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A major concern when using machine learning 
(ML) methods for modelling travel behavior

• What is a good behavior model?
1. High predictability 

2. High interpretability

• Particularly solid microeconomic foundations

• General Features of machine learning (ML)
– Very high predictability for short-run forecasting

• Not really sure for long-run forecasting

– Little theoretical foundation

• Even it is difficult to identify the factors affecting the 
outcome when using deep learning techniques.

• Today’s contents
– Review some recent studies which attempt to solve the 

shortcomings of ML methods in the context of modeling 
discrete choice behavior.
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Papers reviewed:
• “Replacement” rather than “integration” (may not 

be very interesting for behavioral modelers)
– Acuna-Agost, R., Delahaye, T., Lheritier, A., Bocamazo, M., 2017. Airline Itinerary Choice 

Modelling Using Machine Learning. International Choice Modelling Conference 2017.

– Hagenauer, J., Helbich, M., 2017. A comparative study of machine learning classifiers for 
modeling travel mode choice. Expert Systems with Applications 78, 273-282.

– Iranitalab, A., Khattak, A., 2017. Comparison of four statistical and machine learning 
methods for crash severity prediction. Accident Analysis & Prevention 108, 27-36.

– Yang, J., Shebalov, S., Klabjan, D., 2017. Semi-supervised learning for discrete choice 
models. arXiv preprint arXiv:1702.05137.

• Integration (1): Discrete choice with decision trees

– Brathwaite, T., Vij, A., Walker, J.L., 2017. Machine Learning 
Meets Microeconomics: The Case of Decision Trees and 
Discrete Choice. arXiv preprint arXiv:1711.04826.

• Integration (2): Discrete choice with neural
network

– Sifringer, B., Lurkin, V., Alahi, A., 2018. Enhancing Discrete 
Choice Models with Neural Networks. 18th Swiss Transport 
Research Conference, Monte Verità, May 16–18.
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DISCRETE CHOICE WITH 
DECISION TREES

Brathwaite, T., Vij, A., Walker, J.L., 2017. Machine Learning 
Meets Microeconomics: The Case of Decision Trees and 
Discrete Choice. arXiv preprint arXiv:1711.04826.
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Background and objective

• Background
– The logistic regression model from statistics and the 

binary probit model from psychology were linked with 
random utility theory. 

– Recently, the fields of statistics, computer science, and 
machine learning have created numerous methods for 
modeling discrete choices, while these newer methods 
have not been derived from or linked with economic 
theories of human decision making.

• Objective
– Bridging the gap by providing a microeconomic 

framework for decision trees
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Contributions

• Major contributions of the paper

1. Connect decision trees to economic theory, 
where decision trees correspond to a non-
compensatory, microeconomic decision 
protocol known as “disjunctions-of-
conjunctions”

2. Advance the state of the art in the modeling of 
semi-compensatory decision making by 
combining decision trees with traditional 
discrete choice models.

3. Demonstrate the performance of the proposed 
method (focus: mode choice)
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Non-compensatory decision protocols

• Compensatory decision protocols

– High levels of satisfaction with one attribute 
compensate for low levels of satisfaction with 
other attributes.

• Non-compensatory decision protocols

– Not always allow positive attributes of a given 
alternative to compensate for negative attributes 
of that same alternative.

– Not typically require the evaluation of all 
attributes of all alternatives. They better capture 
the limited cognitive resources of decision 
makers.
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Basic idea

• Manski’s (1977) two-stage characterization 
of the choice process:
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Conventional 
discrete choice 
such as MNL

Decision 
trees

: Probability of choosing alternative i

: A choice set in the set of subsets of M,

: Conditional probability of choice given set C

: The probability that C is the true choice set



Basic idea
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Decision tree: A set of “if-
then” statements that are used 
to predict a given quantity.

Utilizing decision trees to 
reflect no-compensatory 
decision protocol of  
choice set formation

Choice set = 
{Public transit, Bicycle}

Choice set = 
{Public transit}

Choice set = 
{Public transit, Bicycle}

Choice set = 
{Public transit}

Applying discrete choice models



Different non-compensatory decision rules

• Dominance (Cascetta and Papola, 2009)

• Lexicography (Kohli and Jedidi, 2007)

• Elimination-by-aspects (Tversky, 1972)

• Satisficing (Stuttgen et al., 2012)

• Conjunctive rules

• Disjunctive rules

• Subset-conjunctive rules

• Disjunctions-of-conjunctions
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Related to 
this paper



Different non-compensatory decision rules

• Conjunctive rules

– An individual only considers alternatives that meet all of a 
given number of requirements.

