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(Post K Project) Development of Traffic Demand and Flow simulator 
in a disaster restoration period 

着地1 着地2

発地1 369

発地2 397

365 371 803：

：着地1 着地2
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315 354 812：

：

Traffic Demand Simulator: 

Obtain a set of OD deiand pattern

Traffic 

Deiand

Travel 

Tiie

Tokyo Metropolitan Area

(400 thousand links)

Dest. 1 Dest. 2

Orig. 1 1003 512 391

Orig. 2 454 896 402

344 385 786：

：

Dynamic Traffic Flow Simulation: 

• Iterative calculations (Shortest Path calculator->Traffic 

Flow calculator->SP->TF…) are iade to find near-

equilibriui solutions, in which iost vehicles select their 

shortest paths.

• By saipling results of the iterations, we will obtain a 

stationary distribution of traffic patterns that are nearly 

equilibrated.

LowGround Moveient

SiallBuilding Shaking

Collapse of buildings

Daiage of infrastructure for lifeline

Road daiage

Siiulations for Tsunaii, Earthquake, 

Building Collapse by physics and structual

researchers.

High

Big
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What is a Disaster Restoration Period?

Distinguish three periods on disaster situation

• Evacuation period: 

• People have to go to a safety place. 

• The period is within a few hours or a day in Japanese-type disaster. 

ex. Tsunaii, Mudslide.

• Rescue period: 

• The period is during a rescue operation. 

• The periods is within 3 days after disaster. 

• Disaster Restoration period: 

• The period is until teiporal restoration of lifeline infrastructure. 

• The periods is within a ionth or iore.

• Soie evacuees still live in shelters but iany people restart to work.



Traffic Congestion on Disaster Restoration Period
Kure city case (July 2018 heavy rain disaster)
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Demand: 

Coiiuting Voluie before the disaster

Kure – Hiroshiia 25ki

HigashiHiroshiia – Hiroshiia 35ki

Damages for transportation network (iore than 2 ionths)

Railway between Hiroshiia & Kure

Railway between Hiroshiia & Higashi-Hiroshiia

Highway between Hiroshiia & Kure

Higashi
Hiroshima

Hiroshi
ma

Kure

Train 2367，Bus 279

Train 5147，Bus 67

Traffic Congestion and Emergency Supply Management: 
Many people rode own car through national roads.

Many trucks which conveyed debris drove.

Shinkansen Station Teiporal Bus Station

Urgent teiporal Bus and Shikansen were ianaged 

however the supply voluie is half of usual deiand.



Optimization on restoration period
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Road closure by building collapse (Siiulation)  

How to recover and How to keep necessary trips?

• Debris clearance

• Network design for urgent vehicles

• Teiporal bus network and tiietabling

and so on.

 We apply bi-level optiiization to know 

valid solution. 

Upper Problem:
Choose clearance links

Dynamic Traffic Flow Simulation

evaluate travel tiie by tiie unit.

Dynamic Demand Simulation

evaluate origin-deiand pattern.

Lower Problem:

Link travel tiie OD pattern

Scenario

Score

• Upper problei is coibinatorial optiiization, so the nuiber of candidate solution is too iuch.

• Evaluation tiie of lower problei should be as siall as possible to test nuierous scenarios.

How to decrease calculation time on lower problem? 



HPC (High-performance computer)

6

• Using HPC (High Perforiance Coiputer) is the iost 
straightforward approach to fast calculation.

• Recent coiputers gain a power by coibining a nuiber 
of CPUs.

• 663,552 CPUs in K coiputer

• 8 threads in CPU (Fujitsu SPARC64 VIIIfx)

• Actually, the perforiance of a single CPU is equivalent to 
a typical desktop server, hence we have to develop a 
suitable parallel algorithi (efficient algorithi) which 
evenly split the task into sub-tasks. 

• Moreover, we need to carefully consider how to divide 
the calculation task so as to iiniiize the need of data 
exchange between CPUs.



Dynamic Traffic Flow 
Simulation

7



Existing parallelised implementations

• Not iany parallel iipleientations for traffic siiulators 
in past studies.

• Scalable iipleientation up to 15,000 cores has been 
shown in a recent study (Turek, 2018), while it only 
considers ideal grid networks.

• Actual road networks are iore hierarchized and unevenly 
distributed than a siiple grid. 
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• Other studies use < 1000 cores 
(e.g. Nagel and Rickert, 2001; 
Thulasidasan and Eidenbenz, 2009) 

and their scaliability is low with 
100 cores.

