Time Allocation of Leisure activities of Workers on Holidays Considering Effect of Weekday Activities: Comparison of Urban and Rural Areas

The $17^{\text {th }}$ summer course
Behavior modeling in transportation networks
September 14-16, 2018

Hajime WATANABE
Kumamoto University, Japan

Activity-based Modelling \& Activity Survey

- Travel demand is derived from activities
- Better understanding of behavior

Trip-based four stage model

Activity-based travel demand model

Probe Person(PP) survey

GPS mobile phone

Real time location positioning data

$$
+
$$

Web diary
\checkmark Disaggregate data
\checkmark Travel mode
\checkmark Origin and destination
\checkmark Departure and arrival time
\checkmark Trip purpose
Etc…

Advantages of PP data

- Collecting time data more accurately
- Day-to-day data (Both weekday \& holiday)
- Long term observation data(during about 1 month)

	Time accuracy	Enough sample size	Long term observation	Weekday \& holiday data	
PP survey (GPS based)				(0)	: OK
PT survey (paper based)					: Not Enough
Activity diary survey (paper based)					4

Focus on time-use behavior

The day's time-use behavior of the participant

- Recreation 8.0 hours
- Recreation 8.0 hours 5

Time-use analysis from some perspectives

- Time-use patterns of inhabitants may vary across cities. (It could depend on regional characteristics and urban settings)
- There can be relationships between weekday time-use and holiday time-use.

Research Questions:

What's the difference between urban city and rural city in time-use behavior of workers ?

Is the leisure time of workers on holidays related to the time-use behavior on weekdays?

Do the regional characteristics have an impact on the time-use behavior?

Objectives

- To develop an activity-based model (MDCEV model) and clarify how much time-use on weekdays have an effect on that on holidays.
- To clarify how much regional characteristics have an impact on the time-use behavior on holidays through comparison of urban city \& rural city.

Case study: Comparison of Urban \& Rural Areas

Basic analysis on workers in the two cities from PP data

Average of working time

Average of commuting time

PP survey 2009
21 people
Weekdays: $\mathrm{N}=339$ days
Holidays : N=122 days
Yokohama

Basic analysis based on average number of trips (Leisure activity)

Matsuyama

- The number of trips on holiday is 6.4 times as many as that on weekday in Yokohama.
(2.8 times in Matsuyama)
\rightarrow Do inhabitants in Yokohama tend to refrain from the leisure activities on weekdays ?

Yokohama

PP survey 2009
21 people
Weekdays : N=339 days Holidays : $\mathrm{N}=122$ days

Yokohama

PP survey 2007
50 people

Matsuyama

$+1$

Basic analysis on time-use (Leisure activity) On weekday

- Yokohama spend more time for eating out and less time for recreation and shopping than Matsuyama on weekday.

PP survey 2009
21 people
Weekdays : $\mathrm{N}=339$ days
Holidays : $\mathrm{N}=122$ days

MDCEV (Multiple Discrete-Continuous Extreme Value) model

(Bhat 2005, 2008)
Random utility function

$$
U(x)=\frac{1}{\alpha_{1}} \psi_{1} x_{1}^{\alpha_{1}}+\sum_{k=2}^{K} \frac{\gamma_{k}}{\alpha_{k}} \psi_{k}\left\{\left(\frac{x_{k}}{\gamma_{k}}+1\right)^{\alpha_{k}}-1\right\}
$$

where $\psi_{1}=\exp \left(\varepsilon_{1}\right)$, and $\psi_{k}=\exp \left(\beta^{\prime} z_{k}+\varepsilon_{k}\right)$

$$
\begin{gathered}
\alpha_{k} \rightarrow 0 \quad \gamma_{k} \rightarrow 1 \\
U(x)=\psi_{1} \ln x_{1}+\sum_{k=2}^{K} \psi_{k} \ln \left(x_{k}+1\right)
\end{gathered}
$$

$$
V_{k}=\beta^{\prime} z_{k}-\ln \left(x_{k}^{*}+1\right)
$$

$$
V_{1}=-\ln \left(t_{1}^{*}\right)
$$

$$
\begin{aligned}
& \mathrm{P}\left(t_{1}^{*}, t_{2}^{*}, \ldots, t_{M}^{*}, 0, \ldots, 0\right) \\
& \quad=\left[\prod_{i=1}^{M} f_{i}\right]\left[\sum_{i=1}^{M} \frac{1}{f_{i}}\right]\left[\frac{\prod_{i=1}^{M} e^{V_{i}}}{\left(\sum_{k=1}^{4} e^{V_{k}}\right)^{M}}\right](M-1)!\quad \text { where } f_{i}=\left(\frac{1}{t_{i}^{*+1}}\right)
\end{aligned}
$$

$$
(k \geq 2)
$$

- MDCEV is one of the discrete-continuous choice models
- MDCEV is only model to analyze multiple activity choice \& duration choice behavior simultaneously