• Disjunctive rules

– An individuals only considers alternatives that meet at least 
one of a given set of requirements.

• Subset-conjunctive rules

– A generalization of both conjunctive rules and disjunctive 
rules.

– An individual only considers alternatives that meet a certain 
number of requirements.

• Disjunctions-of-conjunctions

– A generalization of conjunctive, disjunctive, and subset-
conjunctive decision rules.

– An individual considers any alternative that meets at least 
one of a given set of conjunctive conditions. 

– Highly flexible non-compensatory decision protocols.
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Linking decision trees with 
disjunctions-of-conjunctions

• Conjunctive rule:

– If all requirements 𝑏𝑖 (noted

as 𝑝𝑖) are met, then 𝑦.

• Disjunctive rule:

– If at least one (i.e., if any) of the requirements 𝑏𝑖 are met, then 𝑦.

• Disjunctions-of-conjunctions rule:

– If at least one of some set of conjunctive conditions, 𝑝, is met, 
then 𝑦. 
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: Total number of requirements in the rule

: A primitive Boolean statement
(1: True; 0: False)

: Outcome

: Total number of conjunctive conditions

: The number of requirements that 
make up conjunctive condition 𝑝𝑖



Output1: 𝑝1

Output2: 𝑝2

Output3: 𝑝3 Output4: 𝑝4
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Linking decision trees with 
disjunctions-of-conjunctions

FalseTrue

FalseTrue

FalseTrue

← Conjunctive condition

← Conjunctive condition

← Conjunctive condition

Enumeration of conjunction conditions can be done by using the FP-growth algorithm 
(Letham et al., 2015). ZDD-growth algorithm (Minato, 2006) may also be able to use.



Decision tree variants

• Decision tree models can be extended to:

1. make probabilistic predictions

2. represent heterogeneity in a population’s non-
compensatory rules

3. represent estimation uncertainty

4. represent context-dependent preference 
heterogeneity

5. satisfy monotonicity constraints

• These extensions are not new, but can be 
econometrically explained!!
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1. probabilistic predictions

• A conventional decision tree involves 
deterministic outputs through “if-then” rules.

– However, decisions may not be deterministic in 
many contexts.

• We can make it probabilistic, for example:

– The probability of a given alternative is predicted 
to be the fraction of observations in that output 
node who chose the alternative in question 
(Arentze and Timmermans, 2004)
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2. Heterogeneous non-compensatory rule

• Individuals may use different non-
compensatory rules. There are number of 
methods reflecting the heterogeneous rules.

• Local heterogeneity:

– Heterogeneity within a certain node
• Soft decision trees / fuzzy decision trees

• Global heterogeneity:

– Heterogeneity in the structure of decision tree
• “Ensembles” of decision trees (considering latent 

classes for decision trees).

• Similar with random forests, but the classes may need 
to be behaviorally understandable.
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3. estimation uncertainty

• Quantification of inferential uncertainty is 
important.

• Ensemble methods such as Bayesian 
decision trees and bagging can be used to 
obtain the “approximate” measure of 
uncertainty.
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4. context-dependent preference

• The context in which a decision is made is 
an important determinant of outcomes 
(Swait et al., 2002).

• Model trees

– decision trees where the output at a given 
output node is a statistical model (in this paper, 
discrete choice model)
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Output1: 𝑝1

Output2: 𝑝2

Output3: 𝑝3 Output4: 𝑝4

FalseTrue

FalseTrue

FalseTrue

Set different parameters to take 
into account context-dependent 
preference heterogeneity.



