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Outcome of a sequential decision-making process:

1. Definition of the choice problem
2. Generation of alternatives
3. Evaluation of attributes of the alternatives
4. Choice
5. Implementation

Choice theory framework

→ Choose a commuting mode
→ Available modes: Car, transit, bike, walk
→ Weigh each alternative’s attributes 

→ Choose a mode
→ Commute to work using the chosen mode

This process defines the following elements:

1. Decision maker
2. Alternatives
3. Attributes of alternatives
4. Decision rule

Discrete choice theory



Decision maker

• Individual, household, organization (i.e. firms, government agency)

Alternatives
𝐶ℎ𝑜𝑖𝑐𝑒 𝑠𝑒𝑡 ∈ 𝑼𝒏𝒊𝒗𝒆𝒓𝒔𝒂𝒍 𝒔𝒆𝒕

Defined by the environment 
of the decision maker

Feasible alternatives known 
during the decision process

Alternative attributes
• A vector of characteristics that measure the attractiveness of an alternative

(e.g. Cost, comfort, travel time, etc)

Decision rule

• Mechanism that defines the decision making process
(Dominance, satisfaction, lexicographic rules, Utility)

Discrete choice theory



An utility-maximization decision rule

• Attractiveness is reduced to a single scalar function
• Based on the notion of tradeoffs, or compensatory offsets, when making a choice.

• Assumption of rational behavior: 
• Under identical circumstances, an individual will repeat the same choices every time.

• Random utility approach:
• Why? Because of observational deficiencies by the analyst, mainly a result of:

1. Unobserved attributes
2. Unobserved taste variations (heterogeneity)
3. Measurement errors and imperfect information
4. Proxy variables

Discrete choice theory



An utility-maximization decision rule

• We can specify a random utility function as

𝑈𝑖𝑛 = 𝑉𝑖𝑛 + 𝜀𝑖𝑛

Observable (systematic)
component

Unobservable (random)
component

So that

𝑃 𝑖 𝐶𝑛 = Pr(𝑈𝑖𝑛 ≥ 𝑈𝑗𝑛, ∀𝑗 ∈ 𝐶𝑛)

• To derive a specific model, we then need assumptions on

𝜀𝑗𝑛, ∀𝑗 ∈ 𝐶𝑛

Where 𝐶𝑛 is a feasible choice set for individual n

Only difference in utility matters!

= Pr 𝜀𝑗𝑛 − 𝜀𝑖𝑛 ≤ 𝑉𝑖𝑛 − 𝑉𝑗𝑛, ∀𝑗 ∈ 𝐶𝑛 = Pr 𝜀𝑛 ≤ 𝑉𝑛, ∀𝑗 ∈ 𝐶𝑛

𝑃 𝑖 𝐶𝑛 = Pr(𝑉𝑖𝑛 + 𝜀𝑖𝑛 ≥ 𝑉𝑗𝑛 + 𝜀𝑗𝑛, ∀𝑗 ∈ 𝐶𝑛)

Discrete choice theory



• Specifying the utility function components

• Usually linear-in-parameters specification:

𝑉𝑖𝑛 = 𝛽1𝑥𝑖𝑛1 + 𝛽2𝑥𝑖𝑛2 +⋯+ 𝛽𝐾𝑥𝑖𝑛𝐾

where 𝑥𝑖𝑛 = 𝑓(𝑧𝑖𝑛, 𝑆𝑛)

• Non-linearities can be introduced by allowing for any 
function f (polynomial, logarithmic, exponential, etc)

• Reflects the sources of randomness 
discussed earlier 

• Different distributional assumptions 
result in different models:
• Normal distribution→Probit model
• Gumbel distribution→Logit model

𝑈𝑖𝑛 = 𝑉𝑖𝑛 + 𝜀𝑖𝑛

An utility-maximization decision rule

Discrete choice theory
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𝑃𝑛 𝑖

Binary choice models: Linear Probability Model

• The choice probability of i is given by the CDF of 𝜀𝑛

𝑃𝑛 𝑖 = ൞

0

𝐿−׬
𝑉𝑛 𝑓 𝜀𝑛 𝑑𝜀𝑛

1

=
𝑉𝑛+𝐿

2𝐿

𝑖𝑓 𝑉𝑛 < −𝐿
𝑖𝑓 − 𝐿 ≤ 𝑉𝑛 ≥ 𝐿
𝑖𝑓𝑉𝑛 > 𝐿

Derivative is discontinuous!

Choices with predicted
probability of 0 are still
chosen.