Example of independent samples

duration time
(shopping)

PP survey 2009
21 people
Weekdays : $\mathrm{N}=339$
days
Holidays : N=122
days
Yokohama

Matsuyama
PP survey 2007
50 people
Weekdays : N=793 days
Holidays : $N=298$
** days

Example of dependent samples

Panel-MDCEV model (Mixed MDCEV model)

(Bhat 2008)

$$
\begin{aligned}
& \eta_{i j} \sim N\left(0, \sigma_{\eta_{j}}^{2}\right) \\
& \psi_{i d j}=\exp \left(\beta^{\prime} z_{i d j}+\eta_{i j}+\varepsilon_{i d j}\right) \\
& \text { Normal distribution } \quad \text { Gumbel distribution }
\end{aligned}
$$

$$
L\left(\beta, \sigma_{\eta} \mid \mathrm{t}_{\mathrm{id}}^{*}, \mathrm{z}_{\mathrm{id}}\right)=\int_{\eta_{\mathrm{i}}}\left\{\prod_{N_{i d}} P\left(\mathrm{t}_{\mathrm{id}}^{*} \mid \beta, \eta_{\mathrm{i}}\right) \times f\left(\eta_{\mathrm{i}} \mid \sigma_{\eta}\right)\right\} \mathrm{d} \eta_{\mathrm{i}}
$$

$\pi\left(\beta, \sigma_{\eta} \mid \mathrm{t}_{\mathrm{id}}^{*}, \mathrm{z}_{\mathrm{id}}\right) \propto \prod_{N_{i d}} P\left(\mathrm{t}_{\mathrm{id}}^{*} \mid \beta, \eta_{\mathrm{i}}\right) f\left(\eta_{\mathrm{i}} \mid \sigma_{\eta}\right) \varphi\left(\sigma_{\eta}\right) \varphi(\beta)$

$$
\begin{gathered}
P\left(t_{i d 1}^{*}, t_{i d 2}^{*}, \ldots, 0,0 \mid \eta\right)= \\
\frac{1}{\sigma^{K_{i d}-1}}\left[\prod_{k=1}^{K_{i d}} f_{i d k}\right]\left[\sum_{k=1}^{K_{i d}} \frac{1}{f_{i d k}}\right]\left[\frac{\prod_{k=1}^{K_{i d}} e^{\left(V_{i d k}+\eta_{i k}\right) / \sigma}}{\left(\sum_{j=1}^{J_{i d}} e^{\left(V_{i d j}+\eta_{i j}\right) / \sigma}\right)^{K_{i d}}}\right]\left(K_{i d}-1\right)!
\end{gathered}
$$

$V_{i d j}=\sum_{q}^{Q} \beta_{j q} z_{i d j q}-\ln \left(t_{i d k}^{*}+1\right), \quad$ where $f_{i d k}=\frac{1}{t_{i d k}^{*}+1}$
-We use a Bayesian procedure based on Markov Chain Monte Carlo (MCMC) method to estimate the parameter β and σ_{n}.

Using the explanatory variables as follows:

- Age
- Dummy variable $($ Male $=1$, female $=0)$

- Average work time
- Average commuting time

- Average number of trips on weekday
- Average recreation time on weekday
- Average eating out time on weekday
- Average shopping time on weekday

Time-use for the activities on weekday

Estimate the model and clarify these effects which affect time-use behavior for recreation, eating out and shopping on holiday.

