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Outcome of a sequential decision-making process:

1. Definition of the choice problem
2. Generation of alternatives
3. Evaluation of attributes of the alternatives
4. Choice
5. Implementation

Choice theory framework

→ Choose a commuting mode
→ Available modes: Car, transit, bike, walk
→ Weigh each alternative’s attributes 

→ Choose a mode
→ Commute to work using the chosen mode

This process defines the following elements:

1. Decision maker
2. Alternatives
3. Attributes of alternatives
4. Decision rule
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Decision maker

• Individual, household, organization (i.e. firms, government agency)

Alternatives
𝐶ℎ𝑜𝑖𝑐𝑒 𝑠𝑒𝑡 ∈ 𝑼𝒏𝒊𝒗𝒆𝒓𝒔𝒂𝒍 𝒔𝒆𝒕

Defined by the environment 
of the decision maker

Feasible alternatives known 
during the decision process

Alternative attributes
• A vector of characteristics that measure the attractiveness of an alternative

(e.g. Cost, comfort, travel time, etc)

Decision rule

• Mechanism that defines the decision making process
(Dominance, satisfaction, lexicographic rules, Utility)
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An utility-maximization decision rule

• Attractiveness is reduced to a single scalar function
• Based on the notion of tradeoffs, or compensatory offsets, when making a choice.

• Assumption of rational behavior: 
• Under identical circumstances, an individual will repeat the same choices every time.

• Random utility approach:
• Why? Because of observational deficiencies by the analyst, mainly a result of:

1. Unobserved attributes
2. Unobserved taste variations (heterogeneity)
3. Measurement errors and imperfect information
4. Proxy variables
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An utility-maximization decision rule

• We can specify a random utility function as

𝑈𝑖𝑛 = 𝑉𝑖𝑛 + 𝜀𝑖𝑛

Observable (systematic)
component

Unobservable (random)
component

So that

𝑃 𝑖 𝐶𝑛 = Pr(𝑈𝑖𝑛 > 𝑈𝑗𝑛, ∀𝑗 ∈ 𝐶𝑛)

• To derive a specific model, we then need assumptions on

𝜀𝑗𝑛, ∀𝑗 ∈ 𝐶𝑛

Where 𝐶𝑛 is a feasible choice set for individual n

Only difference in utility matters!

= Pr 𝜀𝑗𝑛 − 𝜀𝑖𝑛 ≤ 𝑉𝑖𝑛 − 𝑉𝑗𝑛, ∀𝑗 ∈ 𝐶𝑛 = Pr 𝜀𝑛 ≤ 𝑉𝑛, ∀𝑗 ∈ 𝐶𝑛

𝑃 𝑖 𝐶𝑛 = Pr(𝑉𝑖𝑛 + 𝜀𝑖𝑛 ≥ 𝑉𝑗𝑛 + 𝜀𝑗𝑛, ∀𝑗 ∈ 𝐶𝑛)
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• Specifying the utility function components

• Usually linear-in-parameters specification:

𝑉𝑖𝑛 = 𝛽1𝑥𝑖𝑛1 + 𝛽2𝑥𝑖𝑛2 + ⋯ + 𝛽𝐾𝑥𝑖𝑛𝐾

where 𝑥𝑖𝑛 = 𝑓(𝑧𝑖𝑛, 𝑆𝑛)

• Non-linearities can be introduced by allowing for any 
function f (polynomial, logarithmic, exponential, etc)

• Reflects the sources of randomness 
discussed earlier 

• Different distributional assumptions 
result in different models:
• Normal distribution→Probit model
• Gumbel distribution→Logit model

𝑈𝑖𝑛 = 𝑉𝑖𝑛 + 𝜀𝑖𝑛

An utility-maximization decision rule
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Binary choice models: Linear Probability Model

• The choice probability of i is given by the CDF of 𝜀𝑛

𝑃𝑛 𝑖 =  

0

 −𝐿

𝑉𝑛 𝑓 𝜀𝑛 𝑑𝜀𝑛

1

=
𝑉𝑛+𝐿

2𝐿

𝑖𝑓 𝑉𝑛 < −𝐿
𝑖𝑓 − 𝐿 ≤ 𝑉𝑛 ≥ 𝐿
𝑖𝑓𝑉𝑛 > 𝐿

Derivative is discontinuous!

Choices with predicted
probability of 0 are still
chosen.

1

2𝐿

𝐿-𝐿

𝑓(𝜀𝑛)

Uniform distribution PDF of 𝜀𝑛

(Our assumption about the error distribution) 

Probability 
drops to 0

Probability 
drops to 0

𝑉𝑛

𝑃𝑛 𝑖 = Pr 𝜀𝑛 ≤ 𝑉𝑛 , ∀𝑗 ∈ 𝐶𝑛
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Binary choice models: Probit Model

• The choice probability of i is given by the CDF of 𝜀𝑛

𝑃𝑛 𝑖 =
1

2𝜋
 

−∞

(𝑉𝑛)/𝜎

𝑒𝑥𝑝 −
1

2

𝜀

𝜎

2

𝑑𝜀 = Φ
𝑉𝑛

𝜎

Normal distribution PDF of 𝜀𝑛

(A better assumption about the error distribution) 

Probabilities are never zero or one.

But the probabilities cannot be
expressed in a closed form (numerical
methods are required)

𝑉𝑛

𝑃𝑛 𝑖 = Pr 𝜀𝑛 ≤ 𝑉𝑛 , ∀𝑗 ∈ 𝐶𝑛
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Binary choice models: Logit model

• The choice probability of i is given by the CDF of 𝜀𝑛

𝑃𝑛 𝑖 =
exp 𝜇𝑉𝑖𝑛

exp 𝜇𝑉𝑖𝑛 + exp 𝜇𝑉𝑗𝑛

=
1

1 + exp −𝜇 𝑉𝑖𝑛 − 𝑉𝑗𝑛

0

0.5

1

Probit CDF Logit CDF

𝑉𝑛

• A probit-like model that approximates a normal
distribution.

• Probabilities can be expressed in closed form, so
it is analytically convenient.