1

2𝐿

𝐿-𝐿

𝑓(𝜀𝑛)

Uniform distribution PDF of 𝜀𝑛
(Our assumption about the error distribution) 

Probability 
drops to 0

Probability 
drops to 0

𝑉𝑛

𝑃𝑛 𝑖 = Pr 𝜀𝑛 ≤ 𝑉𝑛, ∀𝑗 ∈ 𝐶𝑛

Discrete choice theory



Binary choice models: Probit Model

• The choice probability of i is given by the CDF of 𝜀𝑛

𝑃𝑛 𝑖 =
1

2𝜋
න
−∞

(𝑉𝑛)/𝜎

𝑒𝑥𝑝 −
1

2
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𝜎

2

𝑑𝜀 = Φ
𝑉𝑛
𝜎

Normal distribution PDF of 𝜀𝑛
(A better assumption about the error distribution) 

Probabilities are never zero or one.

But the probabilities cannot be
expressed in a closed form (numerical
methods are required)

𝑉𝑛

𝑃𝑛 𝑖 = Pr 𝜀𝑛 ≤ 𝑉𝑛, ∀𝑗 ∈ 𝐶𝑛
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Discrete choice theory

Normal distribution CDF of 𝜀𝑛



Binary choice models: Logit model

• The choice probability of i is given by the CDF of 𝜀𝑛

𝑃𝑛 𝑖 =
exp 𝜇𝑉𝑖𝑛

exp 𝜇𝑉𝑖𝑛 + exp 𝜇𝑉𝑗𝑛
=

1

1 + exp −𝜇 𝑉𝑖𝑛 − 𝑉𝑗𝑛

0

0.5

1

Probit CDF Logit CDF

𝑉𝑛

• A probit-like model that approximates a normal
distribution.

• Probabilities can be expressed in closed form, so
it is analytically convenient.

• 𝜀𝑖𝑛 and 𝜀𝑗𝑛 are assumed to be i.i.d. Gumbel

distributed (Type I extreme value distribution)
• So 𝜀𝑛 = 𝜀𝑖𝑛-𝜀𝑗𝑛 is logistically distributed.

where 𝜇 𝑖𝑠 𝑎 𝑠𝑐𝑎𝑙𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

Discrete choice theory



An intuitive way of thinking about the scale parameter

0

0.5

1

μ=150 μ=1 μ=0.5 μ=0

As μ approaches infinity → deterministic outcomes

As μ approaches 0 → equally likely outcomes

Logit Models

Where 𝜇 is inversely
proportional to the
variance of the error
term.



A mode choice example

• A binary logit model application (we will go into more detail later on) 

𝑃 𝐶𝑎𝑟 =
𝑒𝑉𝑐𝑎𝑟

𝑒𝑉𝑐𝑎𝑟 + 𝑒𝑉𝑡𝑟𝑎𝑖𝑛

Where 𝑉𝑐𝑎𝑟 and  𝑉𝑡𝑟𝑎𝑖𝑛 are utility functions 

𝑉𝑐𝑎𝑟 = 𝛽𝑐𝑎𝑟 + 𝛽𝑐𝑜𝑠𝑡𝑐𝐶𝑜𝑠𝑡𝑐𝑎𝑟 = 1.45 − 0.03 𝐶𝑜𝑠𝑡𝑐𝑎𝑟

𝑉𝑡𝑟𝑎𝑖𝑛 = 𝛽𝑐𝑜𝑠𝑡𝑡𝐶𝑜𝑠𝑡𝑡𝑟𝑎𝑖𝑛 = −0.01 𝐶𝑜𝑠𝑡𝑡𝑟𝑎𝑖𝑛

1

2 3

1 (2) 2

3

3

4

2

𝑡𝑖𝑗

Value in parenthesis is train cost

𝑃 𝐶𝑎𝑟 =
𝑒𝑉𝑐𝑎𝑟

𝑒𝑉𝑐𝑎𝑟+𝑒𝑉𝑡𝑟𝑎𝑖𝑛
=

𝑒1.45−0.03∙1

𝑒1.45−0.03∙1+𝑒−0.01∙2

𝑷 𝑪𝒂𝒓 = 𝟖𝟏%

Consider the mode choice from zone 2 to  zone 1

𝑷 𝑻𝒓𝒂𝒊𝒏 = 𝟏 − 𝑷(𝑪𝒂𝒓)

Discrete choice theory



𝑈𝑖𝑛 = 𝑉𝑖𝑛 + 𝜀𝑖𝑛

Regarding the deterministic component of the utility function

Logit Models

Only difference in utility matters!

