Time Allocation of Leisure activities of Workers on Holidays Considering Effect of Weekday Activities: Comparison of Urban and Rural Areas

> The 17th summer course Behavior modeling in transportation networks September 14-16, 2018

Hajime WATANABE Kumamoto University, Japan

Activity-based Modelling & Activity Survey

- Travel demand is derived from activities
- Better understanding of behavior

Trip-based four stage model

Activity-based travel demand model

Probe Person(PP) survey

Web diary

- ✓ Disaggregate data
- ✓ Travel mode
- ✓ Origin and destination
- ✓ Departure and arrival time
- ✓ Trip purposeEtc…

Advantages of PP data

- Collecting time data more accurately
- Day-to-day data (Both weekday & holiday)
- Long term observation data(during about 1month)

	Time accuracy	Enough sample size	Long term observation	Weekday & holiday data	
PP survey (GPS based)	0		0	0	О : ОК
PT survey (paper based)		0	0		: Not Enough
Activity diary survey (paper based)				0	Л

The day's time-use behavior of the participant

- <u>Recreation 8.0 hours</u>
- Eating out 2.0 hours

Time-use analysis from some perspectives

Time-use patterns of inhabitants may vary across cities.
 (It could depend on regional characteristics and urban settings)

• There can be relationships between weekday time-use and holiday time-use.

Research Questions:

What's the difference between urban city and rural city in time-use behavior of workers ?

Is the leisure time of workers on holidays related to the time-use behavior on weekdays ?

Do the regional characteristics have an impact on the time-use behavior ?

- To develop an activity-based model (MDCEV model) and clarify how much time-use on weekdays have an effect on that on holidays.
- To clarify how much regional characteristics have an impact on the time-use behavior on holidays through comparison of urban city & rural city.

Case study: Comparison of Urban & Rural Areas

Land area : 429.40km2 Population : 512,780 Population density : 1190/km2 Land area : 437.56km2 Population : 3,733,807 Population density : 8,530/km2

Basic analysis on workers in the two cities from PP data

Basic analysis based on average <u>number of trips</u> (Leisure activity)

- The number of trips on holiday is 6.4 times as many as that on weekday in Yokohama.
- (2.8 times in Matsuyama)
- → Do inhabitants in Yokohama tend to refrain from the leisure activities on weekdays ?

Basic analysis on time-use (Leisure activity)

 Yokohama spend more time for eating out and less time for recreation and shopping than Matsuyama on weekday.

Matsuyama

PP survey 2009 21 people Weekdays : N=339 days Holidays : N=122 days **/**

Yokohama

PP survey 2007 50 people

Weekdavs : N=793 davs

Holidays : N=298 days

MDCEV (Multiple Discrete-Continuous Extreme Value) model (Bhat 2005, 2008)

Random utility function

$$U(x) = \frac{1}{\alpha_1} \psi_1 x_1^{\alpha_1} + \sum_{k=2}^K \frac{\gamma_k}{\alpha_k} \psi_k \left\{ \left(\frac{x_k}{\gamma_k} + 1 \right)^{\alpha_k} - 1 \right\}$$

where $\psi_1 = \exp(\varepsilon_1)$, and $\psi_k = \exp(\beta' z_k + \varepsilon_k)$

- Ψ_k : baseline utility
- α_k : satiation parameter
- γ_k : translation parameter
- ε_k : error term
- β' : parameter
- z_k : explanatory variables
- x_k : consumption of good k

$$\alpha_k \rightarrow 0 \quad \gamma_k \rightarrow 1$$

$$U(x) = \psi_1 \ln x_1 + \sum_{k=2}^{K} \psi_k \ln(x_k + 1)$$

$$V_k = \beta' z_k - \ln(x_k^* + 1)$$

$$V_1 = -\ln(t_1^*)$$

$$Z_k : explanatory variables$$

$$x_k : consumption of good k$$

$$P(t_1^*, t_2^*, \dots, t_M^*, 0, \dots, 0)$$

$$= \left[\prod_{i=1}^{M} f_i\right] \left[\sum_{i=1}^{M} \frac{1}{f_i}\right] \left[\frac{\prod_{i=1}^{M} e^{V_i}}{(\sum_{k=1}^{4} e^{V_k})^M}\right] (M-1)! \quad \text{where } f_i = \left(\frac{1}{t_i^* + 1}\right)$$