• 𝜀𝑖𝑛 and 𝜀𝑗𝑛 are assumed to be i.i.d. Gumbel

distributed (Type I extreme value distribution)
• So 𝜀𝑛 = 𝜀𝑖𝑛-𝜀𝑗𝑛 is logistically distributed.

where 𝜇 𝑖𝑠 𝑎 𝑠𝑐𝑎𝑙𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟
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Binary choice models: Logit model
The role of the scale parameter 𝜇

0

0.5

1

μ=150 μ=1 μ=0.5 μ=0

𝑃𝑛 𝑖 =
exp 𝜇𝑉𝑖𝑛

exp 𝜇𝑉𝑖𝑛 + exp 𝜇𝑉𝑗𝑛

=
1

1 + exp −𝜇 𝑉𝑖𝑛 − 𝑉𝑗𝑛

As μ approaches infinity → deterministic outcomes

As μ approaches 0 → equally likely outcomes
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Maximum likelihood estimation of parameters

The Maximum Likelihood principle states that, out of all the possible values of a
parameter β, the value that makes the likelihood of the observed data largest
should be chosen. (Wooldridge, 2004)

𝐿𝑛(𝛽|𝑥) =  

𝑛=1

𝑁

𝑓(𝑥𝑛|𝛽)

𝑀𝑎𝑥 𝐿𝐿 = max
 𝛽𝑛

 

𝑛=1

𝑁

𝑙𝑜𝑔𝑓(𝑥𝑛|𝛽)

General form of the likelihood function:

Maximization of the Log-likelihood function

The likelihood is proportional the
product of individual probabilities
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𝐿𝑛(𝛽1, 𝛽2, … 𝛽𝐾) =  

𝑛=1

𝑁

𝑃𝑛 𝑖 𝑦𝑖𝑛 𝑃𝑛 𝑗 𝑦𝑗𝑛

In the general binary model case, the likelihood function can be defined as

𝐿𝐿𝑛(𝛽1, 𝛽2, … 𝛽𝐾) =  

𝑛=1

𝑁

𝑦𝑖𝑛𝑙𝑜𝑔𝑃𝑛 𝑖 + 𝑦𝑗𝑛𝑙𝑜𝑔𝑃𝑛(𝑗)

=  

𝑛=1

𝑁

𝑦𝑖𝑛𝑙𝑜𝑔𝑃𝑛 𝑖 + (1 − 𝑦𝑖𝑛)𝑙𝑜𝑔(1 − 𝑃𝑛(𝑖))

And the log-likelihood function we want to maximize can be defined as

Maximum likelihood estimation of parameters
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We can then obtain maximum likelihood estimates by differentiating with respect to each 𝛽, and setting the
partial derivatives to equal 0 (First order Condition)

Maximum likelihood estimation of parameters

𝜕𝐿𝐿

𝜕 𝛽𝑘

=  

𝑛=1

𝑁

𝑦𝑖𝑛

𝜕𝑃𝑛(𝑖)/𝜕 𝛽𝑘

𝑃𝑛 𝑖
+ 𝑦𝑗𝑛

𝜕𝑃𝑛(𝑗)/𝜕 𝛽𝑘

𝑃𝑛 𝑗
= 0, 𝑓𝑜𝑟 𝑘 = 1, … , 𝐾

If the likelihood function is globally concave, and a
solution to the FOC exists it is unique. To prove this, the
matrix of the second derivatives 𝛻2𝐿𝐿 (Hessian Matrix)
must be negative semi-definite for all values of β.

𝐿𝐿𝑛(𝛽)

𝛽
 𝛽𝛽𝑜

Maximum likelihood estimate (Adapter from Train(2003))

A negative semi-definite matrix is defined as such if:

where A is an n x n matrix (In this case our Hessian) and x
a vector of values (In this case a vector of first derivatives
of 𝐿𝐿(𝛽)evaluated at current values of 𝛽, 𝛽𝑜)

𝑓 𝑥 = 𝑥′𝐴𝑥 ≤ 0 (Quadratic form). 
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Maximum likelihood estimation of parameters: Binary Logit Model

𝐿𝐿 =  

𝑛=1

𝑁

𝑙𝑜𝑔𝑓(𝑥𝑛|𝛽)

The Log-likelihood function is

=  

𝑛=1

𝑁

𝑦𝑖𝑛 log
𝑒𝛽′𝑥𝑖𝑛

𝑒𝛽′𝑥𝑖𝑛 + 𝑒𝛽′𝑥𝑗𝑛
+ 𝑦𝑗𝑛log

𝑒𝛽′𝑥𝑗𝑛

𝑒𝛽′𝑥𝑗𝑛 + 𝑒𝛽′𝑥𝑖𝑛
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Maximum likelihood estimation of parameters: Binary Logit Model

The FOC is defined as

𝜕𝐿𝐿

𝜕 𝛽𝑘

=  

𝑛=1

𝑁

𝑦𝑖𝑛 − 𝑃𝑛(𝑖) 𝑥𝑖𝑛𝑘 − 𝑥𝑗𝑛𝑘 = 0, 𝑘 = 1, … , 𝐾

While the second derivatives can be solved as

𝜕2𝐿𝐿

𝜕𝛽𝜕𝑙
= −  

𝑛=1

𝑁

𝑃𝑛 𝑖 1 − 𝑃𝑛(𝑖) 𝑥𝑖𝑛𝑘 − 𝑥𝑗𝑛𝑘 𝑥𝑖𝑛𝑙 − 𝑥𝑗𝑛𝑙
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Maximum likelihood estimation of parameters: Algorithms

• Iterative procedures are used to estimate the ML
• Newton-Rapshon (NR) Algorithm
• Berdnt-Hall-Hall-Hausman (BHHH) Algorithm
• Davidson-Fletcher-Powell (DFP) Algorithm
• Broyden-Fletcher-Goldfarb-Shanno (BFGS) Algoritm
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A concrete example: Binary Logit

Variable name Coefficient
Standard 

error
t statistic

Auto constant 1.45 0.393 3.70

In-vehicle time (min) -0.0089 0.0063 -1.42

Out-of-vehicle time (min) -0.0308 0.0106 -2.90

Auto out-of-pocket cost (c) -0.0115 0.0026 -4.39

Transit fare -0.0070 0.0038 -1.87

Auto ownership (specific to auto mode) -0.770 0.213 3.16

Downtown workplace (specific to auto mode) -0.561 0.306 -1.84

Number of observations 1476

Number of cases 1476

LL(0) -1023

LL(β) -347.4

-2[LL(0)-LL(β)] 1371

𝜌2 0.660

 𝜌2 0.654

Log-Likelihood when all parameters are 0

Maximum Log-Likelihood

Test of null hypothesis that all parameters are jointly zero. χ2 distributed

Informal goodness-of-fit measure : 1 − (LL(β)/LL(0)

Informal goodness-of-fit measure: 1 − (LL(β)−K)/LL(0)

Adapted from Ben-Akiva and Lerman (1984)

Magnitudes are not directly interpretable

Or to calculate utilities, and choice probabilities

We can only interpret the effect direction

To make some sense of these parameters we 
must calculate elasticities or marginal effects
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The Multinomial Logit Model

• The choice set C consists of more than two alternatives

𝑃(𝑖) = Pr(𝑈𝑖𝑛 > 𝑈𝑗𝑛, ∀𝑗 ∈ 𝐶𝑛, 𝑗 ≠ 𝑖)

= Pr 𝜀𝑗𝑛 ≤ 𝑉𝑖𝑛 − 𝑉𝑗𝑛 + 𝜀𝑖𝑛, ∀𝑗 ∈ 𝐶𝑛, 𝑗 ≠ 𝑖

𝑃(𝑖) = Pr(𝑉𝑖𝑛 + 𝜀𝑖𝑛 ≥ 𝑉𝑗𝑛 + 𝜀𝑗𝑛, ∀𝑗 ∈ 𝐶𝑛, 𝑗 ≠ 𝑖)