• Types of variables that go into V:
• Consider the following utility functions of a binary logit model

𝑉𝑐𝑎𝑟 = 𝐴𝑆𝐶𝑐𝑎𝑟 + 𝛽𝑡𝑖𝑚𝑒𝑇𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒 + 𝐼𝑉𝐶𝛽𝑐𝑠𝑖𝑛𝑐
𝐶𝑜𝑠𝑡

𝐼𝑛𝑐𝑜𝑚𝑒
+ 𝛾𝑤𝑜𝑟𝑘𝑒𝑟𝑊𝑜𝑟𝑘𝑒𝑟

𝑉𝑡𝑟𝑎𝑖𝑛 = 0 + 𝛽𝑡𝑖𝑚𝑒𝑇𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒 + 𝐼𝑉𝐶𝛽𝑐𝑠𝑖𝑛𝑐
𝐶𝑜𝑠𝑡

𝐼𝑛𝑐𝑜𝑚𝑒
+ 0

Alternative specific variablesAlternative specific constants (ASC’s)
• With J alternatives, can only include J-1 constants, 

one must be normalized to 0 
• Reflects the average effect of factors not included 

in V in relation to the normalized constant.

Individual specific variables (socio-demographics)• If entered independently, one parameter must be normalized to 0 (similar to ASCs)
• If interacted with Alternative specific variables, no normalization required
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Another example of model choice: Binary Logit

Variable name Coefficient
Standard 

error
t statistic

Auto constant 1.45 0.393 3.70

In-vehicle time (min) -0.0089 0.0063 -1.42

Out-of-vehicle time (min) -0.0308 0.0106 -2.90

Auto out-of-pocket cost (c) -0.0115 0.0026 -4.39

Transit fare -0.0070 0.0038 -1.87

Auto ownership (specific to auto mode) -0.770 0.213 3.16

Downtown workplace (specific to auto mode) -0.561 0.306 -1.84

Number of observations 1476

Number of cases 1476

LL(0) -1023

LL(β) -347.4

-2[LL(0)-LL(β)] 1371

𝜌2 0.660

ҧ𝜌2 0.654

Log-Likelihood when all parameters are 0

Maximum Log-Likelihood

Test of null hypothesis that all parameters are jointly zero. χ2 distributed

Informal goodness-of-fit measure : 1 − (LL(β)/LL(0)

Informal goodness-of-fit measure: 1 − (LL(β)−K)/LL(0)

Adapted from Ben-Akiva and Lerman (1984)

Magnitudes are not directly interpretable

Or to calculate utilities, and choice probabilities

We can only interpret the effect direction

To make some sense of these parameters we 
must calculate elasticities or marginal effects

Logit Models
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The Multinomial Logit Model

• The choice set C consists of more than two alternatives

𝑃(𝑖) = Pr(𝑈𝑖𝑛 > 𝑈𝑗𝑛, ∀𝑗 ∈ 𝐶𝑛, 𝑗 ≠ 𝑖)

= Pr 𝜀𝑗𝑛 ≤ 𝑉𝑖𝑛 − 𝑉𝑗𝑛 + 𝜀𝑖𝑛, ∀𝑗 ∈ 𝐶𝑛, 𝑗 ≠ 𝑖

𝑃(𝑖) = Pr(𝑉𝑖𝑛 + 𝜀𝑖𝑛 ≥ 𝑉𝑗𝑛 + 𝜀𝑗𝑛, ∀𝑗 ∈ 𝐶𝑛, 𝑗 ≠ 𝑖)

• We can formulate the MNL as a binary problem, so that

𝑃 𝑖 = 𝑃𝑟 𝑉𝑖𝑛 + 𝜀𝑖𝑛 ≥ max
𝑗∈𝐶𝑛,𝑗≠𝑖

(𝑉𝑗𝑛 + 𝜀𝑗𝑛)

• To estimate the model we need an assumption of the joint distribution of 
disturbances 𝑓(𝜀1𝑛, 𝜀2𝑛, 𝜀3𝑛, … , 𝜀𝐽𝑛𝑛)

Logit Models
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The Multinomial Logit Model

• Error distribution assumptions:
• Independently and identically distributed (I.I.D.)
• Gumbel-distributed with location parameter 𝜂(usually set at 0)  scale parameter μ>0 (usually set at 1)

• Under these assumptions we can derive the MNL

𝑃 𝑖 = 𝑃𝑟 𝑉𝑖𝑛 + 𝜀𝑖𝑛 ≥ max
𝑗∈𝐶𝑛,𝑗≠𝑖

(𝑉𝑗𝑛 + 𝜀𝑗𝑛)

𝑃 𝑖 =
1

1 + exp −𝜇 𝑉𝑛
∗ − 𝑉𝑖𝑛

=
exp 𝜇𝑉𝑖𝑛

σ𝑗∈𝐶 exp 𝜇𝑉𝑗𝑛

𝑃 𝑖 = 𝑃𝑟 (𝑉𝑗𝑛
∗ +𝜀𝑗𝑛

∗ ) − (𝑉𝑖𝑛 + 𝜀𝑖𝑛) ≤ 0 The difference between two Gumbel-distributed 
variables is Logistic-distributed

𝑃 𝑖 = 𝑃𝑟 𝑉𝑖𝑛 + 𝜀𝑖𝑛 ≥ 𝑉𝑛
∗ + 𝜀𝑛

∗ (𝑉𝑛
∗+𝜀𝑛

∗ ) is gumbel distributed
with parameters 

1

𝜇
𝑙𝑛 σ𝑗=1

𝐽
exp 𝜇𝑉𝑗𝑛 , 𝜇

Logit Models
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MNL: The Independence of Irrelevant Alternatives Property

For a specific individual, the ratio of the choice probabilities (Odds Ratio) of any two 
alternatives is unaffected by the systematic utilities of any other alternatives.