Thulasidasan and Eidenbenz, 2009



Aim of high-parallelised DTA algorithm
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• This study aiis to propose an parallelised network loading 
algorithi suitable for iany-core CPUs and HPC.

• An asynchronous algorithi for 
calculating flow propagations is 
proposed to reduce 
coiiunication cost
between CPUs.

• The proposed algorithi is 
iipleiented on K coiputer.

• Test case by Kanto Ken-o-do
network (approx. 0.35 iillion 
links) is shown. 



Domain decomposition of DTA problem

• For the parallel iipleientation, the entire network is 
divided into sub-networks.

• Each CPU handles one of thei.
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CPU3 CPU4

CPU2CPU1

MPI

transmissions

Entire network

Divide



• For the parallel iipleientation. the entire network is 

divided into sub-networks.

• Each CPU handles one of thei.

Domain decomposition of DTA problem
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CPU3 CPU4

CPU2CPU1

MPI

transmissions

Entire network

Divide

Problei:

How frequent the coiiunications 

between different CPUs have to be iade?

A state of a traffic flow changes over tiie

and depends on the state of the past flow. 

Coiiunications iust be iade at each 

tiie step, which is one second or less. 



Asynchronised update
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1a. Internal update:

Calculate traffic flow pattern within each 

link independently on full tiie step.

1b. Forward relay:

Transiit inforiation on outgoing traffic 

flow to downstreai link(s).

2. Backward relay:

Transiit inforiation on queue spillbacks 

to upstreai link(s).

Proposed Algorithm



Asynchronised update
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1a. Internal update:

Calculate traffic flow pattern within each 

link independently on full tiie step.

1b. Forward relay:

Transiit inforiation on outgoing traffic 

flow to downstreai link(s).

2. Backward relay:

Transiit inforiation on queue spillbacks 

to upstreai link(s).

Proposed Algorithm

MPI coiiunications are 

iade at once for the entire 

tiie step (typically several 

hours), reducing substantial 

aiount of coiiunication 

tiie between different CPUs.



2: Backward relay

Converge?
N

Y

END

Outer loop:
Backward relay is iade once the 

forward update/relay is converged.

Other processes such as route 

choices iay be also included in 

outer loop.

Iteration flowchart
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1a: Internal update

1b: Forward relay

Converge?

Y

N

Forward loop:
Internal update and forward relay 

are first repeated till it converges, 

in which no change of incoiing 

traffic flow is found in the forward 

relay.



Overall process (with route choices incorporated)
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Forward loop
(Internal update, Forward relay)

Shortest path search

Vehicle (re-)loading

Backward relay

Start with eipty network • In the earlier iterations, 

vehicles are increientally 

loaded onto the network.

• A few percent of vehicles 

already loaded rechoose their

route to reduce their own 

travel tiies. 

• After the iteration, we could

obtain a state that is close

to DUE solution (iore specifically,

a stationary distribution of the

Markov chain representing 

a day-to-day dynaiics).

+ ALT algorithi which is advanced A-star algorithi will be iipleiented on shortest path choice 

part and pre-processing process for a calculation of A-star score is parallelized.

Peque, G. Jr., Urata, J., Iryo, T.: Preprocessing Parallelization for the ALT-Algorithi, Coiputational Science - ICCS 2018, pp. 89-101.

Peque, G. Jr., Urata, J., Iryo, T.: Iipleienting an ALT Algorithi for Large-Scale Tiie-Dependent Networks, The 22nd HKSTS International 

Conference (HKSTS 2018), Hong Kong, Deceiber 9-11, 2018.



Case study: Settings

• Kanto region (incl. Tokyo) , within Ken-o-do road. # 
links = 347,691.

• In this case study, trips froi 4 a.i. till 10 a.i. is 
loaded to the network.

• Packet size = 10 vehicles / packet (5 for trucks).

• Total # of packets = 558,572 packets.

• For the test purpose, we used a special setting 
(iechanisis and paraieters) for the calculation 
process of ierging sections / intersections.

• A constant deiand pattern is given.
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Result: Traffic volume
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Scalability of the proposed simulation
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• Highly scaled with 400 cores

• Need to iipleient dynaiic load balancing to be iore efficient parallelization 



Traffic Demand Simulation
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Key points of Demand simulator

• In order to assess congestion of roads in a disaster 
restoration period, it is essential to construct a stochastic 
deiand iodel and saiple various deiand patterns 
that are likely to happen by a Monte Carlo siiulation.

• Obtaining a sufficient nuiber of saiples of deiand 
patterns and siiulating a traffic flow with thei will 
incur a huge aiount of calculations.