• We can formulate the MNL as a binary problem, so that

𝑃 𝑖 = 𝑃𝑟 𝑉𝑖𝑛 + 𝜀𝑖𝑛 ≥ max
𝑗∈𝐶𝑛,𝑗≠𝑖

(𝑉𝑗𝑛 + 𝜀𝑗𝑛)

• To estimate the model we need an assumption of the joint distribution of 
disturbances 𝑓(𝜀1𝑛, 𝜀2𝑛, 𝜀3𝑛, … , 𝜀𝐽𝑛𝑛)
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The Multinomial Logit Model

• Error distribution assumptions:
• Independently and identically distributed (I.I.D.)
• Gumbel-distributed with location parameter 𝜂(usually set at 0)  scale parameter μ>0 (usually set at 1)

• Under these assumptions we can derivate the MNL

𝑃 𝑖 = 𝑃𝑟 𝑉𝑖𝑛 + 𝜀𝑖𝑛 ≥ max
𝑗∈𝐶𝑛,𝑗≠𝑖

(𝑉𝑗𝑛 + 𝜀𝑗𝑛)

𝑃 𝑖 =
1

1 + exp −𝜇 𝑉𝑛
∗ − 𝑉𝑖𝑛

=
exp 𝜇𝑉𝑖𝑛

 𝑗∈𝐶 exp 𝜇𝑉𝑗𝑛

𝑃 𝑖 = 𝑃𝑟 (𝑉𝑗𝑛
∗ +𝜀𝑗𝑛

∗ ) − (𝑉𝑖𝑛 + 𝜀𝑖𝑛) ≤ 0 The difference between two Gumbel-distributed 
variables is Logistic-distributed

𝑃 𝑖 = 𝑃𝑟 𝑉𝑖𝑛 + 𝜀𝑖𝑛 ≥ 𝑉𝑛
∗ + 𝜀𝑛

∗ (𝑉𝑛
∗+𝜀𝑛

∗ ) is gumbel distributed

with parameters 
1

𝜇
𝑙𝑛  𝑗=1

𝐽
exp 𝜇𝑉𝑗𝑛 , 𝜇
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MNL: The Independence of Irrelevant Alternatives Property

For a specific individual, the ratio of the choice probabilities (Odds Ratio) of any two 
alternatives is unaffected by the systematic utilities of any other alternatives.

Consider a commute mode choice model
where individual choose either mode with
equal probabilities:

0.50 0.50

Consider then that we add a new mode (exactly the same 
as the other bus, but this one is red) is added. What are the 
choice probabilities?

0.33 0.33 0.33
To preserve the Odds Ratio, probabilities should be:

0.50 0.25 0.25
In reality however, we expect them to be:

The validity of the choice axiom only applies to choice sets with distinct alternatives.
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MNL: Logit Elasticities (Point elasticities)

• Direct elasticity: measures the percentage change in the probability of choosing
a particular alternative in the choice set with respect to a given percentage
change in an attribute of that same alternative.

• Cross-elasticity: measures the percentage change in the probability of choosing
a particular alternative in the choice set with respect to a given percentage
change in a competing alternative.

Definition following Louviere, Hensher, and Swait (2000) 

𝐸𝑥𝑖𝑛𝑘

𝑃 𝑖 =
𝜕𝑃𝑛(𝑖)

𝜕𝑥𝑖𝑛𝑘
∙

𝑥𝑖𝑛𝑘

𝑃𝑛(𝑖)
= 1 − 𝑃𝑛 𝑖 𝑥𝑖𝑛𝑘 𝛽

𝑘

𝐸𝑥𝑗𝑛𝑘

𝑃 𝑖 =
𝜕𝑃𝑛(𝑖)

𝜕𝑥𝑗𝑛𝑘
∙

𝑥𝑗𝑛𝑘

𝑃𝑛(𝑖)
= −𝑃𝑛 𝑗 𝑥𝑗𝑛𝑘 𝛽

𝑘
Because of IIA, cross-elasticities 
are uniform across all alternatives
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MNL: Logit Elasticities (Point elasticities)

• The elasticities shown before are individual elasticities (Disaggregate)
• To calculate sample (aggregate) elasticities we use the probability weighted

sample enumeration method:

𝐸𝑥𝑖𝑛𝑘

𝑃(𝑖)
=

 𝑛=1
𝑁  𝑃𝑖𝑛 𝑖 𝐸𝑥𝑖𝑛𝑘

𝑃 𝑖

 𝑛=1
𝑁  𝑃𝑖𝑛 𝑖

𝐸𝑥𝑗𝑛𝑘

𝑃(𝑖)
=

 𝑛=1
𝑁  𝑃𝑖𝑛 𝑖 𝐸𝑥𝑗𝑛𝑘

𝑃 𝑖

 𝑛=1
𝑁  𝑃𝑖𝑛 𝑖

Sample direct elasticity Sample cross-elasticity

• Also note that elasticities for dummy variables are meaningless!

Where 𝑃(𝑖) is the aggregate choice probability of alternative I, and  𝑃𝑖𝑛 𝑖 is an estimated choice probability 

• Uniform cross-elasticities do not necessarily hold at the aggregate level
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MNL: Logit Marginal Effects

• Direct marginal effects: measures the change in the probability (absolute
change) of choosing a particular alternative in the choice set with respect to a
unit change in an attribute of that same alternative.

• Cross-marginal effects: measures the change in the probability (absolute
change) of choosing a particular alternative in the choice set with respect to a
unit change in a competing alternative.

Definition following Louviere, Hensher, and Swait (2000) 

𝑀𝑥𝑖𝑛𝑘

𝑃 𝑖 =
𝜕𝑃𝑛(𝑖)

𝜕𝑥𝑖𝑛𝑘
= 1 − 𝑃𝑛 𝑖 𝛽

𝑘

𝑀𝑥𝑗𝑛𝑘

𝑃 𝑖 =
𝜕𝑃𝑛(𝑖)

𝜕𝑥𝑗𝑛𝑘
= −𝑃𝑛 𝑗 𝛽

𝑘
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MNL: Logit Marginal Effects

• We can also calculate sample (aggregate) marginal effects we using e the 
probability weighted sample enumeration method:

𝑀𝑥𝑖𝑛𝑘

𝑃(𝑖)
=

 𝑛=1
𝑁  𝑃𝑖𝑛 𝑖 𝑀𝑥𝑖𝑛𝑘

𝑃 𝑖

 𝑛=1
𝑁  𝑃𝑖𝑛 𝑖

𝑀𝑥𝑗𝑛𝑘

𝑃(𝑖)
=

 𝑛=1
𝑁  𝑃𝑖𝑛 𝑖 𝑀𝑥𝑗𝑛𝑘

𝑃 𝑖

 𝑛=1
𝑁  𝑃𝑖𝑛 𝑖

Sample direct marginal effect Sample cross-marginal effect

• Marginal effects for dummy variables do make sense as we are talking about
unit changes!