Consider a commute mode choice model
where individual choose either mode with
equal probabilities:

0.50 0.50

Consider then that we add a new mode (exactly the same 
as the other bus, but this one is red) is added. What are the 
choice probabilities?

0.33 0.33 0.33
To preserve the Odds Ratio, probabilities should be:

0.50 0.25 0.25
In reality however, we expect them to be:

The validity of the choice axiom only applies to choice sets with distinct alternatives.

Logit Models
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MNL: Logit Elasticities (Point elasticities)

• Direct elasticity: measures the percentage change in the probability of choosing
a particular alternative in the choice set with respect to a given percentage
change in an attribute of that same alternative.

• Cross-elasticity: measures the percentage change in the probability of choosing
a particular alternative in the choice set with respect to a given percentage
change in a competing alternative.

Definition following Louviere, Hensher, and Swait (2000) 

𝐸𝑥𝑖𝑛𝑘
𝑃 𝑖

=
𝜕𝑃𝑛(𝑖)

𝜕𝑥𝑖𝑛𝑘
∙
𝑥𝑖𝑛𝑘
𝑃𝑛(𝑖)

= 1 − 𝑃𝑛 𝑖 𝑥𝑖𝑛𝑘 𝛽𝑘

𝐸𝑥𝑗𝑛𝑘
𝑃 𝑖

=
𝜕𝑃𝑛(𝑖)

𝜕𝑥𝑗𝑛𝑘
∙
𝑥𝑗𝑛𝑘
𝑃𝑛(𝑖)

= −𝑃𝑛 𝑗 𝑥𝑗𝑛𝑘 𝛽𝑘 Because of IIA, cross-elasticities 
are uniform across all alternatives

Logit Models
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MNL: Logit Elasticities (Point elasticities)

• The elasticities shown before are individual elasticities (Disaggregate)
• To calculate sample (aggregate) elasticities we use the probability weighted

sample enumeration method:

𝐸𝑥𝑖𝑛𝑘
𝑃(𝑖)

=
σ𝑛=1
𝑁 ෠𝑃𝑖𝑛 𝑖 𝐸𝑥𝑖𝑛𝑘

𝑃 𝑖

σ𝑛=1
𝑁 ෠𝑃𝑖𝑛 𝑖

𝐸𝑥𝑗𝑛𝑘
𝑃(𝑖)

=
σ𝑛=1
𝑁 ෠𝑃𝑖𝑛 𝑖 𝐸𝑥𝑗𝑛𝑘

𝑃 𝑖

σ𝑛=1
𝑁 ෠𝑃𝑖𝑛 𝑖

Sample direct elasticity Sample cross-elasticity

• Also note that elasticities for dummy variables are meaningless!

Where 𝑃(𝑖) is the aggregate choice probability of alternative I, and ෠𝑃𝑖𝑛 𝑖 is an estimated choice probability 

• Uniform cross-elasticities do not necessarily hold at the aggregate level

Logit Models
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MNL: Logit Elasticities (Point elasticities)

Logit Models

Relation between elasticity of demand, change in price and revenue

Perfectly 
inelastic

Relatively 
inelastic

Unit
elastic

Relatively
elastic

Perfectly 
elastic

Px

X

Px

X

Px

X

Px

X

Px

X

1% increase in X results in a 
0% decrease in Pi

1% increase in X results in a 
less than 1% decrease in Pi

1% increase in X results in a 
more than 1% decrease in Pi

1% increase in X results in a 
∞ decrease in Pi

1% increase in X results in a 1% 
decrease in Pi

Direct elasticity:

1% increase in X results in a 
0% increase in Pj

1% increase in X results in a 
less than 1% increase in Pj

1% increase in X results in a 
more than 1% increase in Pj

1% increase in X results in a 
∞ increase in Pj

1% increase in X results in no 
percent change in Pj

Cross elasticity:

Adapted from Hensher, David A., John M. Rose, and William H. Greene. Applied choice analysis: a primer. Cambridge University Press, 2015 (2nd Edition)
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MNL: Logit Marginal Effects

• Direct marginal effects: measures the change in the probability (absolute
change) of choosing a particular alternative in the choice set with respect to a
unit change in an attribute of that same alternative.