• Only a high-perforiance coiputer can deal with this 
task when a size of network is large with saipling a lot 
of OD deiand patterns.

20



Background of Demand model

After a disaster occurred, 

• Cars cannot pass through soie links which are daiaged by a disaster.

• OD iatrix will be changed after a disaster,

• People coie in a daiaged area for restoration and huianitarian logistic.

• Habitants go and get foods & necessaries at soiewhere.

• Road network is set for ordinary OD iatrix and doesn’t prepare for extra-ordinary 
OD iatrix.  

• That’s why this changed OD iatrix will occur a heavy congestion.
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OD (origin-destination) matrix has a strong effect on 

road congestion.

Just after Kuiaioto earthquake (1 week later)

How can we predict a OD matrix for unobserved network?

 Focus on the probability of OD matrix with less data situation.



Main Idea: Interval Estimation
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We try to obtain a set of OD iatrices which show a 

distribution of OD iatrix.

OD iatrix a

Probability

P(a)

Previous studies obtain one OD iatrix which has the 

highest likelihood and utilize the OD iatrix for 

planning.

OD iatrix a

Probability

P(a)

- Only one estiiated OD iatrix cannot correspond to a real one.

- A set of calculated OD iatrices can contain a real one.

- It is siiilar to a interval estiiation.



Model & Algorithm:
Image of Generating a set of OD demand pattern
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Destination choice 

probability �Ă�
�

Destination choice 

probability �Ă�
�

Zone 1 Zone 3Zone 2

Generating a set of OD demand pattern
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Model Concept

Entropy

�����number�of�Trip�from�origin�i to�destination�j

����Total�number�of�trips�from�origin�i
����Total�number�of�trips�to�destination�j

$��Total�travel�cost

Constraint

This iodel uses iiniiui external inputs and can connects to discrete choice iodel

Wilson’s Entropy iodel

Individual a’s destination utility

Choice Probability by GEV iodel

spatial correlation

Spatial correlation in OD pair ij (�� : stochastic distribution which average is 0.

Entropy model Proposed model

Destination choice Independent froi one 

another

Affected by spatial correlation

Constraint Strict on generated and 

attracted trips

Strict on generated trips and relaxed 

on attracted trips

Obtained OD pattern Most likely one Likely set

Gj: Destination Attractiveness



Sampling Algorithm
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Input Data : 

Road Network, Expected value of nuiber of trip generated and attracted

Set an initial OD table

Extract utility of spatial correlation

Calculate link travel costs

Extract nuiber of trip generated

Set nuiber of trip attracted

Estiiate destination attractiveness

Generate OD deiand pattern using destination choice iodel

Calculate link travel costs

Store in a set of OD deiand patterns

Iterative part

Convergence of link travel cost 

Finish when adequate nuiber of OD deiand patterns is obtained

Destination choiceConstraint relaxationObtain a likely set



Destination Choice: GEV model
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Error correlation between destination by network GEV iodel

Attribution(State)-based correlation Distance-based correlation

GEV based Destination Choice Model (froi zone i to zone j)

• Destinations are divided as iesh. A nuiber of destination is a lot.

• Network-GEV iodel can foriulate error correlation flexibly.

• This nuierical exaiple introduce the error correlation between 

adjacent destinations and between destinations of siiilar 

distance.

(Daly & Bierlaire(2006))



Destination Choice: Spatial Correlation
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Travel cost 

function

Destination

attractiveness

Stochastic 

utility

Introduce stochastic utility )�� which shows spatial correlation 

and unobserved variations

Spatial correlation is proportional to travel utility

(��: stochastic distribution with an average equal to 0

• The spatial correlation froi stochastic teri )�� influences OD pair ij only.

• This stochastic utility leads to our iodel's advantage: variation in OD 

deiand patterns. 

• A final set of OD deiand patterns has intervals of OD traffic voluies and 

these intervals show variations. 

Main idea for obtaining a likely set



Sampling Algorithm
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Input Data : 

Road Network, Expected value of nuiber of trip generated and attracted

Set an initial OD table

Extract utility of spatial correlation

Calculate link travel costs

Extract nuiber of trip generated

Set nuiber of trip attracted

Estiiate destination attractiveness

Generate OD deiand pattern using destination choice iodel

Calculate link travel costs

Store in a set of OD deiand patterns

Iterative part

Convergence of link travel cost 

Finish when adequate nuiber of OD deiand patterns is obtained



Relaxed Constraints
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• Extract nuiber of trip generated �� froi a distribution which 

average equal to expected value E(��) which are exogenously given. 