- $(k \ge 2)$
- **MDCEV** is one of the discrete-continuous choice models
- MDCEV is only model to analyze multiple activity choice & duration choice behavior simultaneously

Example of independent samples

Example of dependent samples

The number of sample from individual A is large

Panel-MDCEV model (Mixed MDCEV model) (Bhat 2008)

$$L(\beta, \sigma_{\eta} | \mathbf{t}_{id}^{*}, \mathbf{z}_{id}) = \int_{\eta_{i}} \left\{ \prod_{N_{id}} P(\mathbf{t}_{id}^{*} | \beta, \eta_{i}) \times f(\eta_{i} | \sigma_{\eta}) \right\} d\eta_{i}$$
$$\pi(\beta, \sigma_{\eta} | \mathbf{t}_{id}^{*}, \mathbf{z}_{id}) \propto \prod_{N_{id}} P(\mathbf{t}_{id}^{*} | \beta, \eta_{i}) f(\eta_{i} | \sigma_{\eta}) \varphi(\sigma_{\eta}) \varphi(\beta)$$

$$P(t_{id1}^{*}, t_{id2}^{*}, ..., 0, 0 | \eta) = \frac{1}{\sigma^{K_{id}-1}} \left[\prod_{k=1}^{K_{id}} f_{idk} \right] \left[\sum_{k=1}^{K_{id}} \frac{1}{f_{idk}} \right] \left[\frac{\prod_{k=1}^{K_{id}} e^{(V_{idk} + \underline{\eta}_{ik})/\sigma}}{\left(\sum_{j=1}^{J_{id}} e^{(V_{idj} + \underline{\eta}_{ij})/\sigma}\right)^{K_{id}}} \right] (K_{id} - 1)!$$

$$V_{idj} = \sum_{q}^{Q} \beta_{jq} z_{idjq} - \ln(t_{idk}^{*} + 1), \text{ where } f_{idk} = \frac{1}{t_{idk}^{*} + 1}$$

• We use a Bayesian procedure based on Markov Chain Monte Carlo (MCMC) method to estimate the parameter β and σ_{η} .

Using the explanatory variables as follows:

- Age
- Dummy variable (Male=1, female=0)
- Average work time
- Average commuting time
- Average number of trips on weekday
- Average recreation time on weekday
- Average eating out time on weekday
- Average shopping time on weekday

Individual attributes

Work-related characteristics (regional characteristics)

Time-use for the activities on weekday

Estimate the model and clarify these effects which affect time-use behavior for recreation, eating out and shopping on holiday.

MDCEV model (last year)

Matsuyama

Valvahama	mouci (la	st ycar j	Maisuyama		
Yokonama			variable	parameter	t-value
variable	parameter	t-value	recreation (holidays)		
recreation (holidays)			constant	-5.99	-7.69 ***
constant	-9.22	-9.92 ***	average number of trips (weekdays)	-0.31	-3.65 ***
average number of trips (weekdays)	0.24	0.79	age	-0.03	-1.36
recreation time (weekdays)	-4.21	-2.75 ***	female dummy	-0.87	-2.60 ***
eating out time (weekdays)	-6.44	-1.91 *	recreation time (weekdays)	1.15	1.89 *
shopping time (weekdays)	4.05	3.41 ***	satiation parameter	105.64	3.09 ***
satiation parameter	80.80	2.22 **	eating out (holidays)		
eating out (holidays)			constant	-7.07	-11.56 ***
constant	-9.89	-8.03 ***	average commuting time	0.55	2.49 **
average commuting time	-0.72	-1 73 *	transport mode changes to commute	0.50	1.15
	0.72	1.70 ₩ 2 20 * *	age	-0.04	-2.53 **
age	0.07	1 1 2	recreation time (weekdays)	-1.20	-1.85 *
eating out time (weekdays)	2.55	1.10 1.10	eating out time (weekdays)	0.40	0.65
	30.00	ረ.9ረ ጥጥጥ	satiation parameter	50.43	3.78 ***
shopping (holidays)			shopping (holidays)		
constant	-8.56	-10.81 ***	constant	-8.69	-13.58 ***
average working time	0.21	2.44 **	average working time	0.04	1.14
female dummy	2.25	2.59 ***	age	0.04	2.95 ***
eating out time (weekdays)	8.45	3.87 ***	female dummy	0.57	2.67 ***
shopping time (weekdays)	-2.53	-3.49 ***	shopping time (weekdays)	0.79	2.27 **
satiation parameter	18.46	3.80 ***	satiation parameter	10.84	6.25 ***
sample size		122	sample size		298
initial likelihood		-1178.50	initial likelihood		-2576.08
final likelihood		-1151.75	final likelihood		-2536.20
rho square		0.023	rho square		0.015