• Cross-marginal effects: measures the change in the probability (absolute
change) of choosing a particular alternative in the choice set with respect to a
unit change in a competing alternative.

𝑀𝑥𝑖𝑛𝑘
𝑃 𝑖

=
𝜕𝑃𝑛(𝑖)

𝜕𝑥𝑖𝑛𝑘
= 𝑃𝑛 𝑖 1 − 𝑃𝑛 𝑖 𝛽𝑘

𝑀𝑥𝑗𝑛𝑘
𝑃 𝑖

=
𝜕𝑃𝑛(𝑖)

𝜕𝑥𝑗𝑛𝑘
= 𝑃𝑛 𝑖 −𝑃𝑛 𝑗 𝛽𝑘

Logit Models

Definition following Louviere, Hensher, and Swait (2000) 
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MNL: Logit Marginal Effects

• We can also calculate sample (aggregate) marginal effects we using e the 
probability weighted sample enumeration method:

𝑀𝑥𝑖𝑛𝑘

𝑃(𝑖)
=
σ𝑛=1
𝑁 ෠𝑃𝑖𝑛 𝑖 𝑀𝑥𝑖𝑛𝑘

𝑃 𝑖

σ𝑛=1
𝑁 ෠𝑃𝑖𝑛 𝑖

𝑀𝑥𝑗𝑛𝑘

𝑃(𝑖)
=
σ𝑛=1
𝑁 ෠𝑃𝑖𝑛 𝑖 𝑀𝑥𝑗𝑛𝑘

𝑃 𝑖

σ𝑛=1
𝑁 ෠𝑃𝑖𝑛 𝑖

Sample direct marginal effect Sample cross-marginal effect

• Marginal effects for dummy variables do make sense as we are talking about
unit changes!

Where 𝑃(𝑖) is the aggregate choice probability of alternative I, and ෠𝑃𝑖𝑛 𝑖 is an estimated choice probability 

Logit Models
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MNL: Logit Marginal Effects

Logit Models

Adapted from Hensher, David A., John M. Rose, and William H. Greene. Applied choice analysis: a primer. Cambridge University Press, 2015 (2nd Edition)

Marginal effects as the slopes of the Tangent lines to the cumulative probability curve

P(i)

xi

𝜕𝑃𝑛(𝑖)

𝜕𝑥𝑖𝑛𝑘
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Strengths and limitations of logit models

The logit model can represent systematic taste variation (related to the observed characteristics of
the decision maker),but not random taste variations (linked to unobserved characteristics)

Due to the IIA constraint, logit models can only handle proportional substitution across alternatives,
given the researcher’s specification of the utility function. More flexible forms require different
models.

The logit model can capture the dynamics of repeated choices if unobserved factors are
independent over time only.

Logit Models

Adapted from Train (2002)
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Maximum likelihood estimation of parameters

The Maximum Likelihood principle states that, out of all the possible values of a
parameter β, the value that makes the likelihood of the observed data largest
should be chosen. (Wooldridge, 2004)

𝐿𝑛(𝛽|𝑦𝑛, 𝑥𝑛) =ෑ

𝑛=1

𝑁

𝑓(𝑦𝑛|𝛽, 𝑥𝑛)

𝑀𝑎𝑥 𝐿𝐿 = max
෡𝛽𝑛

෍

𝑛=1

𝑁

𝑙𝑜𝑔𝑓(𝑦𝑛|𝛽, 𝑥𝑛)

General form of the likelihood function:

Maximization of the Log-likelihood function

The likelihood is proportional the
product of individual probabilities

Logit Models: Estimation
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Maximum likelihood estimation of parameters

Logit Models: Estimation

𝐿𝑛 𝛽1, 𝛽2, …𝛽𝐾 =ෑ

𝑛=1

𝑁

ෑ

𝑖

𝑃𝑛 𝑖 𝑦𝑖𝑛

In the general case, the likelihood function can be defined as the probability that individual n
chooses the alternative he was observed choosing.

𝐿𝐿𝑛(𝛽1, 𝛽2, … 𝛽𝐾) = ෍

𝑛=1

𝑁

෍

𝑖

𝑦𝑖𝑛𝑙𝑜𝑔𝑃𝑛 𝑖

Then, the log-likelihood function we want to maximize can be defined as

𝑦𝑖𝑛 takes value 1 when alternative i is chosen, 0 otherwise
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We can then obtain maximum likelihood estimates by differentiating with respect to each 𝛽, and setting the
partial derivatives to equal 0 (First order Condition)

Maximum likelihood estimation of parameters

𝜕𝐿𝐿

𝜕෢𝛽𝑘
= 0, 𝑓𝑜𝑟 𝑘 = 1,… , 𝐾

If the likelihood function is globally concave, and a
solution to the FOC exists it is unique. To prove this, the
matrix of the second derivatives 𝛻2𝐿𝐿 (Hessian Matrix)
must be negative semi-definite for all values of β.