Yokohama

MDCEV model (last year)

variable	parameter t-value

Matsuyama

recreation (holidays)

constant
average number of trips (weekdays) recreation time (weekdays) eating out time (weekdays)
shopping time (weekdays) satiation parameter

eating out (holidays)

constant

average commuting time

age

eating out time (weekdays)
satiation parameter
shopping (holidays)
constant
average working time
female dummy
eating out time (weekdays)
shopping time (weekdays)

satiation parameter	18.46	$3.80 * * *$
		122

sample size
initial likelihood
final likelihood
rho square

-1178.50
-1178.50
-1151.75

recreation (holidays)

constant $-5.99 \quad-7.69 * * *$
average number of trips (weekdays)
$-0.31-3.65 * * *$
age
-0.03 -1.36
female dummy
$-0.87-2.60$ ***
$1.151 .89 *$
recreation time (weekdays)
105.64
3.09 ***
eating out (holidays)
constant
$-7.07 \quad-11.56 * * *$
average commuting time
transport mode changes to commute
$0.55 \quad 2.49$ **
age
$0.50 \quad 1.15$
$-0.04 \quad-2.53$ **
recreation time (weekdays) $-1.20-1.85 *$
eating out time (weekdays) $0.40 \quad 0.65$
satiation parameter $50.43 \quad 3.78 * * *$
shopping (holidays)
constant
$-8.69-13.58 * * *$
$2.25 \quad 2.59 * * *$
$8.45 \quad 3.87$ ***
-2.53 -3.49 ***
$18.46 \quad 3.80$ ***
0.023
$\begin{array}{lll}\text { average working time } & 0.04 & 1.14\end{array}$
$0.04-1.14$
age
$0.04 \quad 2.95 * * *$
female dummy 0.57 2.67***
shopping time (weekdays) $\quad 0.79 \quad 2.27$ **

satiation parameter	10.84	$6.25 * * *$

sample size 298
initial likelihood
-2576.08
final likelihood
-2536.20
rho square
0.015

Panel-MDCEV model

Yokohama

variable	Jaramete	t-value
recreation (holidays)		
constant	-15.36	$-3.36^{* * *}$
average number of trips (weekdays)	1.02	0.65^{*}
recreation time (weekdays)	-13.38	-1.61
eating out time (weekdays)	-22.21	-1.64
shopping time (weekdays)	13.58	$2.26^{* *}$
eating out (holidays)		
constant	-15.78	$-3.24^{* * *}$
average commuting time	-2.91	-1.88^{*}
age	0.24	$2.11^{* *}$
eating out time (weekdays)	8.02	1.788^{*}
shopping (holidays)	-4.43	-1.42
constant	0.39	$2.01^{* *}$
average working time	-4.12	-1.60
male dummy	15.54	$2.91^{* * *}$
eating out time (weekdays)	-4.53	$-2.15{ }^{* *}$
shopping time (weekdays)		122
sample size		1490.78
DIC		

Matsuyama

variable	Jaramete	t-value
recreation (holidays)		
constant	-6.54	$-2.08^{* *}$
average number of trips (weekdays)	-0.81	$-1.99^{* *}$
age	-0.14	-1.70^{*}
male dummy	2.82	1.84^{*}
recreation time (weekdays)	4.39	1.43
eating out (holidays)		
constant	-6.65	$-2.899^{* * *}$
average commuting time	1.51	1.31
transport mode changes to commute	1.78	0.96
age	-0.13	$-2.066^{* *}$
recreation time (weekdays)	-3.53	-1.33
eating out time (weekdays)	1.40	0.49
shopping (holidays)		
constant	-8.06	$-7.022^{* * *}$
average working time	0.10	1.40
age	0.07	$3.25 * * *$
male dummy	-1.10	$-2.51^{* *}$
shopping time (weekdays)	1.33	$1.61^{* *}$
sample size		298
DIC	3322.67	

Panel-MDCEV model

Yokohama

variable	jaramete	t-value
recreation (holidays)		
constant	-15.36	-3.36 ***
average number of trips (weekdays)	1.02	0.65
recreation time (weekdays)	-13.38	-1.61
eating out time (weekdays)	-22.21	-1.64
shopping time (weekdays)	13.58	2.26 **
eating out (holidays)		
constant	-15.78	-3.24***
average commuting time	-2.91	-1.88*
age	0.24	2.11 **
eating out time (weekdays)	8.02	1.78 *
shopping (holidays)		
average working time	0.39	2.01 **
male dummy	-4.12	-1.60
eating out time (weekdays)	15.54	2.91 ***
shopping time (weekdays)	-4.53	-2.15 **
sample size		122
DIC		1490.78