Yokohama

variable	baramete	t-value
recreation (holidays)		
constant	-15.36	-3.36 ***
average number of trips (weekdays)	1.02	0.65
recreation time (weekdays)	-13.38	-1.61
eating out time (weekdays)	-22.21	-1.64
shopping time (weekdays)	13.58	2.26 **
eating out (holidays)		
constant	-15.78	-3.24 ***
average commuting time	-2.91	-1.88 *
age	0.24	2.11 **
eating out time (weekdays)	8.02	1.78 *
shopping (holidays)		
constant	-4.43	-1.42
average working time	0.39	2.01 **
male dummy	-4.12	-1.60
eating out time (weekdays)	15.54	2.91 ***
shopping time (weekdays)	-4.53	-2.15 **
sample size		122
DIC		1490.78

Matsuyama

variable	paramete	t-value	
recreation (holidays)			
constant	-6.54	-2.08	**
average number of trips (weekdays)	-0.81	-1.99	**
age	-0.14	-1.70	*
male dummy	2.82	1.84	*
recreation time (weekdays)	4.39	1.43	
eating out (holidays)			
constant	-6.65	-2.89	***
average commuting time	1.51	1.31	
transport mode changes to commute	e 1.78	0.96	
age	-0.13	-2.06	**
recreation time (weekdays)	-3.53	-1.33	
eating out time (weekdays)	1.40	0.49	
shopping (holidays)			
constant	-8.06	-7.02	***
average working time	0.10	1.40	
age	0.07	3.25	***
male dummy	-1.10	-2.51	**
shopping time (weekdays)	1.33	1.61	
sample size		298	
DIC		3322.67	

Yokohama

variable	paramete	t-value	
recreation (holidays)			
constant	-15.36	-3.36	***
average number of trips (weekdays)	1.02	0.65	
recreation time (weekdays)	-13.38	-1.61	
eating out time (weekdays)	-22.21	-1.64	
shopping time (weekdays)	13.58	2.26	**
eating out (holidays)			
constant	-15.78	-3.24	***
average commuting time	-2.91	-1.88	*
age	0.24	2.11	**
eating out time (weekdays)	8.02	1.78	*
shopping (holidays)			
constant	-4.43	-1.42	
average working time	0.39	2.01	**
male dummy	-4.12	-1.60	
eating out time (weekdays)	15.54	2.91	***
shopping time (weekdays)	-4.53	-2.15	**
sample size		122	
DIC		1490.78	

Matsuyama

variable	paramete	t-value
recreation (holidays)		
constant	-6.54	-2.08 **
average number of trips (weekdays)	-0.81	-1.99 **
age	-0.14	-1.70 *
male dummy	2.82	1.84 *
recreation time (weekdays)	4.39	1.43
eating out (holidays)		
constant	-6.65	-2.89 ***
average commuting time	1.51	1.31

Weekday time-use variables significantly influence holiday time-use behavior in Yokohama

		-
-8.06	-7.02 **	k *
0.10	1.40	
0.07	3.25 **	k *
-1.10	-2.51 **	<
1.33	1.61	
	298	
	3322.67	
	-8.06 0.10 0.07 -1.10 1.33	-8.06 -7.02 ** 0.10 1.40 0.07 3.25 ** -1.10 -2.51 ** 1.33 1.61 298 3322.67