𝐿𝐿𝑛(𝛽)

𝛽
෡𝛽𝛽𝑜

Maximum likelihood estimate (Adapter from Train(2003))

A negative semi-definite matrix is defined as such if:
• All its eigenvalues are non-positive or,
• Its leading principal minors are positive

*In the case of a single variable, this is equivalent to the
second derivative test. 𝑓′ 𝑐 = 0, 𝑓′′(𝑥) ≤ 0

Logit Models : Estimation

At the maximum likelihood, its derivative with 
respect to each parameter is 0.



The University of Tokyo                                                                                                      Behavior modeling summer school

Maximum likelihood estimation of parameters (Logit Case)

𝐿𝐿𝑛(𝛽1, 𝛽2, … 𝛽𝐾) = ෍

𝑛=1

𝑁

෍

𝑖

𝑦𝑖𝑛𝑙𝑜𝑔𝑃𝑛 𝑖

The Log-likelihood function is

Logit Models : Estimation

= ෍

𝑛=1

𝑁

෍

𝑖

𝑦𝑖𝑛𝛽𝑥𝑖𝑛 −෍

𝑛=1

𝑁

෍

𝑖

𝑦𝑖𝑛 log ෍

𝑗∈𝐶

exp 𝛽𝑥𝑗𝑛

= ෍

𝑛=1

𝑁

෍

𝑖

𝑦𝑖𝑛 log
exp(𝛽𝑥𝑖𝑛)

σ𝑗∈𝐶 exp(𝛽𝑥𝑗𝑛)
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Maximum likelihood estimation of parameters

The FOC is defined as

𝜕𝐿𝐿

𝜕෢𝛽𝑘
= ෍

𝑛=1

𝑁

෍

𝑖

𝑦𝑖𝑛 − 𝑃𝑛(𝑖) 𝑥𝑖𝑛𝑘 = 0, 𝑓𝑜𝑟 𝑘 = 1,… , 𝐾

While the second derivatives can be solved as

𝜕2𝐿𝐿

𝜕෢𝛽𝑘𝜕 ෡𝛽𝑙
= −෍

𝑛=1

𝑁

෍

𝑖

𝑃 𝑖 𝑥𝑖𝑛𝑘 −෍

𝑗

𝑥𝑗𝑛𝑘𝑃𝑛 𝑗 𝑥𝑖𝑛𝑙 −෍

𝑗

𝑥𝑗𝑛𝑙𝑃𝑛 𝑗 𝑓𝑜𝑟 𝑘 = 1,… , 𝐾

Logit Models : Estimation
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Maximum likelihood estimation of parameters

• Iterative procedures are used to estimate the ML
• Newton-Rapshon (NR) Algorithm
• Berdnt-Hall-Hall-Hausman (BHHH) Algorithm
• Davidson-Fletcher-Powell (DFP) Algorithm
• Broyden-Fletcher-Goldfarb-Shanno (BFGS) Algorithm

Logit Models : Estimation



Practical issues in 
discrete choice modeling



Part I: Aggregate forecasting techniques

• Why is it important?
• So far we have dealt only with individual probabilities.
• But we are interested in aggregate forecasts in order to make planning decisions.

• The first issue to address:
• Define the population of interest T:

• All the residents of the city of interest?
• A specific segment? (i.e. income group, racial group, etc.)

• Generally, we can use existing data sources such as the national census to estimate the 
size of T. 

• Define:
• NT : the number of decision makers
• P(i|xn)       : the probability of individual n choosing alternative i given attributes xn
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Part I: Aggregate forecasting techniques

Variable name

In-vehicle time (min)

Out-of-vehicle time/distance (min/mile)

Cost (c)/annual income ($/year)

Car to driver ratio (drive-alone)

Car to driver ratio (shared-ride)

Downtown workplace dummy (drive-alone)

Downtown workplace dummy (shared-ride)

Disposable income ($/yr) (drive alone, shared-ride)

Primary worker dummy (drive-alone)

Government worker dummy (shared ride)

Number of workers (shared ride)

Employment distance x Distance (shared ride)

Sample attributes in a 
MNL mode choice model 

𝑁𝑇 𝑖 = ෍

𝑛=1

𝑁𝑇

𝑃(𝑖|𝒙𝒏)

Provided we know the values of xn for all n, then the expected
number of individuals in T choosing i (that is, the expected
value of the aggregate number of individuals) is:

𝑊 𝑖 =
1

𝑁𝑇
σ𝑛=1
𝑁𝑇 𝑃 𝑖 𝒙𝒏 = 𝔼[𝑃(𝑖|𝒙𝒏)]

More conveniently, we can express this equation as ratio 
(market share):

𝑊 𝑖 = න
𝒙

𝑃 𝑖 𝒙 𝑝 𝒙 𝒅𝒙

When xn is continuous in T, W is defined as the following integral

𝑝 𝒙 is usually unknown, and even when known, evaluating this 
integral might be computationally burdensome.
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Part I: Aggregate forecasting techniques

In short, we require methods that reduce the required data and computational needs 
to predict aggregate shares.

