Difference of Leisure behavior between sunny day and rainy day

Tokyo Tech Team B

Kamegai, Kikuchi, Shinohara, Tsuru, Mizuguchi

Introduction

If rainy, I guess leisure activity is...

- Go to a place near their house and not go to far place
- Change their means of transport

See the influence on distance for leisure activity caused by weather.

Basic Analysis

Trip Distance

Trip distance is almost equal

Sunny day: Trip numbers are large

Future works: Research the influence of leisure caused by weather

Suggest model

Age

- Most of data are from the middle class(36-45).
- 6 people (20\%) are unanswered.
\rightarrow Precision is low, and we cannot count them in variable.

Suggest model

Sex

A man has more number of the trips per 1 tour than a woman.

Suggest model

Total Required Time to arrive at the destination

Total Required Time

climate

The destination is limited to the available place even on a rainy day. \rightarrow Movement distance and total required time get longer.

Suggest model

Total Cost
Total Cost

On a rainy day, we use public transport to avoid rain even if we need to pay money.
\rightarrow More costly

Suggest model

 Transport Studies Unit- To utilize the 3 elements of the foregoing as an explanatory variable

Activities are different from weather
\rightarrow Introduction of " R_{n} "(Rain dummy) as a dummy variable.

$$
\begin{aligned}
& U_{1}=\beta_{S E X 1} * S_{1}+\beta_{\text {TIME } 1} * T_{1}+\beta_{\text {COST } 1} * C_{1}+\beta_{\text {RAIN } 1} * R_{1} \\
& U_{2}=\beta_{S E X 2} * S_{2}+\beta_{\text {TIME2 }} * T_{2}+\beta_{\text {COST2 }} * C_{2}+\beta_{\text {RAIN } 2} * R_{2} \\
& U_{3}=\beta_{S E X 3} * S_{3}+\beta_{\text {TIME3 }} * T_{3}+\beta_{\text {COST } 3} * C_{3}+\beta_{\text {RAIN } 3} * R_{3}
\end{aligned}
$$

List	
	Item
S_{n}	SEX (DUMMY)
T_{n}	TOTAL TRAVEL TIME
C_{n}	TOTAL COST
	R_{n}

Result of estimatio ${ }^{\text {Pa }}$ TSUI

	Value	Std err	t-test	P-value
$\beta_{\text {RAIN } 1}$	0.854	0.397	2.15	0.03
$\beta_{\text {RAIN } 2}$	-0.116	0.449	-0.26	0.80
$\beta_{\text {SEX1 }}$	1.83	0.285	6.43	0.00
$\beta_{\text {SEX2 }}$	1.18	0.293	4.04	0.00
$\beta_{\text {COST1 }}$	0.000597	0.000305	1.96	0.05
$\beta_{\text {COST2 }}$	0.000562	0.000246	2.28	0.02
$\beta_{\text {TIME } 2}$	-0.0239	0.00532	-4.49	0.00
$\beta_{\text {TIME } 2}$	-0.0157	0.00497	-3.15	0.00

In t-test,
RAIN1 is + and that of RAIN2 is - : The weather influences the first action COST is + : It becomes easy to move so as to take cost

Policy

1.Shortening of the movement time:

- Increasing number of service of the public transport
- Increasing facilities which are available on a rainy day
2.Restraint of the movement expense
- Discounting in a destination and public transport
3.Environmental maintenance for women to be easy to go out

Simulation

- Will the number of the trips increase if they discount 20\% of fares of the railroad?

Number of trips

If they discount 20\% of fares of the railroad, the proportion of person with number of the trips per a tour more than 3 doubles.

Transport Studies Unit
ex．）Increase flights of buses on a rainy day（遠州鉄道バス） If the probability of rain tomorrow of the day before 11：00 is more than 50% ，they increase flights buses at some routes．

APPENDIX: Results of Nested Logit

