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(Post K Project) Development of Traffic Demand and Flow simulator

in a disaster restoration period

Simulations for Tsunami, Earthquake,
Building Collapse by physics and structual
researchers.
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Dynamic Traffic Flow Simulation:

e lterative calculations (Shortest Path calculator->Traffic
Flow calculator->SP->TF...) are made to find near-
equilibrium solutions, in which most vehicles select their
shortest paths.

* By sampling results of the iterations, we will obtain a
stationary distribution of traffic patterns that are neafly
equilibrated. ; |
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What is a Disaster Restoration Period?

Distinguish three periods on disaster situation

e Evacuation period:

* People have to go to a safety place.
e The period is within a few hours or a day in Japanese-type disaster.
ex. Tsunami, Mudslide.

e Rescue period:

* The period is during a rescue operation.
e The periods is within 3 days after disaster.

e Disaster Restoration period:
* The period is until temporal restoration of lifeline infrastructure.
* The periods is within a month or more.
e Some evacuees still live in shelters but many people restart to work.




Traffic Congestion on Disaster Restoration Period
Kure C/ty Case (July 2018 heavy rain disaster)
Kure — Hiroshima 25km

Demand: HigashiHiroshima — Hiroshima 35km
Commuting Volume before the disaster Hiroshi 96 2367, Bus279
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Damages for transportation network (more than 2 months)
Railway between Hiroshima & Kure

Railway between Hiroshima & Higashi-Hiroshima
Highway between Hiroshima & Kure

-

Traffic Congestion and Emergency Supply Management:

Many people rode own car through national roads.  Urgent temporal Bus and Shikansen were managed
Many trucks which conveyed debris drove. however the supply volume is half of usual demand.

Higashi
Hiroshima

Ti)h 5147, Bus67

Shinkansen Station

Temporal Bus Station

Collaboration work with Makoto Chikaraishi and Daisuke Yoshino 4



Optimization on restoration period

Road closure by building collapse (Simulation)
Wi P How to recover and How to keep necessary trips?
* Debris clearance
e Network design for urgent vehicles

SON) T e * Temporal bus network and timetabling
- ’\ = = By %
h NP and so on.
1 o & - We apply bi-level optimization to know

valid solution.

Upper Problem:

Choose clearance links Lower Problem:

\' | l 4 Scenario Dynamic Traffic Flow Simulation
33 < ' —— evaluate travel time by time unit.

- : | 3 Score | memmeo - \
i Dynamic Demand Simulation

evaluate origin-demand pattern.

1
1
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* Upper problem is combinatorial optimization, so the number of candidate solution is too much.
e Evaluation time of lower problem should be as small as possible to test numerous scenarios.
How to decrease calculation time on lower problem? s



HPC (High-performance computer)

e Using HPC (High Performance Computer) is the most
straightforward approach to fast calculation.

e Recent computers gain a power by combining a number
of CPUs.
* 663,552 CPUs in K computer
e 8 threads in CPU (Fujitsu SPARC64 VIIIfx)

e Actually, the performance of a single CPU is equivalent to
a typical desktop server, hence we have to develop a
suitable parallel algorithm (efficient algorithm) which
evenly split the task into sub-tasks.

 Moreover, we need to carefully consider how to divide
the calculation task so as to minimize the need of data
exchange between CPUs.



Dynamic Traffic Flow
Simulation



Existing para

 Not many paralle
in past studies.

lelised implementations

implementations for traffic simulators

e Scalable implementation up to 15,000 cores has been
shown in a recent study (Turek, 2018), while it only
considers ideal grid networks.

e Actual road networks are more hierarchized and unevenly
distributed than a simple grid.

e Other studies use < 1000 cores
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(e.g. Nagel and Rickert, 2001;

Thulasidasan and Eidenbenz, 2009)
and their scaliability is low with 3 .|

100 cores.
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Aim of high-parallelised DTA algorithm

e This study aims to propose an parallelised network loading
algorithm suitable for many-core CPUs and HPC.

e An asynchronous algorithm for
calculating flow propagations is
proposed to reduce
communication cost
between CPUs.

 The proposed algorithm is
implemented on K computer.

e Test case by Kanto Ken-o-do
network (approx. 0.35 million
links) is shown.




Domain decomposition of DTA problem

e For the parallel implementation, the entire network is
divided into sub-networks.

e Each CPU handles one of them.

CPU3 CPU4

Entire network CPU1 CPU?2
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Domain decomposition of DTA problem

e FoOr
div
e Eac

Problem:
How frequent the communications

between different CPUs have to be made?