• General approaches to aggregate forecasting (Koppelman, 1975):

• Average individual
• Classification
• Statistical differentials (inappropriate in very heterogeneous populations)
• Explicit integration (too difficult to apply in multinomial cases)
• Sample enumeration

We will focus on the sample enumeration method as it is the most widely used.

Practical issues in discrete choice modeling                                                    



Part I: Aggregate forecasting techniques

① Sample enumeration

Uses a sample to represent the entire population.

• When using random sampling

෡𝑊 𝑖 =
1

𝑁𝑆
෍

𝑛=1

𝑁𝑆

𝑃 𝑖 𝒙𝒏

• When using nonrandom sampling (i.e. Stratified sampling)

෡𝑊 𝑖 = ෍

𝑔=1

𝐺
𝑁𝑔

𝑁𝑇

1

𝑁𝑆𝑔
෍

𝑛=1

𝑁𝑆𝑔

𝑃 𝑖 𝒙𝒏
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Part I: Aggregate forecasting techniques

• Predicted aggregate shares are estimates, and as such are subject to sampling error.
• When choice probabilities or samples are small, sampling error might be a large fraction 

of W(i).

• Sample enumeration makes it easy to produce forecasts for different socio-economic groups, 
provided sample sizes are large enough.

① Sample enumeration
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Part II: Relevant statistical tests

• To some extent, modeling is an “art” as much as is a science.

• We cannot rely exclusively on goodness-of-fit statistics.

• Several model specifications might fit the data as well.

• Good fitting models can still result in erroneous predictions.

• Theory and informal judgment play an important role.

Practical issues in discrete choice modeling                                                    



① Testing coefficient estimates

• Are signs consistent with our expectations? ←Informal test

• Are the parameters statistically significant? ← Asymptotic t Test
• Same as in linear regression, but only valid for large sample sizes

A positive  sign for cost 
should ring some alarms

Variable name Coefficient
Standard 

error
t statistic

…

4. In-vehicle time (min) -0.015 0.0057 -2.7

5. Cost (c)/annual income ($/year) -28.8 12.7 -2.3

6. Car to driver ratio (drive-alone) 3.99 0.396 10.1

7. Car to driver ratio (shared-ride) 3.88 0.376 10.3

…

• Asymptotic t Test for linear relationships among parameters

𝑡 =
෠𝛽6 − ෠𝛽7

𝑣𝑎𝑟( ෠𝛽6 − ෠𝛽7)

; 𝑤ℎ𝑒𝑟𝑒 𝐻𝑜 : 𝛽6 = 𝛽7

Are this parameters 
statistically different from 
one another?

Part II: Relevant statistical tests
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② The likelihood ratio test:

• Ho: β1 = β2 = ⋯ = βK = 0 ←Similar to the F-test in OLS regression

Part II: Relevant statistical tests
−2 𝐿𝐿 0 − 𝐿𝐿 ෡𝜷

• 𝑋2 distributed with K degrees of freedom 

• Not very useful. Ho is almost always rejected! 

• More useful applications of the likelihood ratio test:

• ① Compare against a constant only model: −2 𝐿𝐿 𝑪 − 𝐿𝐿 ෡𝜷

Where, 𝐿𝐿 𝑪 = σ𝑖=1
𝐽

𝑁𝑖 ln
𝑁𝑖

𝑁
,    𝑋2 distributed with 𝐾 − 𝐽 + 1 degrees of freedom.

• ② Comparing nested models: −2 𝐿𝐿 ෡𝜷𝒓 − 𝐿𝐿 ෡𝜷𝒖

Where 𝐿𝐿 ෡𝜷𝒓 is the Log-likelihood of the restricted model, 𝐿𝐿 ෡𝜷𝒓 the log-likelihood 

of the unrestricted model.  (Test of linear relations, generic parameters etc)

𝑋2 distributed with (𝐾𝑢−𝐾𝑟) degrees of freedom.
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③ Goodness of fit test:

← Used in a similar manner to R2 in OLS regression.

Part II: Relevant statistical tests

𝜌2 = 1 −
𝐿𝐿 ෡𝜷

𝐿𝐿(0)

← Favors more parsimonious specifications
(unless newly added variables are very significant).

ҧ𝜌2 = 1 −
𝐿𝐿 ෡𝜷 − 𝐾

𝐿𝐿(0)

• All else equal, specifications with higher goodness of fit values should be selected.