Matsuyama

variable	jaramete	t-value
recreation (holidays)		
constant	-6.54	-2.08**
average number of trips (weekdays)	-0.81	-1.99 **
age	-0.14	-1.70 *
male dummy	2.82	1.84 *
recreation time (weekdays)	4.39	1.43
eating out (holidays)		
constant	-6.65	-2.89 ***
average commuting time	1.51	1.31
Weekday time-use variables significantly influence holiday time-use behavior in Yokohama		
constant	-8.06	-7.02 ***
average working time	0.10	1.40
age	0.07	$3.25 * * *$
male dummy	-1.10	-2.51**
shopping time (weekdays)	1.33	1.61
sample size		298
DIC		3322.67

Panel-MDCEV model

Yokohama

variable	jaramete	t-value
recreation (holidays)		
constant	-15.36	$-3.36{ }^{* * *}$
average number of trips (weekdays)	1.02	0.65
recreation time (weekdays)	-13.38	-1.61
eating out time (weekdays)	-22.21	-1.64
shopping time (weekdays)	13.58	$2.26{ }^{* *}$
eatina out (holidavs)		
No weekday time-use variable		
Significantly influence in Matsuyama		

Matsuyama

variable	गaramete	t-value
recreation (holidays)		
constant	-6.54	$-2.08^{* *}$
average number of trips (weekdays)	-0.81	$-1.99^{* *}$
age	-0.14	-1.70^{*}
male dummy	2.82	1.84^{*}
recreation time (weekdays)	4.39	1.43
eating out (holidays)		
constant	-6.65	$-2.899^{* * *}$
average commuting time	1.51	1.31
transport mode changes to commute	1.78	0.96
age	-0.13	$-2.066^{* *}$
recreation time (weekdays)	-3.53	-1.33
eating out time (weekdays)	1.40	0.49
shopping (holidays)		
constant	-8.06	$-7.022^{* * *}$
average working time	0.10	1.40
age	0.07	$3.25 * * *$
male dummy	-1.10	$-2.51^{* *}$
shopping time (weekdays)	1.33	$1.61^{* *}$
sample size		298
DIC		3322.67

Panel-MDCEV model

Yokohama

variable	jaramete	t-value
recreation (holidays)		
constant	-15.36	$-3.36 * * *$
average number of trips (weekdays)	1.02	0.65
recreation time (weekdays)	-13.38	-1.61
eating out time (weekdays)	-22.21	-1.64
shopping time (weekdays)	13.58	2.26 **
eating out (holidavs)		
Individual attribute variables		
significantly influence in Matsuyama		
eating out time (weekdays)	8.02	1.78 *
shopping (holidays)		
constant	-4.43	-1.42
average working time	0.39	2.01 **
male dummy	-4.12	-1.60
eating out time (weekdays)	15.54	2.91 ***
shopping time (weekdays)	-4.53	-2.15**
sample size		122
DIC		1490.78

Matsuyama

variable	jaramete	t-value
recreation (holidays)		
constant	-6.54	-2.08**
average number of trips (weekdays)	-0.81	-1.99 **
age	-0.14	-1.70 *
male dummy	2.82	1.84 *
recreation time (weekdays)	4.39	1.43
eating out (holidays)		
constant	-6.65	-2.89 ***
average commuting time	1.51	1.31
transport mode changes to commute	1.78	0.96
age	-0.13	-2.06 **
recreation time (weekdays)	-3.53	-1.33
eating out time (weekdays)	1.40	0.49
shopping (holidays)		
constant	-8.06	-7.02 ***
average working time	0.10	1.40
age	0.07	3.25 ***
male dummy	-1.10	-2.51 **
shopping time (weekdays)	1.33	1.61
sample size		298
DIC		3322.67

Panel-MDCEV model

Yokohama

variable	Jaramete	t-value
recreation (holidays)		
constant	-15.36	$-3.36^{* * *}$
average number of trips (weekdays)	1.02	0.65^{*}
recreation time (weekdays)	-13.38	-1.61
eating out time (weekdays)	-22.21	-1.64
shopping time (weekdays)	13.58	$2.26^{* *}$
eating out (holidays)		
constant	-15.78	$-3.24^{* * *}$
average commuting time	-2.91	-1.88^{*}
age	0.24	$2.11^{* *}$
eating out time (weekdays)	8.02	1.78^{*}
shopping (holidays)	-4.43	-1.42
constant	0.39	$2.01^{* *}$
average working time	-4.12	-1.60
male dummy	15.54	$2.91^{* * *}$
eating out time (weekdays)	-4.53	$-2.15^{* *}$
shopping time (weekdays)		122^{*}
sample size		1490.78
DIC		

