行動モデル夏の学校2013 最終発表 ~非通勤系トリップチェーンの行動分析~

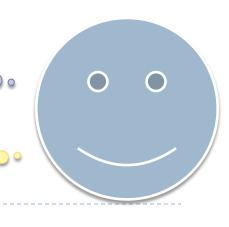
Team B (東京工業大学1班) 遠藤 壮一郎・藤田 亮祐・眞貝 憲史 坂東 徹・伊藤 海優・亀谷 淳平

目次

- 背景
- ▶ 基礎分析
- トモデル推定
- ▶結果
- 政策シュミレーション

回遊行動を示すトリップチェーン

- ▶ 横浜都市圏はランドマークの集積地
 - ▶ 横浜中華街, みなとみらい, 赤レンガ倉庫, etc...
 - ▶ 他の都市圏に比べて買い物や回遊への魅力は高いはず?
 - より魅力を高めるような方法を調べることは非常に重要!
- ▶ <u>個人の回遊行動トリップチェーンへの意識が何によって</u> 影響されるのか!



まだ寄り道しよう かな・・・

> そろそろ帰ろう かな・・・

基礎分析 (買い物・回遊トリップチェーン数との関係)

女性のほうが男性よりも若干トリッ プチェーンしやすい傾向にある(ト リップチェーン数4回のところで大き な差)

年代によってトリップチェーン数の 傾向が異なる. (2,30代より40代はト リップ数は減少するが、50代になる とトリップ数が増えている)

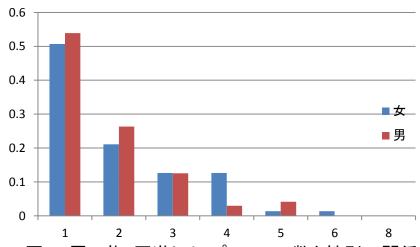


図1. 買い物・回游トリップチェーン数と性別の関係(%)

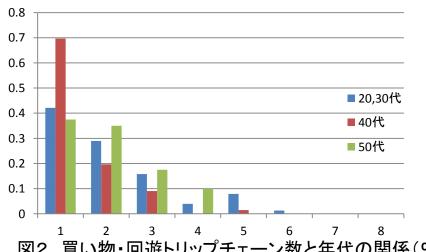


図2. 買い物・回游トリップチェーン数と年代の関係(%)

基礎分析 (他に分かったこと・・・)

分析方法

- 買い物や回遊の行動は、Iトリップが終わり目的を果たした後に「さらに寄り道するか帰るか(トリップチェーンの打ち切りの是非)」があるはず
 - ▶ 生存時間モデルを用いて、影響のある変数の特定を行う。

生存時間分析の施行

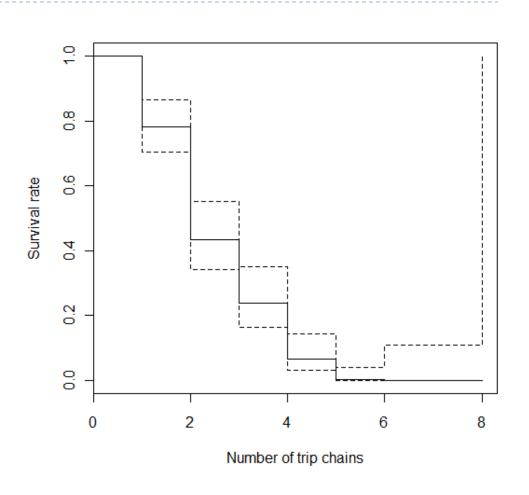
> 分析の仮定

▶ 交通手段に徒歩を含む非通勤系のトリップチェーンを抽出(横浜のランドマーク中心地は徒歩での移動が主であり、徒歩でのイベントがその地域への消費活動に強く影響すると考え、そのトリップチェーン数に与える影響を分析し考察することを目的とした。)

