Transportation system monitoring method by using probe vehicles that observe other vehicles

Toru Seo
Doctoral Course Student,
Asakura Lab., Transport Studies Unit,
Tokyo Institute of Technology

The 2nd International BinN Research Seminar
@The University of Tokyo
20140928
Introduction
Transportation system
A system where travelers are traveling
- Automotive road network
- Pedestrian space
- City

Monitoring
Acquiring information on a transportation system’s dynamics
- State
 - Flow
 - Speed
- Behavior
 - Macroscopic behavior of travelers
 - System model
 - Microscopic behavior of a traveler
 - Destination/route choice (strategic)
 - Interaction between travelers (tactical, operational)
Methods for monitoring

Eulerian observation
Observe a system’s dynamics from fixed points in the system
- Traffic detectors
- Cameras
- Ticket transaction data

Lagrangian observation (probe)
Observe a system’s dynamics from floating points that move along with travelers
- GPS
Probe vehicles that observe other vehicles

Eulerian observation

- Rich information at the sensor’s installed points can be acquired
- Wide-ranging observation is difficult due to the cost of the observation

Diagram showing time, observation point, space, traffic detector, and fixed camera.
Lagrangian observation (probe)

- Information over **wide-ranging** space can be acquired
- Passive observation can acquire information **cost-efficiently**
- **Volume-related information** can not be estimated from these sampled trajectories

Probe vehicles that observe other vehicles

GPS-equipped probe vehicle

BCALs (Hato 2010)

smartphone
Summary of current monitoring methods

Eulerian observation
- Can acquire
 - Volume-related info. (flow, density)
 - Quality-related info. (speed, reliability)
- Can not acquire
 - Wide-ranging info. (for time and space)

Lagrangian observation (probe)
- Can acquire
 - Quality-related info.
 - Wide-ranging info.
- Can not acquire
 - Volume-related info.

Problem: How we can acquire volume-related info over a wide range?
A solution

New Lagrangian observation: Probe travelers that observe other travelers

- **Volume-related information** can be estimated, since local density is available
- Information over **wide-ranging** space can be acquired
- Can be **efficient** in traffic flow monitoring in the near future
Spacing measurement technologies

- Technologies of recognizing surrounding environment of a vehicle from an on-vehicle equipment were developed
 - Radar, Laser scanner, Monoeye/stereo camera
 - Other vehicles, road alignment

Movie source: Stein et al. (2005)
Advanced driver assistance systems (ADAS)

- record driving
- warn the driver
- semi-automation (ACC)
- full-automation (autonomous car)

- **Vehicle-to-vehicle distance** (≃ spacing) must be measured in order to achieve traffic safety

- ADAS-equipped probe vehicle data can be utilized for estimation of the volume-related variables, since spacing is inverse of local density
Supposed future traffic system

- Traffic control center (public/private organizations)
- Traffic system
- Traffic state (Flow, Density, Speed)
- Data base
- Public policies (traffic control, transp. planning)
- Commercial services (info. provision)
- Formulation
- Validate with a proof-of-concept field experiment

- ADAS
- Spacing measurement technologies
- Equip

Some **drivers** will gain benefit from ADAS by equipping the SMT

Entire social will gain benefit from policies and services based on the collected probe vehicle data
Motivations and Objective

Motivations

- Transportation managements will be significantly improved if it is monitored by using Lagrangian observation only
 - arterial roads, developing courtiers

- Current probe vehicles can not acquire volume-related information

- Spacing measurement technologies were practically implemented; and have potential to spread to the world in order to enable ADAS

Objective

- To develop and validate a methodology of estimating traffic state using probe vehicles with spacing measurement equipment
Traffic State Estimation method
Supposed situations

Target road
- One-way
- The schematics are known

Probe vehicles
- randomly distributed in the traffic at a certain penetration rate
- measure its position and spacing
- no measurement errors
- their characteristics and driving behavior are the same as the rest of traffic

