

Difference of Leisure behavior between sunny day and rainy day ^{Tokyo Tech Team B}

Kamegai, Kikuchi, Shinohara, Tsuru, Mizuguchi

Introduction

If rainy, I guess leisure activity is...

- Go to a place near their house and not go to far place
- Change their means of transport

See the influence on distance for leisure activity caused by weather.

Basic Analysis

Trip Distance

Trip distance is almost equal

Sunny day: Trip numbers are large

Future works: Research the influence of leisure caused by weather

- Most of data are from the middle class(36-45).
- •6 people (20%) are unanswered.

 \rightarrow Precision is low, and we cannot count them in variable.

Suggest model

A man has more number of the trips per 1 tour than a woman.

Total Required Time to arrive at the destination

Total Required Time

The destination is limited to the available place even on a rainy day. →Movement distance and total required time get longer.

Total Cost

On a rainy day, we use public transport to avoid rain even if we need to pay money.

 \rightarrow More costly

Suggest model

• To utilize the 3 elements of the foregoing as an explanatory variable

Activities are different from weather \rightarrow Introduction of " R_n " (Rain dummy) as a dummy variable.

$$U_{1} = \beta_{SEX1} * S_{1} + \beta_{TIME1} * T_{1} + \beta_{COST1} * C_{1} + \beta_{RAIN1} * R_{1}$$

$$U_{2} = \beta_{SEX2} * S_{2} + \beta_{TIME2} * T_{2} + \beta_{COST2} * C_{2} + \beta_{RAIN2} * R_{2}$$

$$U_{3} = \beta_{SEX3} * S_{3} + \beta_{TIME3} * T_{3} + \beta_{COST3} * C_{3} + \beta_{RAIN3} * R_{3}$$

List	Item
S _n	SEX (DUMMY)
T_n	TOTAL TRAVEL TIME
C_n	TOTAL COST
R_n	RAIN (DUMMY)

	Value	Std err	t-test	P-value
β_{RAIN1}	0.854	0.397	2.15	0.03
β_{RAIN2}	-0.116	0.449	-0.26	0.80
β_{SEX1}	1.83	0.285	6.43	0.00
β_{SEX2}	1.18	0.293	4.04	0.00
β_{COST1}	0.000597	0.000305	1.96	0.05
β_{COST2}	0.000562	0.000246	2.28	0.02
β_{TIME2}	-0.0239	0.00532	-4.49	0.00
β_{TIME2}	-0.0157	0.00497	-3.15	0.00

In t-test,

RAIN1 is + and that of RAIN2 is - : The weather influences the first action COST is + : It becomes easy to move so as to take cost

Policy

1.Shortening of the movement time :

- Increasing number of service of the public transport
- Increasing facilities which are available on a rainy day

2.Restraint of the movement expense

Discounting in a destination and public transport

3.Environmental maintenance for women to be easy to go out

Simulation

 Will the number of the trips increase if they discount 20% of fares of the railroad?

If they discount 20% of fares of the railroad , the proportion of person with number of the trips per a tour more than 3 doubles.

<u>ex.)Increase flights of buses on a rainy day(遠州鉄道バス)</u> If the probability of rain tomorrow of the day before 11:00 is more than 50%, they increase flights buses at some routes.

APPENDIX: Results of Nested Logit

Name	Value	Std. Error	T-test
β_{rain1}	0.854	0.394	2.17
β_{rain2}	-0.116	0.448	-0.26
β_{rain3}	0	Const.	
$\beta_{sexdummy1}$	1.83	0.285	6.44
$\beta_{sexdummy2}$	1.18	0.293	4.04
$\beta_{sexdummy3}$	0	Const.	
$\beta_{totalcost1}$	0.000597	0.000305	1.96
$\beta_{totalcost2}$	0.000562	0.000246	2.28
$\beta_{totalcost3}$	0	Const.	
$\beta_{traveltime1}$	-0.0239	0.00532	-4.49
$\beta_{traveltime2}$	-0.0157	0.00497	-3.15
$\beta_{traveltime3}$	0	Const.	
μ	1.00	1.8*10 ³⁰⁸	0.00