..... — ;
Communications must be made at each

tlme step, WhICh |s one second or Iess

and depends on the state of the past flow.

e LI

Entire network CPU1 CPU?2

%A state of a trafflc flow changes over tlme




Asynchronised update

Proposed Algorithm

1a. Internal update:

Calculate traffic flow pattern within each O‘ Q‘Q

link independently on full time step.

1b. Forward relay: n

Transmit information on outgoing traffic

flow to downstream link(s). O:>O:>©

2. Backward relay: n
Transmit information on queue spillbacks Q:>O|:>O

to upstream link(s).
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Asynchronised update

Proposed Algorithm

1a. Internal update:

Calculate traffic flow pattern within each Q‘ Q‘Q

link independently on full time step.

MPI communications are
made at once for the entire

;m)

time step (typically several
hours), reducing substantial
amount of communication
time between different CPUsy

Transmit information on queue spillbacks

to upstream link(s).

O—>O0——>0

©:>‘9:>O
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Iteration flowchart

1a: Internal update

}

1b: Forward relay

2: Backward relay

Forward loop:

Internal update and forward relay
are first repeated till it converges,
in which no change of incoming
traffic flow is found in the forward
relay.

Outer loop:

Backward relay is made once the
forward update/relay is converged.
Other processes such as route
choices may be also included in
outer loop.




Overall ProcCess (with route choices incorporated)

( Start with empty network > e Inthe earlier iterations,

‘ vehicles are incrementally
loaded onto the network.
A few percent of vehicles

Shortest path search

l already loaded rechoose their
. . route to reduce their own
Vehicle (re-)loading travel times.
l e After the iteration, we could

obtain a state that is close

to DUE solution (more specifically,
a stationary distribution of the
Markov chain representing
Backward relay a day-to-day dynamics).

Forward loop
(Internal update, Forward relay)

+ ALT algorithm which is advanced A-star algorithm will be implemented on shortest path choice

part and pre-processing process for a calculation of A-star score is parallelized.

Peque, G. Jr,, Urata, J., Iryo, T.: Preprocessing Parallelization for the ALT-Algorithm, Computational Science - ICCS 2018, pp. 89-101.
Peque, G. Jr,, Urata, J., Iryo, T.: Implementing an ALT Algorithm for Large-Scale Time-Dependent Networks, The 22nd HKSTS International
Conference (HKSTS 2018), Hong Kong, December 9-11, 2018.



Case study: Settings

e Kanto region (incl. Tokyo) , within Ken-o-do road. #
inks = 347,691.

* |n this case study, trips from 4 a.m. till 10 a.m. is
oaded to the network.

e Packet size = 10 vehicles / packet (5 for trucks).

e Total # of packets = 558,572 packets.

e For the test purpose, we used a special setting
(mechanisms and parameters) for the calculation
process of merging sections / intersections.

e A constant demand pattern is given.




Result: Traffic volume
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0 - 200
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Scalability of the proposed simulation

e Highly scaled with 400 cores
* Need to implement dynamic load balancing to be more efficient parallelization
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Traffic Demand Simulation



Key points of Demand simulator

* In order to assess congestion of roads in a disaster
restoration period, it is essential to construct a stochastic
demand model and sample various demand patterns
that are likely to happen by a Monte Carlo simulation.

e Obtaining a sufficient number of samples of demand
patterns and simulating a traffic flow with them will
incur a huge amount of calculations.

e Only a high-performance computer can deal with this
task when a size of network is large with sampling a lot
of OD demand patterns.



Background of Demand model

Just after Kumamoto earthquake (1 week later)

\ %’ﬂgtg ‘ !L : !

OD (origin-destination) matrix has a strong effect on
road congestion.

After a disaster occurred,

Cars cannot pass through some links which are damaged by pev—

OD matrix will be changed after a disaster,
e People come in a damaged area for restoration and humanitarian logistic.
e Habitants go and get foods & necessaries at somewhere.

Road network is set for ordinary OD matrix and doesn’t prepare for extra-ordinary
OD matrix.

That’s why this changed OD matrix will occur a heavy congestion.

How can we predict a OD matrix for unobserved network?

