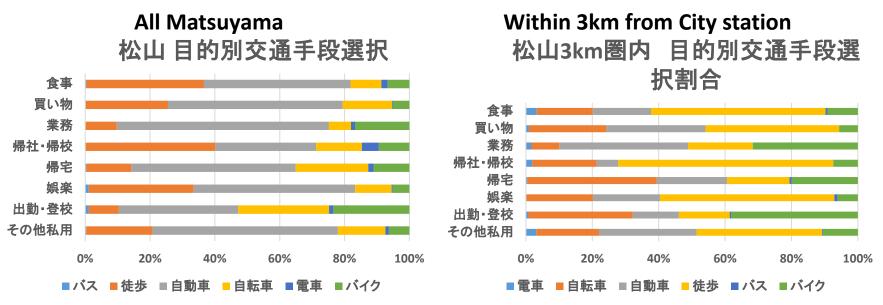
松山市における公共交通利用 促進に向けた交通手段選択モデル

The model of facilitate for public transportation in Matsuyama

Team E(芝浦工大B)


岩崎 真純 廣川 空翔 本山 莉紗子 高根 大毅 廣瀬 遼太 犬飼 将成

2017/10/14 第16回行動モデル夏の学校

基礎分析結果 Result of basic analysis

目的別交通手段選択

Choice of Transportation(Difference of purpose)

着眼点 Point

- 松山はどの目的でも公共交通の利用率が低く、 自動車の利用率が高い
- →公共交通の利用低下が懸念される

In Matsuyama, train and bus don't have many use, but car has many use.

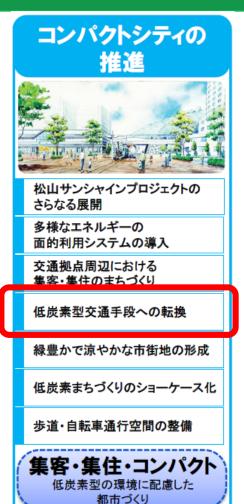
Then, public transportation users are decrease?

松山の現状

Current status in Matsuyama

H25 松山市 環境モデル都市 制定

Matsuyama city was enacted as an environmental model city in 2013.

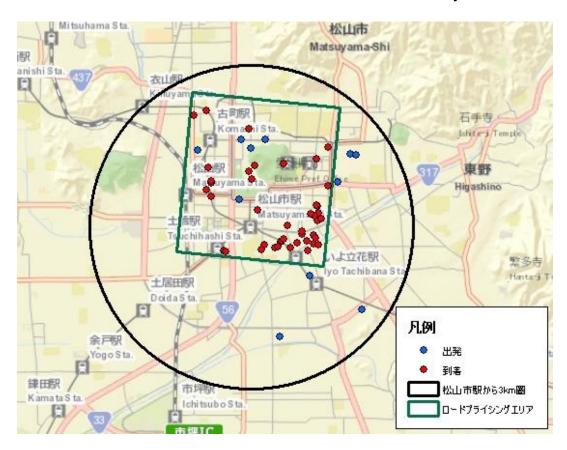


環境と経済の両立を目指して「誇れる環境モデル都市まつやま」、

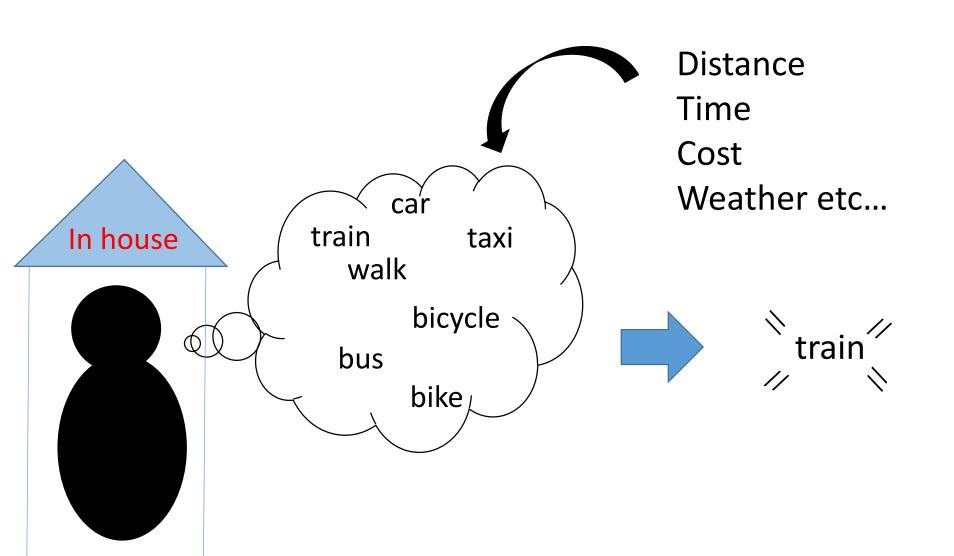
https://www.city.matsuyama.ehime.jp/shisei/machizukuri/kankyoumodel/kankyoumoderuoshi.files/sannkousiryou.pdf

