrm{V}\left(\varepsilon_{T R}\right)$
- However, $\mathrm{V}\left(\varepsilon_{1}\right)$ and $\mathrm{V}\left(\varepsilon_{T}\right)$ can be different
- It means $\mu_{d m}$ and $\mu_{d^{\prime} m}$ can be different

Mixed logit model

- $\mathrm{U}_{\mathrm{dm}}=\mathrm{V}_{\mathrm{d}}+\mathrm{V}_{\mathrm{m}}+\mathrm{V}_{\mathrm{dm}}+\varepsilon_{\mathrm{d}}+\varepsilon_{\mathrm{dm}}$
- $\varepsilon_{d m}$ follows $G(0,1)$

$$
P\left(d, m \mid \varepsilon_{I}, \varepsilon_{T}\right)=\frac{\exp \left(V_{d}+V_{m}+V_{d m}+\varepsilon_{d}\right)}{\sum_{d^{\prime} m^{\prime} \in\{I A, I R, T A, T R\}} \exp \left(V_{d^{\prime}}+V_{m^{\prime}}+V_{d^{\prime} m^{\prime}}+\varepsilon_{d^{\prime}}\right)}
$$

- ε_{d} follows $N\left(0, \sigma_{d}{ }^{2}\right)$

$$
P(d, m)=\int_{\varepsilon_{I}=-\infty}^{\infty} \int_{\varepsilon_{T}=-\infty}^{\infty} P\left(d, m \mid \varepsilon_{I}, \varepsilon_{T}\right) \frac{1}{\sigma_{I}} \phi\left(\frac{\varepsilon_{I}}{\sigma_{I}}\right) \frac{1}{\sigma_{T}} \phi\left(\frac{\varepsilon_{T}}{\sigma_{T}}\right) d \varepsilon_{I} d \varepsilon_{T}
$$

Numerical integration is needed for 2 dimensions

Identifiability of parameters

- $\mathrm{U}_{\mathrm{dm}}=\mathrm{V}_{\mathrm{d}}+\mathrm{V}_{\mathrm{m}}+\mathrm{V}_{\mathrm{dm}}+\varepsilon_{\mathrm{d}}+\varepsilon_{\mathrm{dm}}$
- $\varepsilon_{\mathrm{dm}}$ follows $\mathrm{G}(0,1)$
- ε_{d} follows $N\left(0, \sigma_{d}{ }^{2}\right)$

Utility function for each alternative

1. $\mathrm{U}_{\mathrm{IA}}=\mathrm{V}_{1}+\mathrm{V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{IA}}+\varepsilon_{I}+\varepsilon_{\mathrm{IA}}$
2. $\mathrm{U}_{\mathrm{IR}}=\mathrm{V}_{1}+\mathrm{V}_{\mathrm{R}}+\mathrm{V}_{\mathrm{IR}}+\varepsilon_{1}+\varepsilon_{I R}$
3. $\mathrm{U}_{\mathrm{TA}}=\mathrm{V}_{\mathrm{T}}+\mathrm{V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{TA}}+\varepsilon_{\mathrm{T}}+\varepsilon_{\mathrm{TA}}$
4. $\mathrm{U}_{\mathrm{TR}}=\mathrm{V}_{\mathrm{T}}+\mathrm{V}_{\mathrm{R}}+\mathrm{V}_{\mathrm{TR}}+\varepsilon_{\mathrm{T}}+\varepsilon_{\mathrm{TR}}$

- Different from nested logit model, σ_{I}^{2} and $\sigma_{T}{ }^{2}$ cannot be estimated together
- Considering [only difference in utility matters], setting $\varepsilon_{1}{ }^{\prime}=\varepsilon_{1}$ ε_{T} and $\varepsilon_{T}{ }^{\prime}=0$ gives the same β

Then, why can both be estimated in nested logit model?

Reference

- Carrasco, J.A. and Ortuzar, J. de D. (2002) Review and assessment of the nested logit model, Transport Reviews, Vol. 22(2), pp. 197218.
- Walker, J.L., Ben-Akiva, M. and Bolduc, D. (2007) Identification of parameters in normal error component logit-mixture (NECLM) models, Journal of Applied Econometrics, Vol. 22, pp. 1095-1125.