5. monotonicity constraints

• Constraints are often needed to 
economically understand the model:

– As the travel cost increases, the probability of 
choosing the alternative should decrease 
(monotonicity constraint)
• We could reflect it by using monotonic decision trees, 

where the desired monotonicity constraints are not 
violated.
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Empirical model specification
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: the predicted probability of outcome Y

: the total number of unique trees in one’s sample

: the choice model probability of Y given 

: the posterior probability of a given tree

: the number of sampled elements containing tree m

: a set of parameters at node m

Computationally very expensive, requiring an efficient estimation method



Empirical analysis

• Data set

– California Household Travel Survey data

– 1,015 observations

– Choice context: Mode choice with 8 alternatives
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Different across discrete choice models



Empirical analysis

• Variables for decision trees (requirements):
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Notes:
1. Discretization was done to construct the decision tree into as many equal sized 

groups as possible.
2. The maximum number of requirements in a conjunctive condition is 2.
3. Only consider the conjunctive conditions that apply to (1) 10% or more of those 

who bicycle or (2) 10% or more of those who did no bicycle.
4. Enumeration of conjunctive conditions were done by using the FP-growth algorithm.



Some results

• Accuracy:

– The proposed Bayesian model tree is more than 
1000-times more likely to be closer to true data-
generating process than the MNL model.
• The cost of model complexity is somehow already 

taken into account in the model estimation process.

• Forecasts:
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DISCRETE CHOICE WITH 
NEURAL NETWORK

Sifringer, B., Lurkin, V., Alahi, A., 2018. Enhancing Discrete 
Choice Models with Neural Networks. 18th Swiss Transport 
Research Conference, Monte Verità, May 16–18.
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Background and objective

• RUM model vs neural network

– Advantage of RUM model
• Interpretability of the results.

– Advantage of neural network
• Better goodness-of-fit

• Objective

– Bringing the predictive strength of Neural 
Networks, a powerful machine learning-based 
technique, to the field of Discrete Choice Models 
(DCM) without compromising interpretability of 
these choice models.
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RUM: random utility maximization



A discrete choice model from the perspective of neural network

RUM model and neural network (NN)
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Utility function:

Choice probability:

(negative) log-likelihood:

Softmax activation function:

Cross-entropy:

Discrete choice model as a Random Utility Maximization (RUM) model

The conventional MNL can be seen as a neural network model with a 
simple network structure. 



Discrete Choice Model with NN

27

:

: A vector of parameters (1×d)

: A set of explanatory variables (I×d)

Utility function with non-linear component:

where is the ensemble of input features, and, 𝜓 is 
the function defined by multiple neural network layers
and their corresponding activation functions.

Linear-in-
parameters 
component 

Non-linear 
component
(via NN)



Discrete Choice Model with NN
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Linear-in-parameters 
component 

Non-linear
component

Hold a monotonicity 
constraint!!



Empirical analysis

• Dataset
– Swissmetro dataset (Bierlaire et al., 2001)

– A stated preference data on mode choice

– 10700 entries from 1190 individuals

• Linear-in-parameters component:
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Empirical analysis

• Non-linear component:
1. Travel purpose: Discrete value between 1 to 9 

(Business, leisure, travel,... )

2. First class: 0 for no or 1 for yes if passenger is a first 
class traveler in public transport

3. Ticket: Discrete value between 0 to 10 for the ticket 
type (One-way, half-day, ...)

4. Who: Discrete value between 0 to 3 for who pays the 
travel (self, employer, ...)

5. Male: Traveler’s gender, 0 for female and 1 for male

6. Income: Discrete value between 0 to 4 concerning the 
traveler’s income per year

7. Origin: Discrete value defining the canton in which the 
travel begins

8. Dest: Discrete value defining the canton in which the 
travel ends
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Multinomial Logit as Benchmark
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Hybrid model (1)
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Note: Statistical properties of the parameters are obtained through Biogeme (Bierlaire, 2009)



Simplified hybrid model (2)
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All remaining variables are used here



Conclusions & future works
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Comparison of key parameters

Conclusions:
• Combining the advantage of linear-in-parameters RUM model and 

the advantage of neural network where highly non-linear impacts 
of explanatory variables

Future works:
• The selection of hyper 

parameters (it would 
change the results)

• Possibility of using the 
model for long-term 
demand forecasting 
(cross-validation may not 
be enough)

• Possibility of using 
different NN components 
(e.g., convolutional NN, 
recurrent NN, etc.)



Take-home message:

• There is a high possibility of utilizing 
machine learning techniques to improve 
behavioral models, while satisfying basic 
requirements such as having solid 
microeconomic foundations
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