— Focus on the probability of OD matrix with less data situation. »



Main ldea: Interval Estimation

Previous studies obtain one OD matrix which has the
highest likelihood and utilize the OD matrix for oy
planning.

v

OD matrix a
We try to obtain a set of OD matrices which show a N
. . . . robabilit
distribution of OD matrix. o)

- Only one estimated OD matrix cannot correspond to a real one.
- A set of calculated OD matrices can contain a real one.
- It is similar to a interval estimation.

v

OD matrix a



Model & Algorithm:
Image of Generating a set of OD demand pattern

Zone 1 Zone 2 Zone 3

orgn

Destination choice
probability Pl-1_>j

Zone 1 Zone 2 Zone 3




Generating a set of OD demand pattern

Zone 1 Zone 2 Zone 3

Destination choice
probability p;’, ;

Destination ©
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Set of OD demand pattern
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Model Concept

Wilson’s Entropy model

X;j: number of Trip from origin i to destination j

0;: Total number of trips from origin 7
D;: Total number of trips to destination j

C: Total travel cost

i w({Xi;})
Entro P{Xi;}) = =—F=,
py { .}} z“‘ {\U}
{\z)} H” \U| ZZ \:}
Constraint Y Xiy=0i Y Xy=Dj ZZ X5 =C,
J i

This model uses minimum external inputs and can connects to discrete choice model

Entropy model

Proposed model

Independent from one
another

Destination choice

Strict on generated and
attracted trips

Constraint

Obtained OD pattern Most likely one

Affected by spatial correlation

Strict on generated trips and relaxed
on attracted trips

Likely set

spatial correlation

Individual a’s destination utility Ufj = w(Cy4) + G5 + My
. exp U
Choice Probability by GEV model P ;= =
ZJ O\p[ by

Spatial correlation in OD pair ij Nij = Vij U(C"zj)

Gj: Destination Attractiveness

V;; : stochastic distribution which average is 0
25




Sampling Algorithm

Input Data:
Road Network, Expected value of number of trip generated and attracted

I

Set an initial OD table

}

Calculatelink travel costs

Iterative part l !

—»

Extract number of trip generated
Set number of trip attracted

Extract utility of spatial correlation

Dontimaditiketiaaition

Estimate destination attractiveness

A4

Generate OD demand pattern using destination choice model

A4

Calculatelink travel costs

|

Convergence of link travel cost

\ 4

Store in a set of OD demand patterns
|

v
Finish when adequate number of OD demand patternsis obtained
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Destination Choice: GEV model

GEV based Destination Choice Model (from zone i to zone j)

a a a _ _explUs
V = DT _|_ 63]3 Pg—>j Z_-j exp Ufj

Error correlation between destination by network GEV model
(Daly & Bierlaire(2006))

e Destinations are divided as mesh. A number of destination is a lot.
* Network-GEV model can formulate error correlation flexibly.
e This numerical example introduce the error correlation between
adjacent destinations and between destinations of similar
distance.

<
Ny

Attribution(State)-based correlation  Distance-based correlation

27



Destination Choice: Spatial Correlation

Main idea for obtaining a likely set
Introduce stochastic utility n;; which shows spatial correlation
and unobserved variations
a —_— P - PR
Ui; = u(Cyj) + G+ i

Travel cost Destination  Stochastic
function  attractiveness utility

Spatial correlation is proportional to travel utility

T}U == V'iju (CU ) V;;j: stochastic distribution with an average equal to C

* The spatial correlation from stochastic term n;; influences OD pair ij only.

e This stochastic utility leads to our model's advantage: variation in OD
demand patterns.

* A final set of OD demand patterns has intervals of OD traffic volumes and
these intervals show variations.



Sampling Algorithm

Input Data:
Road Network, Expected value of number of trip generated and attracted

I

Set an initial OD table

}

Calculatelink travel costs

———— e e e —_—_—_—_———————

—»

Extract number of trip generated

Extract utility of spatial correlation )
yorsp Set number of trip attracted

Estimate destination attractiveness

A4

Generate OD demand pattern using destination choice model

A4

Calculatelink travel costs

|

Convergence of link travel cost

Store in a set of OD demand patterns

Finish when adequate number of OD demand patternsis obtained
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Relaxed Constraints

e Extract number of trip generated O; from a distribution which
average equal to expected value E(0O;) which are exogenously given.

e 0; is sampled by a Poisson process because people depart
independently

P(X=0,) = 25—, (A= E(0;))

e The sum of the number of trips attracted Dj'can be expanded to
the sum of 0; simply.

P Z@ O’L
DYy = >, E(Dj)E(Dj)




Estimation of Destination attractiveness

Destination Attractiveness {G]-} are estimated to fit to the constraint
of the number of trips attracted:

min{gj} l\*’ISE({Gj}) = Z\:fj (D; — ZW OiPi%j({Gj}))z

- Attractiveness {G;} is estimated so that D; matches the number of trips
attracted in a generated OD demand pattern X;; using the destination
choice probability P;_, ;.

- The estimation process refers to the trip-end conditions of the entropy
model

- The estimation employs the least square method



Sampling Algorithm

Input Data:
Road Network, Expected value of number of trip generated and attracted

I

Set an initial OD table

}

Calculatelink travel costs

Iterative part l !