• Can be used to test non-nested hypotheses of discrete choice models.

• Most useful when comparing models estimated using the same dataset.
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③ Goodness of fit test:

Part II: Relevant statistical tests

Practical issues in discrete choice modeling                                                    

0

0.6

0.3

1.0

1.0

Relationship between R2 and ρ2  

(Adapted from Hensher, Rose and Greene (2015) )

• Hensher, Rose and Greene (2015)
suggest that a ρ2 of 0.3 represents a
decent model fit for a discrete choice
model (approximately 0.6 for R2 in OLS
models).

• ρ2 ranging from 0.3~0.4 can be
translated to R2 values of 0.6~0.8.



④ Testing for taste variations

Part II: Relevant statistical tests

• So far we have assumed that the parameters are the same for all members of the population. (i.e. 

the magnitude of the effects are the same) How can we test if this is in fact true?

• ① Allow for random taste variation in coefficients (Random parameter models)

• ② Market segmentation
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④ Testing for taste variations：Market segmentation

Part II: Relevant statistical tests

Include socio-demographic characteristics to account for unobservable taste variations.

• Classify the sample data into socio-economic groups (e.g. Income groups, car ownership, etc.)

• Estimate separate models (same specification across markets) for each sub-group and a pooled 
model with the full dataset.

• Use the likelihood ratio test where  Ho: 𝛃
𝟏 = 𝛃𝟐 = ⋯ = 𝛃𝐆

More specifically:

−2 𝐿𝐿𝑁 መ𝛽𝑓𝑢𝑙𝑙 −෍

𝑔=1

𝐺

𝐿𝐿𝑁𝑔
መ𝛽𝑔

𝐿𝐿𝑁 መ𝛽𝑓𝑢𝑙𝑙 is the log-likelihood of the pooled model (non-segmented)

𝐿𝐿𝑁𝑔
መ𝛽𝑔 is the log-likelihood of the model estimated with the gth data subset

X2 distributed with σ𝑔=1
𝐺 𝐾𝑔 − 𝐾 degrees of freedom 
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④ Testing for taste variations：

Part II: Relevant statistical tests Segment 1 Segment 2

Variable Name Auto Ownership (0 or 1) Auto Ownership (2+)

Drive alone (DA) constant
-2.660 -3.240

(-5.846) (-2.436)

Shared ride (SR) constant
-1.140 -2.980

(-3.826) (-2.463)

Round-trip travel time (min)
0.028 -0.049

(3.500) (-2.455)

Round-trip out-of-vehicle time (min)/         
one-way distance (0.01 mile)

-14.700 -14.500

(-2.341) (-1.295)

Cars/workers in household (DA specific)
-35.300 -35.400

(-1.929) (1.009)

Cars/workers in household (SR specific)
4.260 3.560

(9.861) (3.849)

Downtown workplace dummy (DA specific)
1.400 2.590

(4.106) (2.776)

Downtown workplace dummy (SR specific)
-0.605 -1.130

(-1.644) (-1.865)

Disposable household income (DA specific)
-0.446 -0.636

(-1.502) (-1.102)

Disposable household income (SR specific)
0.000 0.001

(1.335) (24.901)

Government worker dummy (SR specific)
0.687 0.063

(3.435) (0.251)

Observations per segment 623 513

-502.600 -301.100

Total observations = 1,136

=  -820.3𝐿𝐿𝑁 መ𝛽𝑓𝑢𝑙𝑙

𝐿𝐿𝑁𝑔
መ𝛽𝑔

Adapted from Ben-Akiva and Lerman (1984)

MNL Model segmented by auto ownership levels

Note that it is certainly possible that:
• All t tests are insignificant despite the joint likelihood 

being significant.
• The joint test does not reject the null hypothesis but 

some coefficients might be significantly different.

−2 𝐿𝐿𝑁 መ𝛽𝑓𝑢𝑙𝑙 −෍

𝑔=1

𝐺

𝐿𝐿𝑁𝑔
መ𝛽𝑔 = −2 −820.3 + 803.7 = 33.2

Degrees of freedom: 12 X2 
0.05= 21.0

We thus reject the null hypothesis that  𝛃𝟏 = 𝛃𝟐

𝑡 =
෢𝛽1

𝑘
− ෢𝛽2

𝑘

𝑣𝑎𝑟 ෢𝛽1
𝑘

+ 𝑣𝑎𝑟(෢𝛽2
𝑘
)

; 𝑤ℎ𝑒𝑟𝑒 𝐻𝑜 : ෢𝛽
1
𝑘
= ෢𝛽2

𝑘

Individual coefficients can also be compared across 
Segments:
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Thank you

Questions?
gtroncoso@ut.t.u-Tokyo.a.jp

mailto:gtroncoso@ut.t.u-Tokyo.a.jp

