Travel-Activity Choice Set Generation within the Discrete-Continuous Extreme Value Models using Probe Person data

2012.10.26 Travel behavior and network model courses

Sachiyo Fukuyama,
PhD Student, Dept. of Urban Engineering,
The University of Tokyo
fukuyama@bin.t.u-tokyo.ac.jp
Outline

1. Research background
2. Purpose of the study
3. Frame of the study
4. Data
 1) Probe Person data
 2) Basic analysis
 3) Virtual network
5. Choice set generation
6. Choice model
7. Estimation result
8. Conclusion
Effective approaches for reactivating the city central areas have been required and attempts to renovate the places to be attractive are getting much attention.

But the problem is whether people will go there or not.

For the places being used frequently and continuously, considering the relation between the places and daily life activity patterns is necessary.
Activity-based models
The demand for travel is derived from the demand for activity

Discrete choice models
Choice behavior is generated based on utility-maximization
Bowman and Ben-Akiva (2000)
PETRA (Fosgerau, 2001)
METRO (Bradley et al., 1998) etc.
The size of choice set become enormous

Rule-based models
Choice behavior is generated based on heuristic rules
ALBATROSS
(Arentze and Timmermans, 2005)
TASHA (Roorda et al., 2008) etc.
Not easy to understand the characteristics of parameters
Purpose of the study

1) To propose efficient and realistic way for the choice set generation in location choice situations.

2) To find common patterns of the spatial distribution of the location choice as domains of daily activities, which are assumed to be formed by accessibility and strengthened by familiarity.

3) To find the characteristics of the places where people stay longer by estimating the value of places by duration of stay as well as frequency.
Frame of the study

Trajectory based approach

Applying **MDCEV** (Multiple discrete-continuous extreme value) model (Bhat 2005), to handle the choice of **multiple alternatives simultaneously** and **allocation of time-budget**

Generating the choice set
in **trajectory-based** and **data-oriented**

Using Probe Person data,
individuals’ precise position and time data for **long term**

Using the Virtual Network
for analyzing GPS data without road network data
Probe Person data

Probe Person survey is the method for tracking individual travel behavior in urban space by using an automatic position and time recording system based on GPS and internet communications.

→ Provides us Individuals’ precise position and time data
→ Provides us long term data observed for same respondents

Surveillance Period
- **from 2 to 4 weeks, 10 terms in**
 - **2007/11/12-2008/1/27**

Area
- Matsuyama urban area

The number of respondents*
- **109**

The number of tours*
- **276**

* After data cleaning and extracting tours by car
Basic analysis

SP(O,H) ≤ 35 duration
- 5h
- 3h
- 1h

SP(S,H)

SP(O,H) > 35 duration
- 5h
- 3h
- 1h

SP(S,H)

SP(O,H)

SP(O,H) - SP(S,H) duration
- 5h
- 3h
- 1h

SP(O,H)

SP(O,S)

SP(O,S)

Stopping places distribute around the shortest routes between the office and home in the case of SP(O,H) > 35.

The differences between SP(O,S) + SP(S,H) and SP(O,H) get shorter as SP(O,H) longer.
Using the Virtual Network for analyzing GPS data without road network data

→ Avoiding the bias caused by map matching
→ Avoiding the computational burden of map matching
→ Saving the cost of development of the road network data

1. Divide the area into mesh cells as nodes and set virtual links between adjacent nodes
2. Relate each GPS point with nodes
3. Compute each link cost by counting the points passing the link
Choice set generation

Sampling alternatives of stopping nodes in trajectory-based and data-oriented

\[s_y : \text{destination} \]
\[l = (v,w) \in E_v \]
\[E_v : \text{set of outgoing links from } v \]
\[C(l) : \text{generalized cost of link } l \]
\[SP(v_1,v_2) : \text{generalized cost of the shortest path between nodes } v_1 \text{ and } v_2 \]
\[b_1,b_2 : \text{shape parameters} \]

a biased random walk algorithm (Frejinger et al. 2009)

weight

\[\omega(l|b_1,b_2) = 1 - (1 - x_i^{b_1})^{b_2} \]

probability

\[q(l|E_v,b_1,b_2) = \frac{\omega(l|b_1,b_2)}{\sum_{m \in E_v} \omega(m|b_1,b_2)} \]
Choice set generation

4 patterns of sampling:

1. Sampling of routes based on the probability distribution by the distance to the shortest path and,

 -a: Sampling of stop nodes based on the distribution of the stop nodes in each individual’s real data to consider the difference between individuals