Where 𝑃(𝑖) is the aggregate choice probability of alternative I, and  𝑃𝑖𝑛 𝑖 is an estimated choice probability 
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Incremental Logit for prediction 

• Prediction of changes in behavior based on existing choice probabilities

𝑃′ 𝑖 =
exp 𝑉𝑖𝑛 + ∆𝑉𝑖𝑛

 𝑗∈𝐶 exp 𝑉𝑗𝑛 + ∆𝑉𝑗𝑛

; 𝑤ℎ𝑒𝑟𝑒 ∆𝑉𝑖𝑛 =  

𝑘=1

𝐾

𝛽𝑘∆𝑥𝑖𝑛𝑘

∆𝑥𝑖𝑛𝑘 is a marginal change in the kth independent variable for alternative i and individual n

• In fact, for linear-in-parameter models we need not calculate the utilities again

𝑃′ 𝑖 =
exp 𝑉𝑖𝑛 + ∆𝑉𝑖𝑛

 𝑗∈𝐶 exp 𝑉𝑗𝑛 + ∆𝑗𝑛

=
P(𝑖)exp ∆𝑉𝑖𝑛

 𝑗∈𝐶 𝑃(𝑗) exp ∆𝑉𝑗𝑛

• An alternative approach to using elasticities or marginal effects for prediction
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A concrete example: Multinomial Logit Model

Variable name Coefficient
Standard 

error
t statistic

Drive-alone constant -3.24 0.472 -6.90

Shared-ride constant -2.24 0.400 -5.6

In-vehicle time (min) -0.015 0.0057 -2.7

Out-of-vehicle time/distance (min/mile) -0.160 0.0392 -4.1

Cost (c)/annual income ($/year) -28.8 12.7 -2.3

Car to driver ratio (drive-alone) 3.99 0.396 10.1

Car to driver ratio (shared-ride) 1.62 0.305 5.3

Downtown workplace dummy (drive-alone) -0.854 0.311 -2.8

Downtown workplace dummy (shared-ride) -4.04 0.297 -1.4

Disposable income ($/yr) (drive alone, shared-ride) 0.00007 0.00002 3.5

Primary worker dummy (drive-alone) 0.890 0.186 4.8

Government worker dummy (shared ride) 0.287 0.161 1.8

Number of workers (shared ride) 0.0983 0.0954 1.0

Employment distance x Distance (shared ride) 0.00063 0.00047 1.3

Adapted from Ben-Akiva and Lerman (1984)

Number of observations 1114

Number of cases 2932

LL(0) -1054

LL(β) -727.4

-2[LL(0)-LL(β)] 653.2

𝜌2 0.309

 𝜌2 0.297

Choice set:
1. Driving alone
2. Sharing a ride
3. Transit (Bus)
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A concrete example: Multinomial Logit Model

𝑉𝐷𝑟𝑖𝑣𝑒𝑎𝑙𝑜𝑛𝑒 = 𝛽𝑑 + 𝛽𝑖𝑣𝑡𝐼𝑛. 𝑣𝑒ℎ𝑖𝑐𝑙𝑒. 𝑡𝑖𝑚𝑒 + 𝛽𝑜𝑣𝑡𝑂𝑢𝑡. 𝑜𝑓. 𝑣𝑒ℎ𝑖𝑐𝑙𝑒. 𝑡𝑖𝑚𝑒 + 𝛽𝑐𝑜𝑠𝑡𝐶𝑜𝑠𝑡 + 𝛽𝑐𝑡𝑑𝑟.𝑑𝐶𝑎𝑟. 𝑡𝑜. 𝑑𝑟𝑖𝑣𝑒𝑟. 𝑅𝑎𝑡𝑖𝑜

+𝛽𝑑𝑤𝑛𝑡.𝑑𝐷𝑜𝑤𝑛𝑡𝑜𝑤𝑛. 𝑤𝑜𝑟𝑘𝑝𝑙𝑎𝑐𝑒 + 𝛽𝑑𝑖𝑠𝑛𝑐𝐷𝑖𝑠𝑝𝑜𝑠𝑎𝑏𝑙𝑒. 𝑖𝑛𝑐𝑜𝑚𝑒 + 𝛽𝑝𝑤𝑜𝑟𝑘𝑒𝑟𝑃𝑟𝑖𝑚𝑎𝑟𝑦. 𝑤𝑜𝑟𝑘𝑒𝑟

𝑉𝑆ℎ𝑎𝑟𝑒𝑑𝑟𝑖𝑑𝑒 = 𝛽𝑠 + 𝛽𝑖𝑣𝑡𝐼𝑛. 𝑣𝑒ℎ𝑖𝑐𝑙𝑒. 𝑡𝑖𝑚𝑒 + 𝛽𝑜𝑣𝑡𝑂𝑢𝑡. 𝑜𝑓. 𝑣𝑒ℎ𝑖𝑐𝑙𝑒. 𝑡𝑖𝑚𝑒 + 𝛽𝑐𝑜𝑠𝑡𝐶𝑜𝑠𝑡 + 𝛽𝑐𝑡𝑑𝑟.𝑠𝐶𝑎𝑟. 𝑡𝑜. 𝑑𝑟𝑖𝑣𝑒𝑟. 𝑅𝑎𝑡𝑖𝑜

+𝛽𝑑𝑤𝑛𝑡.𝑠𝐷𝑜𝑤𝑛𝑡𝑜𝑤𝑛. 𝑤𝑜𝑟𝑘𝑝𝑙𝑎𝑐𝑒 + 𝛽𝑑𝑖𝑠𝑛𝑐𝐷𝑖𝑠𝑝𝑜𝑠𝑎𝑏𝑙𝑒. 𝑖𝑛𝑐𝑜𝑚𝑒 + 𝛽𝐺𝑜𝑣𝑤𝑟𝑘𝐺𝑜𝑣𝑒𝑟𝑚𝑒𝑛𝑡. 𝑤𝑜𝑟𝑘𝑒𝑟

+𝛽𝑛𝑜𝑤𝑘𝑟𝑠𝑁𝑢𝑚𝑏𝑒𝑟. 𝑜𝑓. 𝑤𝑜𝑟𝑘𝑒𝑟𝑠 + 𝛽𝑑𝑒𝑛𝑠𝑑𝑖𝑠𝑡𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡. 𝑑𝑒𝑛𝑠𝑖𝑡𝑦. 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑉𝐵𝑢𝑠 = 𝛽𝑖𝑣𝑡𝐼𝑛. 𝑣𝑒ℎ𝑖𝑐𝑙𝑒. 𝑡𝑖𝑚𝑒 + 𝛽𝑜𝑣𝑡𝑂𝑢𝑡. 𝑜𝑓. 𝑣𝑒ℎ𝑖𝑐𝑙𝑒. 𝑡𝑖𝑚𝑒 + 𝛽𝑐𝑜𝑠𝑡𝐶𝑜𝑠𝑡

Writing down the utility functions
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A concrete example: Multinomial Logit Model