Yokohama

variable	paramete	t-value
recreation (holidays)		
constant	-15.36	-3.36 ***
average number of trips (weekdays)	1.02	0.65
recreation time (weekdays)	-13.38	-1.61
eating out time (weekdays)	-22.21	-1.64
shopping time (weekdays)	13.58	2.26 **
eating out (holidays)		

No weekday time-use variable significantly influence in Matsuyama

eating out time (weekdays)	8.02	1.78 *
shopping (holidays)		
constant	-4.43	-1.42
average working time	0.39	2.01 **
male dummy	-4.12	-1.60
eating out time (weekdays)	15.54	2.91 ***
shopping time (weekdays)	-4.53	-2.15 **
sample size		122
DIC		1490.78

Matsuyama

variable	paramete	t-value	
recreation (holidays)			
constant	-6.54	-2.08	**
average number of trips (weekdays)	-0.81	-1.99	**
age	-0.14	-1.70	*
male dummy	2.82	1.84	*
recreation time (weekdays)	4.39	1.43	
eating out (holidays)			
constant	-6.65	-2.89	***
average commuting time	1.51	1.31	
transport mode changes to commute	e 1.78	0.96	
age	-0.13	-2.06	**
recreation time (weekdays)	-3.53	-1.33	
eating out time (weekdays)	1.40	0.49	
shopping (holidays)			
constant	-8.06	-7.02	***
average working time	0.10	1.40	
age	0.07	3.25	***
male dummy	-1.10	-2.51	**
shopping time (weekdays)	1.33	1.61	
sample size		298	
DIC		3322.67	

Yokohama

variable	paramete	t-value	
recreation (holidays)			
constant	-15.36	-3.36 *	**
average number of trips (weekdays)	1.02	0.65	
recreation time (weekdays)	-13.38	-1.61	
eating out time (weekdays)	-22.21	-1.64	
shopping time (weekdays)	13.58	2.26 *	*
eating out (holidays)			

Individual attribute variables significantly influence in Matsuyama

eating out time (weekdays)	8.02	1.78 *	
shopping (holidays)			
constant	-4.43	-1.42	
average working time	0.39	2.01 **	*
male dummy	-4.12	-1.60	
eating out time (weekdays)	15.54	2.91 **	**
shopping time (weekdays)	-4.53	-2.15 **	*
sample size		122	
DIC		1490.78	

Matsuyama

variable paramete t-valu				
recreation (holidays)				
constant	-6.54	-2.08 **		
average number of trips (weekdays)	-0.81	-1.99 **		
age	-0.14	-1.70 *		
male dummy	2.82	1.84 *		
recreation time (weekdays)	4.39	1.43		
eating out (holidays)				
constant	-6.65	-2.89 ***		
average commuting time	1.51	1.31		
transport mode changes to commute	e 1.78	0.96		
age	-0.13	-2.06 **		
recreation time (weekdays)	-3.53	-1.33		
eating out time (weekdays) 1.40 0.49				
shopping (holidays)				
constant	-8.06	-7.02 ***		
average working time	0.10	1.40		
age	0.07	3.25 ***		
male dummy	-1.10	-2.51 **		
shopping time (weekdays)	1.33	1.61		
sample size		298		
DIC		3322.67		

Yokohama

variable	paramete	t-value	
recreation (holidays)			
constant	-15.36	-3.36	***
average number of trips (weekdays)	1.02	0.65	
recreation time (weekdays)	-13.38	-1.61	
eating out time (weekdays)	-22.21	-1.64	
shopping time (weekdays)	13.58	2.26	**
eating out (holidays)			
constant	-15.78	-3.24	***
average commuting time	-2.91	-1.88	*
age	0.24	2.11	**
eating out time (weekdays)	8.02	1.78	*
shopping (holidays)			
constant	-4.43	-1.42	
average working time	0.39	2.01	**
male dummy	-4.12	-1.60	
eating out time (weekdays)	15.54	2.91	***
shopping time (weekdays)	-4.53	-2.15	**
sample size		122	
DIC		1490.78	