—»

Extract number of trip generated

Extract utility of spatial correlation )
yorsp Set number of trip attracted

Estimate destination attractiveness

A4

Generate OD demand pattern using destination choice model

A4

Calculatelink travel costs

|

Convergence of link travel cost

\ 4

Store in a set of OD demand patterns
|

v
Finish when adequate number of OD demand patternsis obtained
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Obtain a set of OD demand pattern

A suitable OD demand patterns is generated using a Monte Carlo
approach with the destination choice probability.

* The destination selection process is applied to all people who are leaving.
e At every origin i on iteration k,

e Sample a stochastic utility nll‘j and calculate Pl-k_)j

e Destinations of 0{‘ people is determined according to the destination
choice probabilities Pl-k_>j from her/his origin i.
* Generate a OD demand pattern {X

A generated OD demand pattern is added to a set of OD demand

patterns if the link travel costs cX, converge in fully converged
algorithm.

* The link travel costs on a generated OD demand pattern are
calculated by static user equilibrium assignment.

ke ke—1 |

E |( rea__ Cra
VTS ck

* Convergence test: < 6
.’\Tr-‘g -




Decreasing computation cost

Iterative part l

Input Data :
Road Network, Expected value of number of trip generated and attracted

v
Set an initial OD table

!

Calculate link travel costs

Process parallel

Poisson =2 Nornjal [O(4) = O(1)]]

—

Extractnumber of trip generated

Extract utility of spatial correlation

Set number of trip attracted

Thread parallel v
Estimate destination attractiveness (by quansi-Newton method)

Walker’s alias method for sgmpling from P;_,; [O(Nj * Oi) =

Generate OD demand pattern using destination choice model

Thread parallel
Calculate link travel costs (by User Equilibrium)

| Convergence of link travel cost

Store in a set of OD demand pattern

v
Finish when adequate number of OD demand patternsis obtained

O(Nj+0i)]
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Numerical example: Test Network

e One of the large-scale networks by Bar-Gera
e OD volume is integer.
e Boyce et al(2004) used this network & OD for practical

analysis.

Philadelphia Network links nodes OD trips zones

40,003 13,389 18,503,872 588

Commonwealth of
Pennsylvania

* Original data - 1,489 centroids

grid centroid
« original centroid
= link 2y
== Delaware River i State of New Jersey 35



Numerical example: Verification Results

od volume
N
w
o
o

Real OD volume

— 95% confidence interval

T

Enlarged
in the next slide

il

100000 I o 200000 300000
od pair (in ascending order of the real OD volume from the left)

Confidence interval of the OD volume (up to 5,000 vehicles and 10,000 samples)

The sampled OD volumes increase as the real OD volume increases.

Almost all the real OD volume is included in the 95% confidence

interval.
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Numerical example: Verification Results

l

5000 NWM
|l i ”\Mﬂ w i| ”M

mﬂmdl.lmhlmiml.L.uuumlmwwum MM m Mul wLm..uﬂumMH.MMM WMJMMMimi.llmdMWMMMMMWWWm‘L L ‘Mm 'h""m | Mm

340000 341000 ‘ 342000 343000 ‘ 344000
od pair (in ascending order of the real OD volume from the left)

Confidence interval of the OD volume (enlarged view after the 340,000 " OD volume)

345000

All Low cost’ Moderate cost? High cost?
95% Interval(%)  90.3 80.1 83.8 90.5
RMSE 126.3 988.3 365.1 58.8
LOD travel cost Ci < 10; 210 < (s € 15 25 < B
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Computational time by HPC

Speed-up ratio by the sampling algorithm

Computational time(seconds)

10° -
- 22.8 h = sl
: — ideal
by 125 CPUs
10* M
.@_\\e\
Y
™,
\0
\\\
b .
103} A 4.0 min
*. by50,000
. CPUs
1075 3 7 5
10 10 10 10

The number of CPUs(cores)

number of sample:10,000,000
Calculated by Super Computer K

Because each sampling can
be performed individually,
the scalability is sufficiently
high.

ldeal computational time

T( ) — 2(13)
P77

T: computational time by 125 CPU cores
T (p): ideal computational time by p CPU cores



Take-home message

e Optimization process in large-size network has to evaluate many
cases.

 Calculation time of lower problem which includes dynamic traffic
assignment and activity simulator should be less.

* In lower problem, obtaining dynamic OD demand pattern should
be fit dynamic travel time. The collaboration with dynamic traffic
flow simulator and dynamic demand simulator is needed.

* One possible approach to reduce calculation time is using High
performance computation technique.

e Suitable algorithm for HPC technique is needed for getting highly
scalable results.

 The OD demand study proposes an approach for obtaining a set of
sampled possible OD demand patterns that includes variation.
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