 -b: Sampling of stop nodes based on the distribution of the stop nodes in the real data of all members to consider the tendency to overall distribution

 -c: Sampling of stop nodes randomly to see the effects of a and b

2. Sampling of stop nodes randomly
MDCEV (Multiple discrete-continuous extreme value model)
Bhat (2005, 2008)

Random utility function:

\[
U(t) = \sum_k \frac{\gamma_k}{\alpha_k} \left[\exp(\beta' z_k + \varepsilon_k) \right] \cdot \left\{ \left(\frac{t_k}{\gamma_k} + 1 \right)^{\alpha_k} - 1 \right\}
\]

- \(\alpha_k\): satiation parameter
- \(\gamma_k\): satiation and translation parameter
- \(z_k\): explanatory variables
- \(\beta\): parameter
- \(\varepsilon_k\): error term
- \(t_k\): time spent in activity purpose \(k\)

In this research, variables are:
1) distance from home to the stop node
2) distance from office to the stop node
3) average of duration and frequency of visit at each node
4) difference between total link cost of the route and the shortest path
Estimation results

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$SP(S,H) \leq 50$</td>
<td>-0.987</td>
<td>-0.899</td>
<td>-0.795</td>
<td>-0.550</td>
</tr>
<tr>
<td>$SP(O,S) \leq 50$</td>
<td>0.648</td>
<td>0.516</td>
<td>0.380</td>
<td>0.525</td>
</tr>
<tr>
<td>$SP(O,S)+SP(S,H)-SP(O,H)$</td>
<td>0.0006</td>
<td>0.003</td>
<td>0.006</td>
<td>-0.029</td>
</tr>
<tr>
<td>Cumulative sojourn time on each node</td>
<td>-0.013</td>
<td>-0.060</td>
<td>-0.055</td>
<td>0.048</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.203</td>
<td>-0.204</td>
<td>-0.203</td>
<td>-0.203</td>
</tr>
<tr>
<td>γ</td>
<td>~ -0.191</td>
<td>~ -0.194</td>
<td>~ -0.195</td>
<td>~ -0.189</td>
</tr>
</tbody>
</table>

| Final log-likelihood value | -413.149 | -405.352 | -399.326 | -351.89 |
| Adj. rho bar sq. | 0.265 | 0.276 | 0.275 | 0.381 |
Estimation results

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimate</td>
<td>t-stat</td>
<td>Estimate</td>
<td>t-stat</td>
</tr>
<tr>
<td>SP(S,H) ≤ 50</td>
<td>-0.489</td>
<td>-129.559</td>
<td>-0.517</td>
<td>-148.723</td>
</tr>
<tr>
<td>SP(O,S) ≤ 50</td>
<td>0.335</td>
<td>83.534</td>
<td>0.103</td>
<td>27.689</td>
</tr>
<tr>
<td>SP(O,S)+SP(S,H)-SP(O,H)</td>
<td>-0.035</td>
<td>-5.252</td>
<td>-0.027</td>
<td>-4.408</td>
</tr>
<tr>
<td>Cumulative sojourn time on each node</td>
<td>0.010</td>
<td>0.225</td>
<td>-0.043</td>
<td>-0.956</td>
</tr>
<tr>
<td>Constant</td>
<td>~-0.195</td>
<td>~-0.018</td>
<td>~-0.197</td>
<td>~-0.080</td>
</tr>
<tr>
<td>γ</td>
<td>0.303</td>
<td>1.795</td>
<td>0.302</td>
<td>1.794</td>
</tr>
<tr>
<td>Final log-likelihood value</td>
<td>-714.01</td>
<td></td>
<td>-715.263</td>
<td></td>
</tr>
<tr>
<td>Adj. rho bar sq.</td>
<td>0.279</td>
<td></td>
<td>0.278</td>
<td></td>
</tr>
</tbody>
</table>

3 cases considering route lengths (case1-a,b,c) result worse than the case generated choice set randomly(case2). This may be the effect of moderate dispersion by random sampling. But in case 2 the parameters’ signs are not stable when computing with the number of alternatives varied.
Conclusion

1) Proposing a trajectory-based and data-oriented approach for choice set generation in location choice situations.

2) Proposing the location choice model with considering the tendency of the spatial distribution of daily activities and bringing duration of stay in the value estimation of the places by applying MDCEV model.

3) As a result, though the accuracy of the model was still low, we got the stable and logically appropriate model for future study.