Matsuyama

variable	paramete	t-value
recreation (holidays)		
constant	-6.54	-2.08 **
average number of trips (weekdays)	-0.81	-1.99 **
age	-0.14	-1.70 *
male dummy	2.82	1.84 *
recreation time (weekdays)	4.39	1.43
eating out (holidays)		
constant	-6.65	-2.89 ***
average commuting time	1.51	1.31

Only one individual attribute variable significantly influence in Yokohama

-8.06	-7.02 ***
0.10	1.40
0.07	3.25 ***
-1.10	-2.51 **
1.33	1.61
	298
3	322.67
	-8.06 0.10 0.07 -1.10 1.33

Conclusion

- The number of statistically significant variables is decrease after applying panel-MDCEV model
- Weekday time-use variables significantly influence holiday timeuse behavior in Yokohama, but not in Matsuyama.
 (average working time and shopping time on weekdays for shopping on holiday)
- The dominant factors affecting activity time-use behavior on holiday are different in the two cities.
- >Weekday time-use variables (in Yokohama)
- >Individual attributes such as age and gender (in Matsuyama)

Future Work

- More sample size and applications to other regions
- To estimate both time allocations jointly (weekdays and holidays)

Astroza, S., Bhat, P. C., Bhat, C. R., Pendyala, R. M., & Garikapati, V. M. (2018).

Understanding activity engagement across weekdays and weekend days: A multivariate multiple discrete-continuous modeling approach. Journal of Choice Modelling, 28, 56-70.

Thank you for your listening !

References

- Becker, G.: A Theory of the Allocation of Time, The Economic Journal, Vol.75, pp.493-517, 1965.
- Asakura, Y. and Hato, E. : Tracking survey for individual travel behaviour using mobile communication instruments, Transportation Research Part C: Emerging Technologies, Vol. 12, pp.273-291, 2004.
- Bhat, C.R. : A multiple discrete-continuous extreme value model: formulation and application to discretionary time-use decisions, Transportation Research Part B: Methodological, Vol. 39, pp.679-707, 2005.
- Bhat, C.R. : The multiple discrete-continuous extreme value (MDCEV) model: Role of utility function parameters, identification considerations, and model extensions, Transportation Research Part B: Methodological, Vol.42, pp.274-303, 2008.
- Pinjari, A. R., Bhat, C. R., Hensher, D. A.: Residential self-selection effects in an activity timeuse behavior model, Transportation Research Part B, Vol.43, pp.729-748, 2009.
- Calastri, C., Hess, S., Daly, A., Carrasco, J. A.: Does the social context help with understanding and predicting the choice of activity type and duration? An application of the Multiple Discrete-Continuous Nested Extreme Value model to activity diary data. Transportation Research Part A, Vol.104, pp.1-20, 2017.
- Chikaraishi, M., Zhang, J. and Fujiwara, A. : Exploring long-term changes of cross-sectional variations in Japanese time use behaviour, Journals of the Japan Society of Civil Engineers, Vol.68, pp.200-215, 2012.

Estimated results (summary)

Urban city (Yokohama)

Recreation

 Participants with long-time recreation in weekday spend more time on recreation in holiday.

Eating out

 Participants with long-time eating out in weekday spend more time on eating out in holiday.

Shopping

- <u>The elderly tend to spend less time on</u> <u>shopping in holiday.</u>
- Participants with long-time work in weekday spend more time on shopping in holiday.

Rural city (Matsuyama)

Recreation

- Participants with long-time recreation in
- weekday spend more time on recreation in holiday.
- Participants with many trips in weekday spend less time on recreation in holiday.

Eating out

 The elderly tend to spend less time on eating out in holiday.

Shopping

- <u>The elderly tend to spend more time on</u> <u>shopping.</u>
- Participants with long-time shopping in weekday spend more time on shopping in holiday.

:Similar tendency

Yokohama

	rocra	aation	oatir		shor	nina
		cation			Shopping	
individual variation(s.d.)	1.91	(1.99)	1.81	(1.07)	1.233	(0.60)

Matsuyama

						•
	recre	eation	eatir	ig out	shopping	
individual variation(s.d.)	1.95	(1.32)	2.16	(1.02)	0.94	(0.27)