𝑉𝐷𝑟𝑖𝑣𝑒𝑎𝑙𝑜𝑛𝑒

= −3.24 − 0.015 ∙ 𝐼𝑛. 𝑣𝑒ℎ𝑖𝑐𝑙𝑒. 𝑡𝑖𝑚𝑒 − 0.160 ∙ 𝑂𝑢𝑡. 𝑜𝑓. 𝑣𝑒ℎ𝑖𝑐𝑙𝑒. 𝑡𝑖𝑚𝑒 − 28.8 ∙ 𝐶𝑜𝑠𝑡 + 3.99 ∙ 𝐶𝑎𝑟. 𝑡𝑜. 𝑑𝑟𝑖𝑣𝑒𝑟. 𝑅𝑎𝑡𝑖𝑜

− 0.854 ∙ 𝐷𝑜𝑤𝑛𝑡𝑜𝑤𝑛. 𝑤𝑜𝑟𝑘𝑝𝑙𝑎𝑐𝑒 + 0.00007 ∙ 𝐷𝑖𝑠𝑝𝑜𝑠𝑎𝑏𝑙𝑒. 𝑖𝑛𝑐𝑜𝑚𝑒 + 0.890 ∙ 𝑃𝑟𝑖𝑚𝑎𝑟𝑦. 𝑤𝑜𝑟𝑘𝑒𝑟

𝑉𝑆ℎ𝑎𝑟𝑒𝑑𝑟𝑖𝑑𝑒

= −2.24 − 0.015 ∙ 𝐼𝑛. 𝑣𝑒ℎ𝑖𝑐𝑙𝑒. 𝑡𝑖𝑚𝑒 − 0.160 ∙ 𝑂𝑢𝑡. 𝑜𝑓. 𝑣𝑒ℎ𝑖𝑐𝑙𝑒. 𝑡𝑖𝑚𝑒 − 28.8 ∙ 𝐶𝑜𝑠𝑡 + 1.62 ∙ 𝐶𝑎𝑟. 𝑡𝑜. 𝑑𝑟𝑖𝑣𝑒𝑟. 𝑅𝑎𝑡𝑖𝑜

− 4.04 ∙ 𝐷𝑜𝑤𝑛𝑡𝑜𝑤𝑛. 𝑤𝑜𝑟𝑘𝑝𝑙𝑎𝑐𝑒 + 0.00007 ∙ 𝐷𝑖𝑠𝑝𝑜𝑠𝑎𝑏𝑙𝑒. 𝑖𝑛𝑐𝑜𝑚𝑒 + 0.287 ∙ 𝐺𝑜𝑣𝑒𝑟𝑚𝑒𝑛𝑡. 𝑤𝑜𝑟𝑘𝑒𝑟 + 0.0983

∙ 𝑁𝑢𝑚𝑏𝑒𝑟. 𝑜𝑓. 𝑤𝑜𝑟𝑘𝑒𝑟𝑠 + 0.00063 ∙ 𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡. 𝑑𝑒𝑛𝑠𝑖𝑡𝑦. 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑉𝐵𝑢𝑠 = −0.015 ∙ 𝐼𝑛. 𝑣𝑒ℎ𝑖𝑐𝑙𝑒. 𝑡𝑖𝑚𝑒 ± 0.160 ∙ 𝑂𝑢𝑡. 𝑜𝑓. 𝑣𝑒ℎ𝑖𝑐𝑙𝑒. 𝑡𝑖𝑚𝑒 ± 28.8 ∙ 𝐶𝑜𝑠𝑡

Writing down the utility functions
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A concrete example: Multinomial Logit Model

Using the incremental logit for prediction

Assume that for individual n, the choice probabilities are as follow:
• Driver alone: 0.65  Share ride: 0.31 Transit (Bus): 0.04

𝑃 𝑑𝑟𝑖𝑣𝑒 𝑎𝑙𝑜𝑛𝑒 =
exp 𝜇𝑉𝑖𝑛

 𝑗∈𝐶 exp 𝜇𝑉𝑗𝑛

=
0.1460

0.1460 + 0.0689 + 0.010
=

0.1460

0.2249
= 𝟎. 𝟔𝟓

Assume that a road expansion project reduces individual n’s:
• In-vehicle time by 15 minutes (from 25 to 10 minutes) when driving alone
• In-vehicle time by 5 minutes (from 35 to 30 minutes) when sharing a ride (needs to drive wife to work first)

𝑃′ 𝑑𝑟𝑖𝑣𝑒 𝑎𝑙𝑜𝑛𝑒 =
P(𝑖)exp ∆𝑉𝑖𝑛

 𝑗∈𝐶 𝑃(𝑗) exp ∆𝑉𝑗𝑛

=
0.65 ∙ exp(0.025)

0.31 ∙ exp(0.075) + 0.04 ∙ exp(0)
= 𝟎. 𝟔𝟖
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A concrete example: Multinomial Logit Model

Using the incremental logit for prediction

The key point is that we can use changes in individual behavior to calculate aggregate values (we will 
discuss that in further lectures) and evaluate how a policy implementation affects travel behavior (in 
this case, mode choice).



The University of Tokyo                                                                                                      Behavior modeling summer school

Aggregate forecasting techniques

• Why is it important?
• So far we have dealt only with individual probabilities.
• But we are interested in aggregate forecasts in order to make planning decisions.

• The first issue to address:
• Define the population of interest T:

• All the residents of the city of interest?
• A specific segment? (i.e. income group, racial group, etc.)

• Generally, we can use existing data sources such as the national census to estimate the 
size of T. 

• Define:
• NT : the number of decision makers
• P(i|xn)       : the probability of individual n choosing alternative i given attributes xn



The University of Tokyo                                                                                                      Behavior modeling summer school

Aggregate forecasting techniques

Variable name

In-vehicle time (min)

Out-of-vehicle time/distance (min/mile)

Cost (c)/annual income ($/year)

Car to driver ratio (drive-alone)

Car to driver ratio (shared-ride)

Downtown workplace dummy (drive-alone)

Downtown workplace dummy (shared-ride)

Disposable income ($/yr) (drive alone, shared-ride)

Primary worker dummy (drive-alone)

Government worker dummy (shared ride)

Number of workers (shared ride)

Employment distance x Distance (shared ride)

Attributes of the MNL mode choice model 
presented in last class

𝑁𝑇 𝑖 =  

𝑛=1

𝑁𝑇

𝑃(𝑖|𝒙𝒏)

Provided we know the values of xn for all n, then the expected
number of individuals in T choosing i (that is, the expected
value of the aggregate number of individuals) is:

𝑊 𝑖 =
1

𝑁𝑇
 𝑛=1

𝑁𝑇 𝑃 𝑖 𝒙𝒏 = 𝔼[𝑃(𝑖|𝒙𝒏)]

More conveniently, we can express this equation as ratio 
(market share):

𝑊 𝑖 =  
𝒙

𝑃 𝑖 𝒙 𝑝 𝒙 𝒅𝒙

When xn is continuous in T, W is defined as the following integral

𝑝 𝒙 is unknown, and evaluating this integral might be computationally 
burdensome.
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Aggregate forecasting techniques

In short, we require methods that reduce the required data and computational needs 
to predict aggregate shares.