松山の現状

Current status in Matsuyama

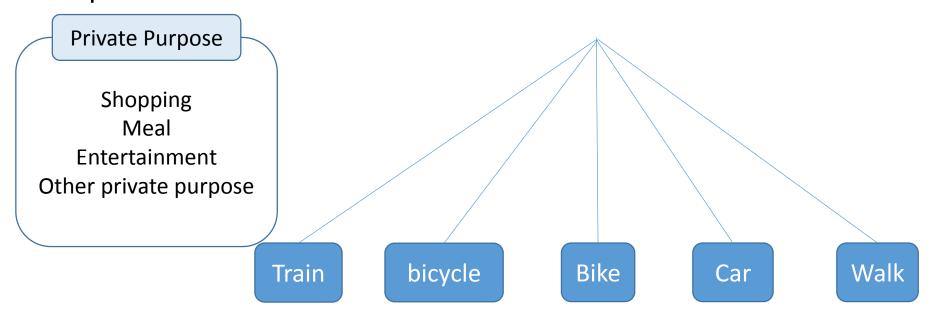


自動車からの転換が求められている Require conversion of the car from public transportation


環境と経済の両立を目指して「誇れる環境モデル都市まつやま」から抜粋

政策の提案 Policy proposal

ロードプライシングの導入 Adopt Road Pricing >公共交通機関利用者数が増加する? Really user increase?



手段選択の思考プロセス means selection thought process

交通手段選択モデル Transportation selection model

- 自宅から松山市駅方面に向かった私事目的トリップに限定 Only private purpose trip from home to the direction to Matsuyama station
- 交通手段選択MNLモデル
 Transportation selection MNL model

モデル構築に向けて

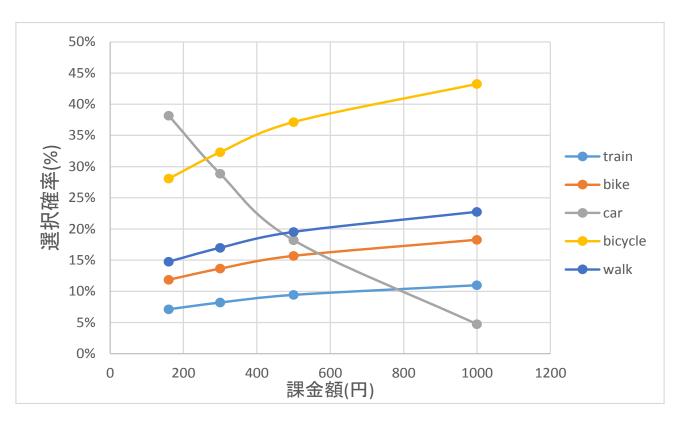
construct the model

dummy

$$\begin{aligned} &V_{train} = \theta_1 * t_{train} + \theta_2 * c_{train} + \theta_3 * a_{train} + \theta_4 * e_{train} + \theta_6 \\ &V_{bicycle} = \theta_1 * t_{bicycle} + \theta_5 * r_{bicycle} + \theta_7 \\ &V_{car} = \theta_1 * t_{car} + \theta_8 \\ &V_{bike} = \theta_1 * t_{bike} + \theta_5 * r_{bike} + \theta_9 \\ &V_{walk} = \theta_1 * t_{walk} \\ &\theta_1 \sim \theta_5 : parameter, \theta_6 \sim \theta_9 : Constant term, \end{aligned}$$

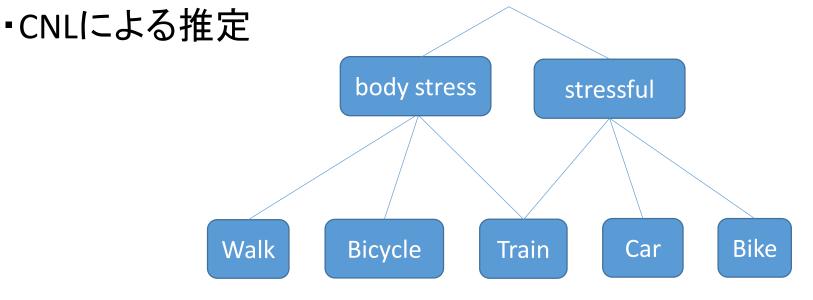
t:Time, c:Cost, a:Access distance, e:Egress distance, r:Rain

推定結果


Estimation result

*10%有意 **1%有意

		パラメータ	t値	
θ1	定数項(Train)	4.37	1.37	
θ2	定数項(bike)	-1.56	-2.78	**
θ3	定数項(car)	0.11	0.13	
θ4	定数項(walk)	-1.43	-4.27	**
θ5	費用(円)	-0.03	-1.85	*
θ6	アクセス距離(m)	-0.0008	-0.89	
θ7	イグレス距離(m)	-0.026	-1.69	
θ8	所要時間(分)	-0.0012	-0.58	
θ9	雨ダミー	8.25	0.19	
LO		-138.4		
LL		-101.1		
修正済み尤度比		0.241		
サンプル数		87		


政策シミュレーション結果 Policy simulation result

- Road pricingの金額で感度分析を行った結果
- Sensitivity Analysis by Road pricing Fee

やりたかったこと We wanted to do...

・課金によって得られる収益による政策
The policy what revenues from tolled fee (道路整備等、他の交通手段への還元etc)
→データセットの際に考慮するべきだった