▶仮説

▶ トリップの時間や距離が短いほど、移動にかかる身体的コストが減少し、トリップチェーン回数は増える。

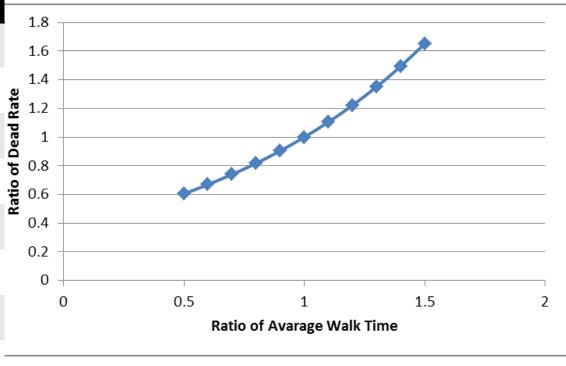
生存時間モデルの定式化

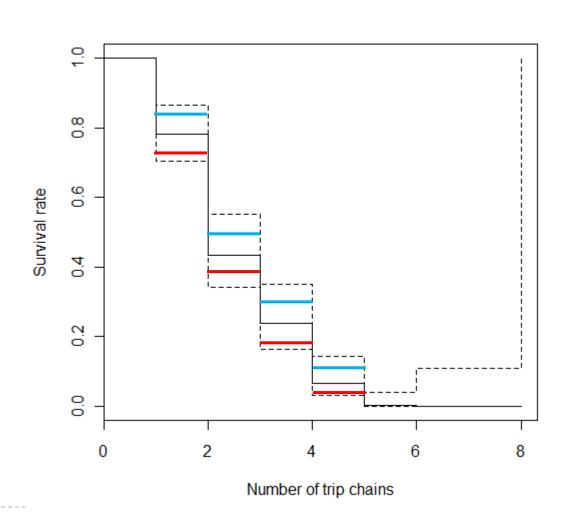

- ▶ Cox比例ハザードモデル(推定方法:最尤推定)
 - ト $\lambda(t|x_1,x_2,...x_n) = \lambda_0(t) exp(\sum \beta_i x_i)$ (t:生存時間 λ :死亡率 x:共変量 λ_0 :ベースラインハザード) (λ_0 :共変量によらない時間と生存率の関係式)
 - 共変量(年齢,性別など)をモデルに組み込み,生存率との関係性を 調べることが可能

> 今回のモデルの定式化

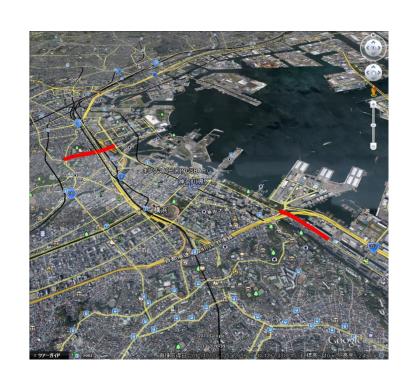
- h(Trip回数) = $h_0(Trip$ 回数) $exp\{\beta_1 \times (中年ダミー) + \beta_2 \times time + \beta_3 \times (横浜居住ダミー) + \beta_4 \times (平均所要時間walk) + \beta_5 \times (初回バスダミー)\}$
- ▶ 中年ダミー: 40代以上= 1、time: 初回トリップ出発時刻(時)、 平均所要時間walk:トリップチェーン内で徒歩における所要時間を徒歩回数で割ったもの

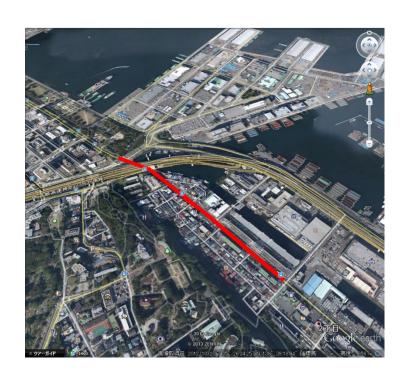
結果


	パラメー タ	Z値
中年ダミー	0.601	2.45*
出発時間	0.140	4.44***
横浜居住 ダミー	-0.689	-2.42*
平均所要時 間 (徒歩)	0.004	1.21
初回バス ダミー	-1.046	-3.02**
サンプル数	97	
決定係数	0.15	


推定値プラス: 死亡率を上げる 推定値マイナス: 死亡率を下げる ▶ 8 ⇒平均所要時間(徒歩)が下げれば生存率が上がる!

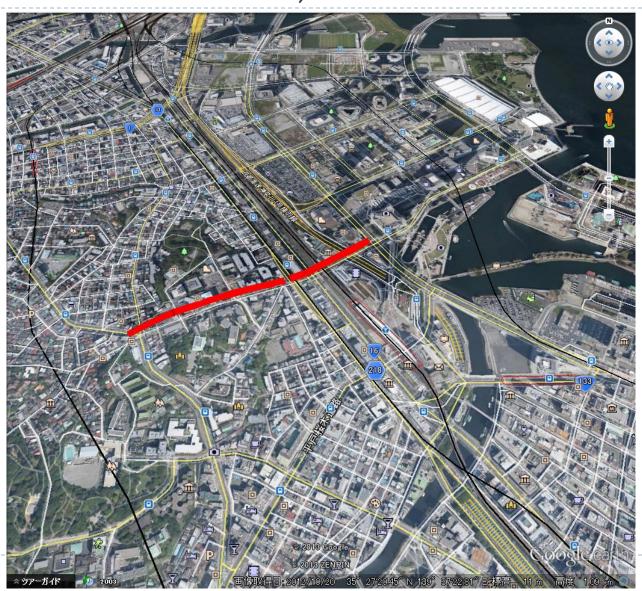
感度分析 (結果)


Ratio of Walk Time	Ratio of Dead Rate	
0.5	0.6052	
0.6	0.6692	
0.7	0.7399	
0.8	0.8180	
0.9	0.9044	
1.0	1.0000	
1.1	1.1056	
1.2	1.2225	
1.3	1.3516	
1.4	1.4944	



感度分析 (結果)

政策提言 (徒歩トリップの連鎖性)



赤:徒歩トリップが四つあったところ 黄色:徒歩トリップが三つあったところ

政策提言 (徒歩トリップの連鎖性)

政策提言 (徒歩トリップの連鎖性)

Thank you for listening...