• General approaches to aggregate forecasting (Koppelman, 1975):

• Average individual
• Classification
• Statistical differentials (inappropriate in very heterogeneous populations)
• Explicit integration (too difficult to apply in multinomial cases)
• Sample enumeration

We will focus the Average individual approach as a departure point to elaborate on the most
frequently used methods empirically; namely classification and sample enumeration.
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Aggregate forecasting techniques

① Average Individual

Constructs an “average individual” for the population and uses the choice probability
for the average individual as an approximation of W(i).

𝑊 𝑖 =
𝑃 𝑖 𝑥1 + 𝑃 𝑖 𝑥2 + 𝑃(𝑖|𝑥3)

3

A simple example: Assume that T=3, and we know the 
true values of xn, then the true value of W i is :

More specifically:

• Define  𝐱 as the mean of p 𝐱

• Our approximation of W i is thus

𝑊 𝑖 = 𝔼[𝑃 𝑖 𝒙 ] ≅ 𝑃(𝑖| 𝒙𝒏)

• Only when the  model is linear over the range of x, the aggregation error Δ will be zero.

• the aggregation error Δ increases as the variance of p(x) increases.
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Aggregate forecasting techniques

② Classification

Divides the population into G nearly homogenous subgroups, and uses the choice
probabilities of the average individual within each subgroup. 𝑁𝑇 𝑖 is estimated as the
weighted sum of each subgroups’ forecasts.

More specifically:

• Partition T into G mutually exclusive, collectively exhaustive subgroups.

• For each subgroup, choose a representative value  xg.

• Approximate 𝑊 𝑖 as

𝑊 𝑖 = 𝔼[𝑃 𝑖 𝒙 ] ≅  

𝑔=1

𝐺
𝑁𝑔

𝑁𝑇
𝑃(𝑖| 𝒙𝒈)
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Aggregate forecasting techniques

② Classification

• As the number of subgroups increases, so does estimate accuracy, but it comes at higher 
data and computational requirements.

• Most of the times, it is unfeasible to classify on every dimension in x. Hence we need good 
judgment in deciding sub-classification variables. 

• Some insights regarding sub-classification:
• Select a small number of independent variables which:

• Have a large effect on the systematic utility of at least one alternative
• Have a wide distribution across the population

• All else equal, avoid disproportionately small classes* 

𝑊 𝑖 = 𝔼[𝑃 𝑖 𝒙 ] ≅  

𝑔=1

𝐺
𝑁𝑔

𝑁𝑇
𝑃(𝑖| 𝒙𝒈)
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Aggregate forecasting techniques

③ Sample enumeration

Uses a sample to represent the entire population.

• When using random sampling

 𝑊 𝑖 =
1

𝑁𝑆
 

𝑛=1

𝑁𝑆

𝑃 𝑖 𝒙𝒏

• When using nonrandom sampling (i.e. Stratified sampling)

 𝑊 𝑖 =  

𝑔=1

𝐺
𝑁𝑔

𝑁𝑇

1

𝑁𝑆𝑔
 

𝑛=1

𝑁𝑆𝑔

𝑃 𝑖 𝒙𝒏
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Aggregate forecasting techniques

• Predicted aggregate shares are estimates, and as such are subject to sampling error.
• When choice probabilities or samples are small, sampling error might be a large fraction 

of W(i).

• Sample enumeration makes it easy to produce forecasts for different socio-economic groups, 
provided sample sizes are large enough (as we saw in the previous lecture).

③ Sample enumeration
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Relevant statistical tests

• To some extent, modeling is an “art” as much as is a science.

• We cannot rely exclusively on goodness-of-fit statistics.

• Several model specifications might fit the data as well.

• Good fitting models can still result in erroneous predictions.

• Theory and informal judgment play an important role.
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① Testing coefficient estimates

• Are signs consistent with our expectations? ←Informal test

• Are the parameters statistically significant? ← Asymptotic t Test
• Same as in linear regression, but only valid for large sample sizes

A positive  sign for cost 
should ring some alarms

Variable name Coefficient
Standard 

error
t statistic

…

4. In-vehicle time (min) -0.015 0.0057 -2.7

5. Cost (c)/annual income ($/year) -28.8 12.7 -2.3

6. Car to driver ratio (drive-alone) 3.99 0.396 10.1

7. Car to driver ratio (shared-ride) 3.88 0.376 10.3

…

• Asymptotic t Test for linear relationships among parameters

𝑡 =
 𝛽6 −  𝛽7

𝑣𝑎𝑟(  𝛽6 −  𝛽7)

; 𝑤ℎ𝑒𝑟𝑒 𝐻𝑜 : 𝛽6 = 𝛽7

Are this parameters 
statistically different from 
one another?

Relevant statistical tests
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② The likelihood ratio test:

• Ho: β1 = β2 = ⋯ = βK = 0 ←Similar to the F-test in OLS regression

Relevant statistical tests
−2 𝐿𝐿 0 − 𝐿𝐿  𝜷

• 𝑋2 distributed with K degrees of freedom 

• Not very useful. Ho is almost always rejected! 

• More useful applications of the likelihood ratio test:

• ① Compare against a constant only model: −2 𝐿𝐿 𝑪 − 𝐿𝐿  𝜷

Where, 𝐿𝐿 𝑪 =  𝑖=1
𝐽

𝑁𝑖 ln
𝑁𝑖

𝑁
,    𝑋2 distributed with 𝐾 − 𝐽 + 1 degrees of freedom.

• ② Comparing nested models: −2 𝐿𝐿  𝜷𝒓 − 𝐿𝐿  𝜷𝒖

Where 𝐿𝐿  𝜷𝒓 is the Log-likelihood of the restricted model, 𝐿𝐿  𝜷𝒓 the log-likelihood 

of the unrestricted model.  (Test of linear relations, generic parameters etc)

𝑋2 distributed with (𝐾𝑢−𝐾𝑟) degrees of freedom.
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③ Goodness of fit test:

← Used in a similar manner to R2 in OLS regression.

Relevant statistical tests

𝜌2 = 1 −
𝐿𝐿  𝜷

𝐿𝐿(0)

← Favors more parsimonious specifications
(unless newly added variables are very significant).

 𝜌2 = 1 −
𝐿𝐿  𝜷 − 𝐾

𝐿𝐿(0)

• All else equal, specifications with higher goodness of fit values should be selected.

• Can be used to test non-nested hypotheses of discrete choice models.

• Most useful when comparing models estimated using the same dataset.
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③ Testing the IIA assumption

Relevant statistical tests

• So far we have assumed that our model structure is correct. But is this so? 

• Recall that the IIA assumption is critical for the validity of the logit model structure

• Two general tests:
• The Haussmann and McFadden Test (1984)
• Approximate likelihood ratio test (Small and Hsiao (1982))

• In general, the tests consist on comparing logit models estimated with subset of alternatives  from 
the universal choice set.

• If the IIA assumption holds for the full choice set, the same model structure (logit) should apply to 
model with a subset of alternatives (the restricted model).
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③ Testing the IIA assumption: Haussmann and McFadden Test (Most frequently used)

Relevant statistical tests

𝑞 =  𝜷𝒖 −  𝜷𝒓
′

Σ𝑟 − Σ𝑢
−1  𝜷𝒖 −  𝜷𝒓

 βu is a column vector of parameter estimates for the unrestricted model 

 βr is a column vector of parameter estimates for the restricted model 

Σu is the variance-covariance matrix of the unrestricted model

Σr is the variance-covariance matrix of the restricted model

• 𝐻𝑜:  𝜷𝒖 =  𝜷𝒓 ← Note that failing to reject the Null Hypotheses means that the IIA Holds!