Target of estimation
- Traffic state (flow, density, speed) with a certain time space resolution
Estimation method

- Traffic flow represented as a time-space diagram
 - vertical axis: space
 - horizontal axis: time
 - curves: vehicle trajectories

- The probe vehicle acquire its own trajectory and its leading vehicle’s one

- Traffic state in any closed region A can be estimated from the probe vehicles’
 - distance traveled
 - time traveled
 - area of region between the probe and its leading vehicle

Based on Edie’s generalized definition (1963)
Characteristics of the method

- The method can estimate traffic state including the volume-related variables from Lagrangian observation data only.

- The method can estimate traffic state with an arbitrary time space resolution:
 - 1 min-100 m traffic state
 - hourly traffic volume of a link
 - macroscopic fundamental diagram

- The method relies on few exogenous assumptions: Data oriented approach:
 - It can be utilized for estimating behaviors in system (BinN?)
Validation with a Field Experiment
Field experiment at Tokyo

- Date/time: Sep. 24, 2013 (Fri.), 15:00 – 16:00
- Location: Cruising lane, Inner Circular Route (counterclockwise), Tokyo, Japan
- Number of probe vehicles: 20 (=3.5% penetration rate)
- Measurement devices: GPS logger and Mono-eye camera
Inner Circular Route

- Total section length: 14.2km
 - The survey area is cruising lane of 11km length section excluding tunnels

- Most of the section has two lanes and 50km/h speed limit

- It has complex traffic flow characteristic
 - curves, elevations, merging/diverging sections

- A lot of detectors are installed. Reliable ground truth data is available
 - time reso.: 1 min
 - space reso.: roughly 250m and per lane
Actual traffic state

Density as a time-space diagram
- plot color: density
- vertical axis: space
- horizontal axis: time

Probe vehicles that observe other vehicles

Toru Seo (Tokyo Tech)
Probe vehicles

- 20 standard sized passenger vehicles driven by non-professional drivers were employed as probe vehicles
 - 44 laps were performed during 1 hour
 - It corresponds to 3.5% probe vehicle penetration rate

- They measured their position and spacing with 15 s interval

- The position was measured by the GPS logger

- The spacing was measured by analyzing images taken by the camera
 - width of the leading vehicle in the images
 - actual width of the leading vehicle
 - field of view of the camera
Estimation results

- Density as time-space diagrams
- penetration rate 3.5%, time resolution 5min, space resolution with 500m
- Dynamical features of the traffic flow were reproduced – free, congestion, queue extension
Estimation results

- Error indices of various estimation scenarios
 - root mean square percentage error (RMSPE)

<table>
<thead>
<tr>
<th>penetration rate (probe per hour)</th>
<th>estimation target</th>
<th>error (RMSPE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5% (42veh)</td>
<td>5min flow</td>
<td>14%</td>
</tr>
<tr>
<td>0.2% (2veh)</td>
<td>1hour flow</td>
<td>16%</td>
</tr>
</tbody>
</table>

- High resolution information can be acquired where enough number of probe vehicles exist
 - highway traffic managements

- Lower resolution information can be precisely acquired even if the penetration rate is low
 - transportation planning
Conclusion
Achievements

- We developed a traffic state estimation method that utilize using probe vehicles with spacing measurement equipment.

- We validated the method under an actual traffic condition.

- As result, the characteristics and performance of the method were clarified.
Future plan

Transportation system
A system where travelers are traveling
- Automotive road network
- Pedestrian space
- City

Monitoring
Acquiring information on a transportation system's dynamics
- State
 - Flow
 - Speed
- Behavior
 - Macroscopic behavior of travelers
 - System model
 - Microscopic behavior of a traveler
 - Destination/route choice (strategic)
 - Interaction between travelers (tactical, operational)
Probe vehicles that observe other vehicles

References

Some images were taken form external sources