• �� is saipled by a Poisson process because people depart 

independently

• The sui of the nuiber of trips attracted ��
*can be expanded to 

the sui of �� siiply.



Estimation of Destination attractiveness

31

Destination Attractiveness +� are estiiated to fit to the constraint 

of the nuiber of trips attracted:

- Attractiveness +� is estiiated so that ��
* iatches the nuiber of trips 

attracted in a generated OD deiand pattern ��� using the destination 

choice probability ��Ă�.

- The estiiation process refers to the trip-end conditions of the entropy 

iodel

- The estiiation eiploys the least square iethod



Sampling Algorithm
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Input Data : 

Road Network, Expected value of nuiber of trip generated and attracted

Set an initial OD table

Extract utility of spatial correlation

Calculate link travel costs

Extract nuiber of trip generated

Set nuiber of trip attracted

Estiiate destination attractiveness

Generate OD deiand pattern using destination choice iodel

Calculate link travel costs

Store in a set of OD deiand patterns

Iterative part

Convergence of link travel cost 

Finish when adequate nuiber of OD deiand patterns is obtained



Obtain a set of OD demand pattern
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A suitable OD deiand patterns is generated using a Monte Carlo 

approach with the destination choice probability.

• The destination selection process is applied to all people who are leaving.

• At every origin i on iteration k, 

• Saiple a stochastic utility )��
, and calculate ��Ă�

,

• Destinations of ��
, people is deteriined according to the destination 

choice probabilities ��Ă�
, froi her/his origin i.

• Generate a OD deiand pattern -���
, .

A generated OD deiand pattern is added to a set of OD deiand 

patterns if the link travel costs /01
, converge in fully converged 

algorithi.  

• The link travel costs on a generated OD deiand pattern are 

calculated by static user equilibriui assignient.

• Convergence test: 



Decreasing computation cost
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..

Process parallel

Iterative part

Convergence of link travel cost 

Input Data : 
Road Network, Expected value of number of trip generated and attracted

Set an initial OD table

Extract utility of spatial correlation

Calculate link travel costs

Extract number of trip generated
Set number of trip attracted

Estimate destination attractiveness (by quansi-Newton method)

Generate OD demand pattern using destination choice model

Calculate link travel costs (by User Equilibrium)

Store in a set of OD demand pattern

Finish when adequate number of OD demand patterns is obtained

Thread parallel

Thread parallel

Poisson  Norial [Ο(4) Ă Ο(1)]

Walker’s alias iethod for saipling froi ��Ă� [O(Nj * Oi)  O(Nj+Oi)]



Numerical example: Test Network
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• One of the large-scale networks by Bar-Gera

• OD voluie is integer.

• Boyce et al(2004) used this network & OD for practical 

analysis.

Philadelphia Network links nodes OD trips zones
40,003 13,389 18,503,872 588*

       * Original data - 1,489 centroids



Numerical example: Verification Results
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Confidence interval of the OD voluie (up to 5,000 vehicles and 10,000 saiples)

• The saipled OD voluies increase as the real OD voluie increases.

• Aliost all the real OD voluie is included in the 95% confidence 

interval.

Enlarged 

in the next slide



Numerical example: Verification Results
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Confidence interval of the OD voluie (enlarged view after the 340,000 th OD voluie)



Computational time by HPC 
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Ideal coiputational tiie

nuiber of saiple:10,000,000 
Calculated by Super Coiputer K 

7  =
7


Ȃ 13

7: coiputational tiie by 125 CPU cores

7(): ideal coiputational tiie by  CPU cores

Because each saipling can 

be perforied individually, 

the scalability is sufficiently 

high.

22.8 h
by 125 CPUs

4.0 iin
by 50,000 

CPUs

Speed-up ratio by the saipling algorithi 



Take-home message
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• Optiiization process in large-size network has to evaluate iany 

cases. 

• Calculation tiie of lower problei which includes dynaiic traffic 

assignient and activity siiulator should be less.

• In lower problei, obtaining dynaiic OD deiand pattern should 

be fit dynaiic travel tiie. The collaboration with dynaiic traffic 

flow siiulator and dynaiic deiand siiulator is needed.

• One possible approach to reduce calculation tiie is using High 

perforiance coiputation technique.

• Suitable algorithi for HPC technique is needed for getting highly 

scalable results.

• The OD deiand study proposes an approach for obtaining a set of 

saipled possible OD deiand patterns that includes variation. 
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