• 𝑞 is asymptotically X2 distributed with Kr degrees of freedom (The dimension of the restricted 
model)

*Note that constant terms are not 
included in the calculation of q.
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③ Testing the IIA assumption: Approximate likelihood ratio test 

Relevant statistical tests

𝑞 =
1

1 − 𝑁1/𝛼𝑁
−2[𝐿𝐿𝑟

 𝛽𝑢 − 𝐿𝐿𝑟
 𝛽𝑟

𝐿𝐿𝑟
 𝛽𝑢 is the log-likelihood values for the unrestricted model calculated on the restricted sample

• 𝐻𝑜:  𝜷𝒖 =  𝜷𝒓 ← Note that failing to reject the Null Hypotheses means that the IIA Holds!

• 𝑞 is asymptotically X2 distributed with Kr degrees of freedom (The dimension of the restricted 
model) if the difference between the covariance matrices differs at most by a scalar multiple.

𝐿𝐿𝑟
 𝛽𝑟 is the log-likelihood values for the restricted model calculated on the restricted sample

N is the number of observations in the unrestricted choice set estimation

N1 is the number of observations in the restricted choice set estimation

𝛼 ≥ 1 is a scalar (For screening purposes usually assumed as 1) 
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④ Testing for taste variations

Relevant statistical tests

• So far we have assumed that the parameters are the same for all members of the population. (i.e. 

the magnitude of the effects are the same) How can we test if this is in fact true?

• ① Allow for random taste variation in coefficients (Random parameter models)

• ② Market segmentation
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④ Testing for taste variations：Market segmentation

Relevant statistical tests

Include socio-demographic characteristics to account for unobservable taste variations.

• Classify the sample data into socio-economic groups (e.g. Income groups, car ownership, etc.)

• Estimate separate models (same specification across markets) for each sub-group and a pooled 
model with the full dataset.

• Use the likelihood ratio test where  Ho: 𝛃𝟏 = 𝛃𝟐 = ⋯ = 𝛃𝐆

More specifically:

−2 𝐿𝐿𝑁
 𝛽𝑓𝑢𝑙𝑙 −  

𝑔=1

𝐺

𝐿𝐿𝑁𝑔
 𝛽𝑔

𝐿𝐿𝑁
 𝛽𝑓𝑢𝑙𝑙 is the log-likelihood of the pooled model (non-segmented)

𝐿𝐿𝑁𝑔
 𝛽𝑔 is the log-likelihood of the model estimated with the gth data subset

X2 distributed with  𝑔=1
𝐺 𝐾𝑔 − 𝐾 degrees of freedom 
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④ Testing for taste variations：

Relevant statistical tests Segment 1 Segment 2

Variable Name Auto Ownership (0 or 1) Auto Ownership (2+)

Drive alone (DA) constant
-2.660 -3.240

(-5.846) (-2.436)

Shared ride (SR) constant
-1.140 -2.980

(-3.826) (-2.463)

Rount-trip travel time (min)
0.028 -0.049

(3.500) (-2.455)

Round-trip out-of-vehicle time (min)/         
one-way distance (0.01 mile)

-14.700 -14.500

(-2.341) (-1.295)

Cars/workers in household (DA specific)
-35.300 -35.400

(-1.929) (1.009)

Cars/workers in household (SR specific)
4.260 3.560

(9.861) (3.849)

Downtown workplace dummy (DA specific)
1.400 2.590

(4.106) (2.776)

Downtown workplace dummy (SR specific)
-0.605 -1.130

(-1.644) (-1.865)

Disposable household income (DA specific)
-0.446 -0.636

(-1.502) (-1.102)

Disposable household income (SR specific)
0.000 0.001

(1.335) (24.901)

Government worker dummy (SR specific)
0.687 0.063

(3.435) (0.251)

Observations per segment 623 513

-502.600 -301.100

Total observations = 1,136

=  -820.3𝐿𝐿𝑁
 𝛽𝑓𝑢𝑙𝑙

𝐿𝐿𝑁𝑔
 𝛽𝑔

Adapted from Ben-Akiva and Lerman (1984)

MNL Model segmented by auto ownership levels

Note that it is certainly possible that:
• All t tests are insignificant despite the joint likelihood 

being significant.
• The joint test does not reject the null hypothesis but 

some coefficients might be significantly different.

−2 𝐿𝐿𝑁
 𝛽𝑓𝑢𝑙𝑙 −  

𝑔=1

𝐺

𝐿𝐿𝑁𝑔
 𝛽𝑔 = −2 −820.3 + 803.7 = 33.2

Degrees of freedom: 12 X2 
0.05= 21.0

We thus reject the null hypothesis that  𝛃𝟏 = 𝛃𝟐

𝑡 =
 𝛽1

𝑘
−  𝛽2

𝑘

𝑣𝑎𝑟  𝛽1
𝑘

+ ( 𝛽2
𝑘
)

; 𝑤ℎ𝑒𝑟𝑒 𝐻𝑜 :  𝛽1
𝑘 =  𝛽2

𝑘

Individual coefficients can also be compared across 
Segments:
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Aggregation and sampling of alternatives

• So far we have discussed choice models using clearly defined mode alternatives.

• What happens when we consider spatial choices? (e.g. residential location, destination choice?) 
How do we define the choice set?

Lets’s think about residential location choice.

Image source: trendy.nikkeibp.co.jp
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Why aggregation and sampling?

• In most spatial choices, we cannot identify the actual alternatives the individual chooses from.

• Even if we could, the number of alternatives is just too large.

• Also, data on the attractiveness of each alternative is usually aggregated to some extent.

Aggregation and sampling of alternatives
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Elemental alternatives:

Actual alternatives an individual chooses from.
Where pn l is the probability of individual n
choosing alternative 𝑙 ∈ 𝐿.

The utility of elemental alternative l is thus:

Aggregate alternatives:

By dividing the universal set of elemental
alternatives into non-overlapping subsets we
get:

Thus the choice probability of choosing
aggregate alternative i is:

The utility of aggregate alternative i is then:

𝐿𝑖 ⊆ 𝐿, 𝑖 = 1, … , 𝐽

𝑃𝑛 𝑖 =  

𝑙∈𝐿𝑖

𝑝𝑛 𝑙 , 𝑖 = 1, … , 𝐽
𝑈𝑙𝑛 = 𝑉𝑙𝑛 + 𝜀𝑙𝑛

𝑈𝑖𝑛 = max
𝑙∈𝐿𝑖

𝑉𝑙𝑛 + 𝜀𝑙𝑛 , 𝑖 = 1, … , 𝐽

It can be shown that if an aggregate alternative contains a large number of elemental alternatives, and if the 
utilities of these alternatives are IID, then the distribution of the aggregate alternative is Gumbel distributed.