Matsuyama

variable
jaramete t-value

recreation (holidays)		
constant	-6.54	$-2.08^{* *}$
average number of trips (weekdays)	-0.81	$-1.99^{* *}$
age	-0.14	-1.70^{*}
male dummy	2.82	1.84^{*}
recreation time (weekdays)	4.39	1.43
eating out (holidays)	-6.65	$-2.89 *^{* *}$
constant	1.51	1.31

Only one individual attribute variable significantly influence in Yokohama

constant	-8.06	$-7.02 * * *$
average working time	0.10	1.40
age	0.07	$3.25 * * *$
male dummy	-1.10	$-2.51 * *$
shopping time (weekdays)	1.33	1.61
sample size		298
DIC	3322.67	

Conclusion

- The number of statistically significant variables is decrease after applying panel-MDCEV model
- Weekday time-use variables significantly influence holiday timeuse behavior in Yokohama, but not in Matsuyama.
(average working time and shopping time on weekdays for shopping on holiday)
- The dominant factors affecting activity time-use behavior on holiday are different in the two cities.
-Weekday time-use variables (in Yokohama)
>Individual attributes such as age and gender (in Matsuyama)

Future Work

- More sample size and applications to other regions
- To estimate both time allocations jointly (weekdays and holidays)
Astroza, S., Bhat, P. C., Bhat, C. R., Pendyala, R. M., \& Garikapati, V. M. (2018).
Understanding activity engagement across weekdays and weekend days: A multivariate multiple discrete-continuous modeling approach. Journal of Choice Modelling, 28, 56-70.

Thank you for your listening !

References

- Becker, G.: A Theory of the Allocation of Time, The Economic Journal, Vol.75, pp.493-517, 1965.
- Asakura, Y. and Hato, E. : Tracking survey for individual travel behaviour using mobile communication instruments, Transportation Research Part C: Emerging Technologies, Vol. 12, pp.273-291, 2004.
- Bhat, C.R. : A multiple discrete-continuous extreme value model: formulation and application to discretionary time-use decisions, Transportation Research Part B: Methodological, Vol. 39, pp.679-707, 2005.
- Bhat, C.R. : The multiple discrete-continuous extreme value (MDCEV) model: Role of utility function parameters, identification considerations, and model extensions, Transportation Research Part B: Methodological, Vol.42, pp.274-303, 2008.
- Pinjari, A. R., Bhat, C. R., Hensher, D. A.: Residential self-selection effects in an activity timeuse behavior model, Transportation Research Part B, Vol.43, pp.729-748, 2009.
- Calastri, C., Hess, S., Daly, A., Carrasco, J. A.: Does the social context help with understanding and predicting the choice of activity type and duration? An application of the Multiple DiscreteContinuous Nested Extreme Value model to activity diary data. Transportation Research Part A, Vol.104, pp.1-20, 2017.
- Chikaraishi, M., Zhang, J. and Fujiwara, A. : Exploring long-term changes of cross-sectional variations in Japanese time use behaviour, Journals of the Japan Society of Civil Engineers, Vol.68, pp.200-215, 2012.

Estimated results (summary)

Urban city (Yokohama)

:Similar tendency
:Opposite tendency

Recreation

- Participants with long-time recreation in weekday spend more time on recreation in holiday.

Eating out

- Participants with long-time eating out in weekday spend more time on eating out in holiday.

Shopping

- The elderly tend to spend less time on shopping in holiday.
- Participants with long-time work in weekday spend more time on shopping in holiday.

Rural city (Matsuyama)

Recreation

- Participants with long-time recreation in weekday spend more time on recreation in holiday.
- Participants with many trips in weekday spend less time on recreation in holiday.

Eating out

- The elderly tend to spend less time on eating out in holiday.

Shopping

- The elderly tend to spend more time on shopping.
- Participants with long-time shopping in weekday spend more time on shopping in holiday.
Yokohama

	recreation		eating out		shopping	
individual variation(s.d.)	1.91	(1.99)	1.81	(1.07)	1.233	(0.60)

Matsuyama

	recreation		eating out		shopping	
individual variation(s.d.)	1.95	(1.32)	2.16	(1.02)	0.94	(0.27)