Aggregation and sampling of alternatives



The University of Tokyo                                                                                                      Behavior modeling summer school

A logit model with aggregate alternatives:

𝑃 𝑖 =
exp 𝜇∗𝑉𝑖𝑛

 
𝑗=1
𝐽 exp 𝜇∗𝑉𝑗𝑛

=
exp 𝜇∗  𝑉𝑖𝑛 + 𝜇′𝑙𝑛𝑀𝑖 + 𝜇′𝑙𝑛𝐵𝑖𝑛

 
𝑗=1
𝐽 exp 𝜇∗  𝑉𝑖𝑛 + 𝜇′𝑙𝑛𝑀𝑖 + 𝜇′𝑙𝑛𝐵𝑖𝑛

𝑙𝑛𝑀𝑖 is the log of the measure of size of the aggregate alternative, that is, the number of elemental 
alternatives that compose the aggregate. (Think carefully about what that the elemental alternative 
might be!)

 𝑉𝑖𝑛 is the average utility of the elemental alternatives in aggregate alternative i

𝜇∗ is a positive scale parameter, and 𝜇′ = 𝜇∗/𝜇 is the coefficient o the log of the size measure

𝑙𝑛𝐵𝑖𝑛 is the log of the measure of variability of the utilities of elemental alternatives in the 
aggregate alternative. This term can be omitted if all elemental alternatives have equal variance.

Aggregation and sampling of alternatives
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A logit model with aggregate alternatives:

𝑃 𝑖 =
exp 𝜇∗𝑉𝑖𝑛

 
𝑗=1
𝐽 exp 𝜇∗𝑉𝑗𝑛

=
exp 𝜇∗  𝑉𝑖𝑛 + 𝜇′𝑙𝑛𝑀𝑖

 
𝑗=1
𝐽 exp 𝜇∗  𝑉𝑖𝑛 + 𝜇′𝑙𝑛𝑀𝑖

What happens if we cannot estimate the number of elemental alternatives Mi ?

𝑇ℎ𝑢𝑠 𝑤𝑒 ℎ𝑎𝑣𝑒

We can use a single proxy variable, and keep the same specification as above. In the case of 
residential location we could use: Number of households, Population density, or area.

𝑀𝑖 =  

𝑠=1

𝑆

𝛽𝑠𝑥𝑖𝑛𝑠, 𝑖 = 1, … , 𝐽

𝑆 is the number of size variables used

𝑥𝑖𝑛𝑠 are the size variables included in the model (𝑥𝑖𝑛𝑠 and its coefficients must be non-negative!)

Not including a size variable forces us to include J-1 ASCs in
order to properly capture the size effect!

We can use a set of proxy variables, where 

Aggregation and sampling of alternatives
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Disadvantages of aggregation:

• Aggregation introduces measurement error in the explanatory variables, thus reducing the model 
accuracy.

• The Modifiable Areal Unit Problem: The way spatial zones are aggregated or subdivided for 
analysis might affect the results in unpredictable ways (Fotheringham & Wong (1991).

• On the other hand, analysis using disaggregate alternatives might be prohibitively expensive 
computationally, and burdensome in terms of data management.

Why sampling of alternatives?

• Can mitigate some of the disadvantages of aggregation.

• Can address the computational and data management burdens while still allowing for consistent 
parameter estimation. (Thanks to the IIA property)

Aggregation and sampling of alternatives
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Sampling of alternatives

𝜋𝑛 𝑖|𝑫 =
exp 𝜇∗𝑉𝑖𝑛 + 𝑙𝑛𝜋𝑛(𝑫|𝑖)

 𝑗∈𝑫 exp 𝜇∗𝑉𝑗𝑛 + 𝑙𝑛𝜋𝑛(𝑫|𝑖)
, 𝑖 ∈ 𝑫

𝜋𝑛 𝑖|𝑫 is the conditional probability for observation n of choosing alternative I given a subset of 
alternatives D.

• McFadden (1978) showed that a consistent estimator for the logit model using samples of 
alternatives can be estimated via a conditional probability:

𝜋𝑛 𝑫 𝑖 𝑎𝑛𝑑 𝑫 𝑗 are the conditional probabilities of constructing for observation n a set D, 
given that the chosen alternative is i and j respectively.

Aggregation and sampling of alternatives

Alternative-specific bias correction term

Alternative-specific bias correction term
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Sampling of alternatives: Random sampling

𝜋𝑛 𝑫 𝑖 = 𝜋𝑛 𝑫 𝑗 = 𝐽−1
𝐽′

−1
, ∀i, j ∈ 𝑫

• Draw randomly (Without replacement) J’ alternatives from all the available alternatives,
excluding the chosen alternative, and then adding the chosen one, so that

• Since ln𝜋𝑛 𝑫 𝑖 = 𝑙𝑛𝜋𝑛 𝑫 𝑗 the sampling correction terms cancel out in the conditional
probability equation, and the model can be estimated using the ordinary logit model.

𝜋𝑛 𝑖|𝑫 =
exp 𝜇∗𝑉𝑖𝑛

 𝒋∈𝑫 exp 𝜇∗𝑉𝑗𝑛

, 𝑖 ∈ 𝑫

• The binomial coefficient 𝐽−1
𝐽′ determines the possible number of combinations of J items.

Aggregation and sampling of alternatives
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Sampling of alternatives: Importance based sampling

𝜋𝑛 𝑖|𝑫 =
exp 𝜇∗𝑉𝑖𝑛 − 𝑙𝑛𝑞𝑖𝑛

 𝑗∈𝐷 exp 𝜇∗𝑉𝑗𝑛 − 𝑙𝑛𝑞𝑗𝑛

, 𝑖 ∈ 𝑫

• The conditional choice probability is given by

• The probability of an alternative being selected depends on the likelihood of it being chosen by
the decision maker.

• Based on preliminary estimates of choice probabilities, usually estimated using simpler model
forms. (i.e. a gravity-type function for destination choice etc…)

• Several types of sampling:
• Independent Importance Sampling
• Importance Sampling with Replacement
• Stratified Importance Sampling

where 𝑞𝑖𝑛 𝑎𝑛𝑑 𝑞𝑗𝑛 is the estimated selection probabilities

Aggregation and sampling of alternatives
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Sampling of alternatives: Importance based sampling

• Independent Importance Sampling: Draws J-1 independent draws from the set of all alternatives
excluding the chosen alternative, selecting alternative j with selection probability qjn. Then the
add the chosen alternative.

• Importance Sampling with Replacement: Draw a sample of size J’ from the set of all alternatives,
selecting alternative j with selection probability qjn at each draw. Delete duplicate alternatives
and add the chosen alternative if it was not sampled.

• Stratified Importance Sampling: Stratify the sample into R subsets. Assign different choice
probabilities to each subset, and randomly sample (without replacement)  𝐽𝑛𝑟 draws from each
strata. (For the stratum that contains the chosen alternatives draw a sample of only 𝐽𝑛𝑟 − 1, and
then add the chosen alternative.

Aggregation and sampling of alternatives


